首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Iruthayanathan M  O'Leary B  Paul G  Dillon JS 《Steroids》2011,76(13):1483-1490
Dehydroepiandrosterone (DHEA) activates a putative plasma membrane Gi-protein coupled receptor to induce vascular endothelial proliferation. We now test the hypothesis that hydrogen peroxide (H2O2) signaling mediates this effect. Incubation of EA.hy926 cells, a human vascular endothelial cell line, with DHEA for 5 min produced a significant increase in H2O2 production, measured by oxidation of either p-hydroxyphenylacetate or dichlorodihydrofluorescein. The DHEA effect on H2O2 production was maximal at 1 nM DHEA, was evident within the first minute of incubation, and remained for 10 min. Similar results were present in primary bovine aortic endothelial cells. The induction of H2O2 in EA.hy926 cells was mimicked by a membrane-impermeable albumin-conjugated DHEA and was inhibited by either catalase or pertussis toxin. Incubation of endothelial cells with DHEA for 5 min resulted in a 2-fold increase of cyclin D1 mRNA and protein expression at 4 h. These effects were abolished by co-incubation with catalase. DHEA induced a 50 ± 7% increase in cell proliferation over 24 h, measured as cellular Ki-67 immunoreactivity. This proliferative effect was abolished by either catalase or pertussis toxin co-incubation, indicating an H2O2 and Gi-protein-dependent effect. We conclude that H2O2 is a key signaling molecule mediating the proliferative effects of DHEA in vascular endothelial cells, possibly by up-regulating cell-cycle associated genes, such as cyclin D1.  相似文献   

2.
7,8-dihydroxyflavone (7,8-DHF), a newly identified small molecular TrkB receptor agonist, rapidly activates TrkB in both primary neurons and the rodent brain and mimics the physiological functions of the cognate ligand BDNF. Accumulating evidence supports that 7,8-DHF exerts neurotrophic effects in a TrkB-dependent manner. Nonetheless, the differences between 7,8-DHF and BDNF in activating TrkB remain incompletely understood. Here we show that 7,8-DHF and BDNF exhibit different TrkB activation kinetics in which TrkB maturation may be implicated. Employing two independent biophysical approaches, we confirm that 7,8-DHF interacts robustly with the TrkB extracellular domain, with a Kd of ∼10 nm. Although BDNF transiently activates TrkB, leading to receptor internalization and ubiquitination/degradation, in contrast, 7,8-DHF-triggered TrkB phosphorylation lasts for hours, and the internalized receptors are not degraded. Notably, primary neuronal maturation may be required for 7,8-DHF but not for BDNF to elicit the full spectrum of TrkB signaling cascades. Hence, 7,8-DHF interacts robustly with the TrkB receptor, and its agonistic effect may be mediated by neuronal development and maturation.  相似文献   

3.
4.
目的探讨杂合肽P18体外对内皮细胞EA.hy926血管生成的抑制作用.方法采用MTT法检测P18对EA.hy926细胞增殖的影响;应用Matrigel实验检测P18对内皮细胞形成管状结构的影响;利用流式细胞术分析P18对内皮细胞的损伤作用.结果 MTT结果显示P18可明显抑制EA.hy926细胞的增殖,且抑制率存在剂量依赖性;Matrigel实验表明P18具有抑制EA.hy926细胞体外分化成管状结构的作用;流式结果显示15 μM P18作用内皮细胞6 h后,所诱导的细胞坏死比例达到81.4%.结论体外实验结果表明,杂合肽P18具有体外抑制EA.hy926细胞血管生成的作用.  相似文献   

5.
Hydrogen sulphide (H2S) is a newly discovered gasotransmitter that regulates multiple steps in VEGF-induced angiogenesis. An increase in intracellular Ca2+ concentration ([Ca2+]i) is central to endothelial proliferation and may be triggered by both VEGF and H2S. Albeit VEGFR-2 might serve as H2S receptor, the mechanistic relationship between VEGF- and H2S-induced Ca2+ signals in endothelial cells is unclear. The present study aimed at assessing whether and how NaHS, a widely employed H2S donor, stimulates pro-angiogenic Ca2+ signals in Ea.hy926 cells, a suitable surrogate for mature endothelial cells, and human endothelial progenitor cells (EPCs). We found that NaHS induced a dose-dependent increase in [Ca2+]i in Ea.hy926 cells. NaHS-induced Ca2+ signals in Ea.hy926 cells did not require extracellular Ca2+ entry, while they were inhibited upon pharmacological blockade of the phospholipase C/inositol-1,4,5-trisphosphate (InsP3) signalling pathway. Moreover, the Ca2+ response to NaHS was prevented by genistein, but not by SU5416, which selectively inhibits VEGFR-2. However, VEGF-induced Ca2+ signals were suppressed by dl-propargylglycine (PAG), which blocks the H2S-producing enzyme, cystathionine γ-lyase. Consistent with these data, VEGF-induced proliferation and migration were inhibited by PAG in Ea.hy926 cells, albeit NaHS alone did not influence these processes. Conversely, NaHS elevated [Ca2+]i only in a modest fraction of circulating EPCs, whereas neither VEGF-induced Ca2+ oscillations nor VEGF-dependent proliferation were affected by PAG. Therefore, H2S-evoked elevation in [Ca2+]i is essential to trigger the pro-angiogenic Ca2+ response to VEGF in mature endothelial cells, but not in their immature progenitors.  相似文献   

6.

Background  

Use of mobile phones has widely increased over the past decade. However, in spite of the extensive research, the question of potential health effects of the mobile phone radiation remains unanswered. We have earlier proposed, and applied, proteomics as a tool to study biological effects of the mobile phone radiation, using as a model human endothelial cell line EA.hy926. Exposure of EA.hy926 cells to 900 MHz GSM radiation has caused statistically significant changes in expression of numerous proteins. However, exposure of EA.hy926 cells to 1800 MHz GSM signal had only very small effect on cell proteome, as compared with 900 MHz GSM exposure. In the present study, using as model human primary endothelial cells, we have examined whether exposure to 1800 MHz GSM mobile phone radiation can affect cell proteome.  相似文献   

7.
Dengue is the most prevalent mosquito-borne viral disease in tropical regions. Severe cases may progress to Dengue hemorrhagic fever, suggesting vascular endothelial dysfunction in disease pathogenesis. In our previous study, we found that Dengue virus type 2 (DENV2) induced apoptosis of vascular endothelial cells via FasL/Fas- and XIAP-associated factor 1 (XAF1)-dependent pathways. In this paper, we demonstrate that DENV2 can induce autophagy in primary human umbilical vein endothelial cells (HUVECs) and the human umbilical vein endothelial cell line EA.hy926. Inhibition of autophagy with 3-methyl adenine promoted apoptosis, while inhibition of apoptosis with Z-VAD-FMK facilitated autophagy in DENV2-infected HUVECs and EA.hy926 cells. Interferon-alpha-inducible protein 6 (IFI6), a putative apoptosis regulator, inhibited DENV2-induced autophagy in EA.hy926 cells, while XAF1, an inhibitor of anti-apoptotic XIAP, facilitated autophagy. Molecular regulators of apoptosis and autophagy interact at multiple levels to determine cell fate. Our data suggest that XAF1 and IFI6 are involved in regulating the balance between autophagy and apoptosis in DENV2-infected endothelial cells.  相似文献   

8.
Resting endothelial cells express the small proteoglycan biglycan, whereas sprouting endothelial cells also synthesize decorin, a related proteoglycan. Here we show that decorin is expressed in endothelial cells in human granulomatous tissue. For in vitro investigations, the human endothelium-derived cell line, EA.hy 926, was cultured for 6 or more days in the presence of 1% fetal calf serum on top of or within floating collagen lattices which were also populated by a small number of rat fibroblasts. Endothelial cells aligned in cord-like structures and developed cavities that were surrounded by human decorin. About 14% and 20% of endothelial cells became apoptotic after 6 and 12 days of co-culture, respectively. In the absence of fibroblasts, however, the extent of apoptosis was about 60% after 12 days, and cord-like structures were not formed nor could decorin production be induced. This was also the case when lattices populated by EA.hy 926 cells were maintained under one of the following conditions: 1) 10% fetal calf serum; 2) fibroblast-conditioned media; 3) exogenous decorin; or 4) treatment with individual growth factors known to be involved in angiogenesis. The mechanism(s) by which fibroblasts induce an angiogenic phenotype in EA.hy 926 cells is (are) not known, but a causal relationship between decorin expression and endothelial cell phenotype was suggested by transducing human decorin cDNA into EA.hy 926 cells using a replication-deficient adenovirus. When the transduced cells were cultured in collagen lattices, there was no requirement of fibroblasts for the formation of capillary-like structures and apoptosis was reduced. Thus, decorin expression seems to be of special importance for the survival of EA.hy 926 cells as well as for cord and tube formation in this angiogenesis model.  相似文献   

9.
BackgroundEpidemiologic studies suggest that diabetes is associated with an increased risk of cancer. Concurrently, clinical trials have shown that metformin, which is a first-line antidiabetic drug, displays anticancer activity. The underlying mechanisms for these effects are, however, still not well recognized.MethodsMethods based on atomic force microscopy (AFM) were used to directly evaluate the influence of metformin on the nanomechanical and adhesive properties of endothelial and cancer cells in chronic hyperglycemia. AFM single-cell force spectroscopy (SCFS) was used to measure the total adhesion force and the work of detachment between EA.hy926 endothelial cells and A549 lung carcinoma cells. Nanoindentation with a spherical AFM probe provided information about the nanomechanical properties of cells, particularly the length and grafting density of the glycocalyx layer. Fluorescence imaging was used for glycocalyx visualization and monitoring of E-selectin and ICAM-1 expression.ResultsSCFS demonstrated that metformin attenuates adhesive interactions between EA.hy926 endothelial cells and A549 lung carcinoma cells in chronic hyperglycemia. Nanoindentation experiments, confirmed by confocal microscopy imaging, revealed metformin-induced recovery of endothelial glycocalyx length and density. The recovery of endothelial glycocalyx was correlated with a decrease in the surface expression of E-selectin and ICAM-1.ConclusionOur results identify metformin-induced endothelial glycocalyx restoration as a key factor responsible for the attenuation of adhesion between EA.hy926 endothelial cells and A549 lung carcinoma cells.General significanceMetformin-induced glycocalyx restoration and the resulting attenuation of adhesive interactions between the endothelium and cancer cells may account for the antimetastatic properties of this drug.  相似文献   

10.
A permanent vascular endothelial cell line, EA.hy 926, was shown to express endothelin-1 (ET-1) mRNA and to secrete big ET-1 and ET-1 into culture medium. The concentration of both big ET-1 and ET-1 was significantly increased in EA.hy 926 culture medium by phosphoramidon, a metalloproteinase inhibitor, suggesting that phosphoramidon sensitive protease(s) may be responsible for the degradation of ET-1 and big ET-1. EA.hy 926 cells responded to various regulators of ET-1 similarly as primary human vascular endothelial cells. The production of ET-1 was increased by thrombin and decreased by vasodilators such as atrial natriuretic peptide, brain natriuretic peptide and nitroprusside, and by 8-bromo cyclic GMP and papaverine. This continuous human endothelial hybrid cell line could facilitate studies of regulation of ET-1 production in human endothelial cells, which in primary cultures have limited replication potential.  相似文献   

11.
Endothelial cell lines express markers and are assumed to exhibit other endothelial cell responses. We investigated E-selectin expression from human umbilical vein endothelial cells, the spontaneously transformed ECV304 line and the hybrid line EA.hy926 by flow cytometry and immunofluorescence, mRNA and soluble E-selectin release. In cells exposed to tumour necrosis factor alpha (TNF-alpha) and interleukin-1beta (IL-1beta), median (range) percentage of E-selectin-positive HUVECs increased from 1.6(0.9-6. 2)% to 91.4(83.0-96.1)%, (P=0.001) using flow cytometry. In contrast, E-selectin expression by ECV304 and EA.hy926 cell lines was 100-fold lower. E-selectin mRNA was detectable after 2 h, maximal at 6 h in HUVECs and undetectable in EA.hy926 and ECV304 cell lines after exposure to TNF-alpha/IL-1beta. sE-selectin accumulation increased (P=0.004) in HUVECs only. Neutrophil adherence to ECV304 and EA.hy926 cells was poor compared to HUVECs (P=0.004). The cell lines ECV304 and EA.hy926 do not exhibit normal endothelium expression of E-selectin, and may not be appropriate for studies of adhesion.  相似文献   

12.
13.
Since tissue oxygenation has a profound effect on capillary growth, the effect of pO2 on endothelial cell functions was studied. Under normoxic conditions, EA.hy926 endothelial cells and HUVEC plated onto fibrin gels in low-serum culture medium underwent rapid and profound morphological changes within 12 to 48 hours depending on the cell line used. Their characteristic cobblestone organisation was transformed into a network of cord-like or tube-like structures. We showed that when exposed to low oxygen concentrations for 3 days, HUVEC and EA.hy926 have their ability to rearrange reduced to around 50 %. With EA.hy926 this effect was amplified by 79% after 9 days of hypoxia. The altered behaviour of hypoxia-adapted cells was not caused by a loss in their fibrinolytic activity. In fact, the fibrin degradation rate and the generated fibrin fragments appeared identical in normoxia and hypoxia. Confocal microscopy and gel densitometry showed that in normoxia the remaining undegraded fibrin gel underwent a dynamic remodeling whereas in hypoxia it remained undisturbed. It is likely that hypoxia induces modification in the factors that integrate matrix information and cytoskeletal organisation in order to contract fibrin.  相似文献   

14.
Inflammation and reactive oxygen species (ROS) are important factors in the pathogenesis of atherosclerosis (AS). 5,2′‐dibromo‐2,4′,5′‐trihydroxydiphenylmethanone (TDD), possess anti‐atherogenic properties; however, its underlying mechanism of action remains unclear. Therefore, we sought to understand the therapeutic molecular mechanism of TDD in inflammatory response and oxidative stress in EA.hy926 cells. Microarray analysis revealed that the expression of homeobox containing 1 (HMBOX1) was dramatically upregulated in TDD‐treated EA.hy926 cells. According to the gene ontology (GO) analysis of microarray data, TDD significantly influenced the response to lipopolysaccharide (LPS); it suppressed the LPS‐induced adhesion of monocytes to EA.hy926 cells. Simultaneously, TDD dose‐dependently inhibited the production or expression of IL‐6, IL‐1β, MCP‐1, TNF‐α, VCAM‐1, ICAM‐1 and E‐selectin as well as ROS in LPS‐stimulated EA.hy926 cells. HMBOX1 knockdown using RNA interference attenuated the anti‐inflammatory and anti‐oxidative effects of TDD. Furthermore, TDD inhibited LPS‐induced NF‐κB and MAPK activation in EA.hy926 cells, but this effect was abolished by HMBOX1 knockdown. Overall, these results demonstrate that TDD activates HMBOX1, which is an inducible protective mechanism that inhibits LPS‐induced inflammation and ROS production in EA.hy926 cells by the subsequent inhibition of redox‐sensitive NF‐κB and MAPK activation. Our study suggested that TDD may be a potential novel agent for treating endothelial cells dysfunction in AS.  相似文献   

15.
Production of arachidonic acid (AA) metabolites - prostacyclin (PGI(2)) in large vessels and prostaglandin E(2) (PGE(2)) in microcirculation is intrinsically involved in maintenance of vascular wall homeostasis. EA.hy 926 is a hybrid cell line, is derived by fusion of HUVEC with A549 cells. The aim of this study was to examine the production of prostacyclin and PGE2 in resting and IL-1beta-stimulated EA.ha 926 cells, in comparison with its progenitor cells. Non-stimulated EA.hy 926 cells has been found to produce much lower amounts of prostacyclin than resting HUVEC. Resting hybrid cells produced more PGE(2) than prostacyclin, despite they expressed high levels of COX-1 and PGI(2) synthase. On the contrary to HUVEC and A549, EA.hy 926 cells did not respond to IL-1beta with COX-2 induction and increase of prostaglandin production, however they did it in response to lysophosphatidylcholine (LPC). The characteristics of EA.hy 926 cells in terms of the pattern of prostanoid formation could facilitate studies on endothelial metabolism and role of these important lipid mediators.  相似文献   

16.
Restenosis after initially successful balloon angioplasty of coronary artery stenosis remains a major problem in clinical cardiology. Previous studies have identified pathogenetic factors which trigger cell proliferation and vascular remodeling ultimately leading to restenosis. Since there is evidence that endothelial cells adjacent to the angioplasty wound area synthesize factors which may initiate this process, we investigated the effects of mechanical stimulation on endothelial gene expression in vitro and focussed on the influence of sustained mechanical stress on expression of immediate early genes which have previously been shown to be induced in the vascular wall in vivo. Primary cultured human umbilical vein endothelial cells (HUVEC) and the human endothelial cell line EA.hy 926 were plated on collagen-coated silicone membranes and subjected to constant longitudinal stress of approximately 20% for 10 min to 6 h. Total RNA was isolated and the expression of the immediate early genes c-Fos and Egr-1 was studied by Northern blot analysis. We found a rapid upregulation c-Fos and Egr-1 mRNA which started at 10 min and reached its maxima at 30 min. HUVEC lost most of their stretch response after the third passage whereas immediate early gene expression was constantly in EA.hy 926 cells. Using specific inhibitors we investigated the contribution of several signal transduction pathways to stretch-activated Egr-1 mRNA expression. We found significant suppression of stretch-induced Egr-1 mRNA expression by protein kinase C (PKC) inhibition (p < 0.05) and by calcium depletion (EA.hy926, p < 0. 05; HUVEC, p = 0.063). No effect on stretch-activated Egr-1 mRNA expression was detected by inhibition of protein kinase A, blockade of stretch-activated cation channels or inhibition of microtubule synthesis. We conclude that sustained mechanical strain induces Egr-1 mRNA expression by PKC- and calcium-dependent mechanisms.  相似文献   

17.
最新研究表明,长链非编码RNA GAS5(lncRNA GAS5)可调节血管内皮细胞的凋亡,但对内皮细胞其他功能的调控并不明确。本研究旨在了解lncRNA GAS5对内皮细胞的增殖、成血管、NO分泌及内皮标志分子CD31和vWF表达的影响及可能机制。将LncRNA GAS5干扰慢病毒(LV-GAS5-RNAi)转染人脐静脉内皮细胞株(EA.hy926)后,采用CCK8及Matrigel胶分别检测EA.hy926的增殖和成血管能力;硝酸还原酶法检测NO的分泌情况;real-time RT-PCR检测CD31、vWF及miR-21的表达;Western印迹检测PTEN在蛋白质水平的表达。结果显示:与对照组比较,LV-GAS5-RNAi组EA.hy926增殖能力无明显变化(0.34±0.01 vs. 0.34±0.04,P>0.05),而其成血管能力升高(133.70±12.64 vs. 100.00±4.65,P<0.05),NO的分泌量亦增加(28.54±2.75 μmol/L vs.15.11±1.19 μmol/L,P<0.01);内皮标志分子CD31(是对照组的1.46倍)及vWF(是对照组的2.94倍)的基因表达量均显著升高。同时,miR-21表达亦明显升高(是对照组的1.42倍),而miR-21下游靶基因PTEN蛋白质的表达量则显著降低(0.13±0.05 vs. 0.38±0.03,P<0.01)。以上结果提示,LncRNA GAS5抑制了内皮细胞的功能,miR-21、PTEN信号分子可能参与其中的调节。  相似文献   

18.
Oxidative stress has a considerable influence on endothelial cell dysfunction and atherosclerosis. Acacetin, an anti-inflammatory and antiarrhythmic, is frequently used in the treatment of myocarditis, albeit its role in managing atherosclerosis is currently unclear. Thus, we evaluated the regulatory effects of acacetin in maintaining endothelial cell function and further investigated whether the flavonoid could attenuate atherosclerosis in apolipoprotein E deficiency (apoE−/−) mice. Different concentrations of acacetin were tested on EA.hy926 cells, either induced or non-induced by human oxidized low-density lipoprotein (oxLDL), to clarify its influence on cell viability, cellular reactive oxidative stress (ROS) level, apoptotic ratios and other regulatory effects. In vivo, apoE−/− mice were fed either a Western diet or a chow diet. Acacetin pro-drug (15 mg/kg) was injected subcutaneously two times a day for 12 weeks. The effects of acacetin on the atherosclerotic process, plasma inflammatory factors and lipid metabolism were also investigated. Acacetin significantly increased EA.hy926 cell viability by reducing the ratios of apoptotic and necrotic cells at 3 μmol/L. Moreover, 3 μmol/L acacetin clearly decreased ROS levels and enhanced reductase protein expression through MsrA and Nrf2 pathway through phosphorylation of Nrf2 and degradation of Keap1. In vivo, acacetin treatment remarkably attenuated atherosclerosis by increasing reductase levels in circulation and aortic roots, decreasing plasma inflammatory factor levels as well as accelerating lipid metabolism in Western diet-fed apoE−/− mice. Our findings demonstrate the anti-oxidative and anti-atherosclerotic effects of acacetin, in turn suggesting its potential therapeutic value in atherosclerotic-related cardiovascular diseases (CVD).  相似文献   

19.
20.
Oxidative stress, as mediated by ROS (reactive oxygen species), is a significant factor in initiating the cells damaged by affecting cellular macromolecules and impairing their biological functions; SelX, a selenoprotein also known as MsrB1 belonging to the methionine sulfoxide reductase (Msr) family, is the redox repairing enzyme and involved in redox-related functions. In order to more precisely analyze the relationship between oxidative stress, cell oxidative damage, and SelX, we stably overexpressed porcine Selx full-length cDNA in human normal hepatocyte (LO2) cells. Cell viability, cell apoptosis rate, intracellular ROS, and the expression levels of mRNA or protein of apoptosis-related genes under H2O2-induced oxidative stress were detected. We found that overexpression of SelX can prevent the oxidative damage caused by H2O2 and propose that the main mechanism underlying the protective effects of SelX is the inhibition of LO2 cell apoptosis. The results revealed that overexpressed SelX reduced the H2O2-induced intracellular ROS generation, inhibited the H2O2-induced upregulation of Bax and downregulation of Bcl-2, and increased the mRNA and protein ratio of Bcl-2/Bax. Furthermore, it inhibited H2O2-induced p38 MAPK phosphorylation. Taken together, our findings suggested that SelX played important roles in protecting LO2 cells against oxidative damage and that its protective effect is partly via the p38 pathway by acting as a ROS scavenger.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号