首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
胚胎着床是处于活化状态的胚泡与处于接受态的子宫相互作用,最后导致胚胎滋养层与子宫内膜建立紧密联系的过程。已证实白血病抑制因子(LIF)在哺乳动物胚胎着床过程中起着十分重要的调节作用。LIF通过其受体及信号传递亚单位gp130发挥其生物学功能。LIF对胚胎发育到胚泡阶段及以后内细胞团和滋养层细胞的生长和分化有明显的促进作用。 在小鼠中,LIF及其受体和gp130在着床期小鼠子宫内表达量最高,因此LIF可能在小鼠胚胎着床过程中起重要作用。在人中,LIF在子宫内膜中的表达与人胚胎着床的时间一致,提示LIF可能与人的胚胎着床紧密相关。此外,LIF在猪、羊、水貂、兔和臭鼬等动物胚泡着床前和着床期的子宫中也都有表达,并在着床期出现峰值。因此,LIF也可能在这些动物的胚胎发育和着床过程中有重要作用。LIF受体基因敲除小鼠表现为胎盘发育不全,这说明LIF对小鼠胎盘形成和胎盘的功能维持起重要作用。 小鼠子宫中LIF的表达可能受雌激素而上调。美洲长尾猴(绒)及兔子宫中LIF的表达则呈孕酮依赖性。然而孕酮可抑制人着床期子宫内膜腺上皮和蜕膜组织内LIF的表达。在不同种类的动物中,LIF在子宫中的表达有不同的调节机制。 胚泡在LIF基因敲除的雌鼠子宫内不能着床的原因并不是由于胚泡发育异常,而是由于雌鼠不能表  相似文献   

2.
3.
Oncostatin M (OSM) and leukemia inhibitory factor are pleiotropic cytokines that belong to the interleukin-6 (IL-6) family. These cytokines play a crucial role in diverse biological events like inflammation, neuroprotection, hematopoiesis, metabolism, and development. The family is grouped together based on structural similarities and their ability to activate the transmembrane receptor glycoprotein 130 (gp130). The common structure among these cytokines defines the spacing and the orientation of binding sites for cell surface receptors. OSM is unique in this family as it can signal using heterodimers of gp130 with either leukemia inhibitory factor receptor (LIFR) (type I) or oncostatin M receptor (OSMR) (type II). We have identified a unique helical loop on OSM between its B and C helices that is not found on other IL-6 family cytokines. This loop is located near the "FXXK" motif in active site III, which is essential for OSM's binding to both LIFR and OSMR. In this study, we show that the BC loop does not play a role in OSM's unique ability to bind OSMR. Shortening of the loop enhanced OSM's interaction with OSMR and LIFR as shown by kinetic and equilibrium binding analysis, suggesting the loop may hinder receptor interactions. As a consequence of improved binding, these structurally modified OSMs exhibited enhanced biological activity, including suppressed proliferation of A375 melanoma cells.  相似文献   

4.
The classical model of 17beta-estradiol action has been traditionally described to be mediated by the estrogen receptor (ER) localized exclusively in the nucleus. However, there is increasing functional evidence for extra nuclear localization of ER. We present biochemical, immunological and molecular data supporting mitochondrial-microsomal localization of ER alpha in the C2C12 skeletal muscle cell line. We first established [(3)H]17beta estradiol binding characteristics in whole cells in culture. Specific and saturable [(3)H]17beta estradiol binding sites of high affinity were then detected in mitochondrial fractions (K(d) = 0.43 nM; B(max) = 572 fmol/mg protein). Immunocytological studies revealed that estrogen receptors mainly localize at the mitochondrial and perinuclear level. These results were also confirmed using fluorescent 17beta estradiol-BSA conjugates. The immunoreactivity did not translocate into the nucleus by 17beta-estradiol treatment. Western and Ligand blot approaches corroborated the non-classical localization. Expression and subcellular distribution of ER alpha proteins were confirmed in C2C12 cells transfected with ER alpha siRNA and by RT-PCR employing specific primers. The non-classical distribution of native pools of ER alpha in skeletal muscle cells suggests an alternative mode of ER localization/function.  相似文献   

5.
6.
7.
The objective of this study was to determine the ability of multiple-factor supplementation to augment derivation of mouse embryonic stem (mES) cells. Three factors, leukemia inhibitory factor (LIF), Parke-Davis 98059 (PD98059), and 6-bromoindirubin-3′-oxime (BIO), were added as supplements (individually or in a combination of all three) at two consecutive stages of culture; that is, from the start of blastocyst culture to the outgrowth stage, and from putting disaggregated outgrowth into culture medium to generation of primary mES colonies, respectively. The main outcome measure was the percentage of derivable mES cell lines, based on the number of blastocysts initially cultured. Three experiments demonstrated the following: (1) For the addition of individual single factor, only LIF yielded mES cell lines (6.2%), whereas a combination of all three factors resulted in the greatest number of mES cell lines (31.3%). (2) The advantages of a combination of multiple factors (LIF + PD98059 + BIO) were manifested only when they were used during the first stage of the culture and not during the second stage (31.6% vs. 6.2%, respectively). (3) The quality of the inner cell mass (ICM) outgrowth obtained from first-stage culture was studied. After alkaline phosphatase and Oct-4 staining, which documented pluripotency of the embryonic stem cells, outgrowths cultured in multiple factors (LIF + PD98059 + BIO) stained much stronger and in higher proportions than did those obtained after supplementation only with LIF (80% vs. 30%, respectively).  相似文献   

8.
9.
10.
11.
12.
13.
14.
肠道病毒A71型(enterovirus A71,EV-A71)是导致手足口病(hand-foot-mouth disease,HFMD)的主要病原体之一,目前对其治疗尚无特异高效的抗病毒药物.研究表明,细胞膜转运相关分子参与病毒的入侵、复制以及感染性子代病毒颗粒的释放.为寻找宿主中可有效抑制EV-A71感染的细胞膜转...  相似文献   

15.
Oncogenic epidermal growth factor receptor (EGFR) signaling plays an important role in regulating global metabolic pathways, including aerobic glycolysis, the pentose phosphate pathway (PPP), and pyrimidine biosynthesis. However, the molecular mechanism by which EGFR signaling regulates cancer cell metabolism is still unclear. To elucidate how EGFR signaling is linked to metabolic activity, we investigated the involvement of the RAS/MEK/ERK and PI3K/AKT/mammalian target of rapamycin (mTOR) pathways on metabolic alteration in lung adenocarcinoma (LAD) cell lines with activating EGFR mutations. Although MEK inhibition did not alter lactate production and the extracellular acidification rate, PI3K/mTOR inhibitors significantly suppressed glycolysis in EGFR-mutant LAD cells. Moreover, a comprehensive metabolomics analysis revealed that the levels of glucose 6-phosphate and 6-phosphogluconate as early metabolites in glycolysis and PPP were decreased after inhibition of the PI3K/AKT/mTOR pathway, suggesting a link between PI3K signaling and the proper function of glucose transporters or hexokinases in glycolysis. Indeed, PI3K/mTOR inhibition effectively suppressed membrane localization of facilitative glucose transporter 1 (GLUT1), which, instead, accumulated in the cytoplasm. Finally, aerobic glycolysis and cell proliferation were down-regulated when GLUT1 gene expression was suppressed by RNAi. Taken together, these results suggest that PI3K/AKT/mTOR signaling is indispensable for the regulation of aerobic glycolysis in EGFR-mutated LAD cells.  相似文献   

16.

Background

Small leucine-rich proteoglycans (SLRPs) are molecules that have signaling roles in a multitude of biological processes. In this respect, SLRPs play key roles in the evolution of a variety of diseases throughout the human body.

Scope of Review

We will critically review current developments in the roles of SLRPs in several types of disease of the kidney and lungs. Particular emphasis will be given to the roles of decorin and biglycan, the best characterized members of the SLRP gene family.

Major Conclusions

In both renal and pulmonary disorders, SLRPs are essential elements that regulate several pathophysiological processes including fibrosis, inflammation and tumor progression. Decorin has remarkable antifibrotic and antitumorigenic properties and is considered a valuable potential treatment of these diseases. Biglycan can modulate inflammatory processes in lung and renal inflammation and is a potential target in the treatment of inflammatory conditions.

General Significance

SLRPs can serve as either treatment targets or as potential treatment in renal or lung disease. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.  相似文献   

17.
Mouse embryonic stem cells (mESCs) rely on a cytokine named leukemia inhibitory factor (LIF) to maintain their undifferentiated state and pluripotency. However, the progress of mESC research is restricted and limited to highly funded laboratories due to the cost of commercial LIF. Here we presented the homemade hLIF which is biologically active. The hLIF cDNA was cloned into two different vectors in order to produce N-terminal His6-tag and Trx-His6-tag hLIF fusion proteins in Origami(DE3) Escherichia coli. The His6-hLIF fusion protein was not as soluble as the Trx-His6-hLIF fusion protein. One-step immobilized metal affinity chromatography (IMAC) was done to recover high purity (>95% pure) His6-hLIF and Trx-His6-hLIF fusion proteins with the yields of 100 and 200 mg/l of cell culture, respectively. The hLIF fusion proteins were identified by Western blot and verified by mass spectrometry (LC/MS/MS). The hLIF fusion proteins specifically promote the proliferation of TF-1 cells in a dose-dependent manner. They also demonstrate the potency to retain the morphology of undifferentiated mESCs, in that they were positive for mESC markers (Oct-4, Sox-2, Nanog, SSEA-1 and alkaline phosphatase activity). These results demonstrated that the N-terminal fusion tags of the His6-hLIF and Trx-His6-hLIF fusion proteins do not interfere with their biological activity. This expression and purification approach to produce recombinant hLIF is a simple, reliable, cost effective and user-friendly method.  相似文献   

18.
19.
20.
Initially understood for its physiological maintenance of self-tolerance, the immune checkpoint molecule has recently been recognized as a promising anti-cancer target. There has been considerable interest in the biology and the action mechanism of the immune checkpoint therapy, and their incorporation with other therapeutic regimens. Recently the small-molecule inhibitor (SMI) has been identified as an attractive combination partner for immune checkpoint inhibitors (ICIs) and is becoming a novel direction for the field of combination drug design. In this review, we provide a systematic discussion of the biology and function of major immune checkpoint molecules, and their interactions with corresponding targeting agents. With both preclinical studies and clinical trials, we especially highlight the ICI + SMI combination, with its recent advances as well as its application challenges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号