首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The type VI secretion system (T6SS) is a widespread, versatile protein secretion system in pathogenic Proteobacteria. Several T6SSs are tightly regulated by various regulatory systems at multiple levels. However, the signals and/or regulatory mechanisms of many T6SSs remain unexplored. Here, we report on an acid-induced regulatory mechanism activating T6SS in Agrobacterium tumefaciens, a plant pathogenic bacterium causing crown gall disease in a wide range of plants. We monitored the secretion of the T6SS hallmark protein hemolysin-coregulated protein (Hcp) from A. tumefaciens and found that acidity is a T6SS-inducible signal. Expression analysis of the T6SS gene cluster comprising the imp and hcp operons revealed that imp expression and Hcp secretion are barely detected in A. tumefaciens grown in neutral minimal medium but are highly induced with acidic medium. Loss- and gain-of-function analysis revealed that the A. tumefaciens T6SS is positively regulated by a chvG/chvI two-component system and negatively regulated by exoR. Further epistasis analysis revealed that exoR functions upstream of the chvG sensor kinase in regulating T6SS. ChvG protein levels are greatly increased in the exoR deletion mutant and the periplasmic form of overexpressed ExoR is rapidly degraded under acidic conditions. Importantly, ExoR represses ChvG by direct physical interaction, but disruption of the physical interaction allows ChvG to activate T6SS. The phospho-mimic but not wild-type ChvI response regulator can bind to the T6SS promoter region in vitro and activate T6SS with growth in neutral minimal medium. We present the first evidence of T6SS activation by an ExoR-ChvG/ChvI cascade and propose that acidity triggers ExoR degradation, thereby derepressing ChvG/ChvI to activate T6SS in A. tumefaciens.  相似文献   

2.
The α-Proteobacterium Agrobacterium tumefaciens has proteins homologous to known regulators that govern cell division and development in Caulobacter crescentus, many of which are also conserved among diverse α-Proteobacteria. In light of recent work demonstrating similarity between the division cycle of C. crescentus and that of A. tumefaciens, the functional conservation for this presumptive control pathway was examined. In C. crescentus the CtrA response regulator serves as the master regulator of cell cycle progression and cell division. CtrA activity is controlled by an integrated pair of multi-component phosphorelays: PleC/DivJ-DivK and CckA-ChpT-CtrA. Although several of the conserved orthologues appear to be essential in A. tumefaciens, deletions in pleC or divK were isolated and resulted in cell division defects, diminished swimming motility, and a decrease in biofilm formation. A. tumefaciens also has two additional pleC/divJ homologue sensor kinases called pdhS1 and pdhS2, absent in C. crescentus. Deletion of pdhS1 phenocopied the ΔpleC and ΔdivK mutants. Cells lacking pdhS2 morphologically resembled wild-type bacteria, but were decreased in swimming motility and elevated for biofilm formation, suggesting that pdhS2 may serve to regulate the motile to non-motile switch in A. tumefaciens. Genetic analysis suggests that the PleC/DivJ-DivK and CckA-ChpT-CtrA phosphorelays in A. tumefaciens are vertically-integrated, as in C. crescentus. A gain-of-function mutation in CckA (Y674D) was identified as a spontaneous suppressor of the ΔpleC motility phenotype. Thus, although the core architecture of the A. tumefaciens pathway resembles that of C. crescentus there are specific differences including additional regulators, divergent pathway architecture, and distinct target functions.  相似文献   

3.
The type VI secretion system (T6SS) is a widespread protein secretion system found in many Gram-negative bacteria. T6SSs are highly regulated by various regulatory systems at multiple levels, including post-translational regulation via threonine (Thr) phosphorylation. The Ser/Thr protein kinase PpkA is responsible for this Thr phosphorylation regulation, and the forkhead-associated (FHA) domain-containing Fha-family protein is the sole T6SS phosphorylation substrate identified to date. Here we discovered that TssL, the T6SS inner-membrane core component, is phosphorylated and the phosphorylated TssL (p-TssL) activates type VI subassembly and secretion in a plant pathogenic bacterium, Agrobacterium tumefaciens. Combining genetic and biochemical approaches, we demonstrate that TssL is phosphorylated at Thr 14 in a PpkA-dependent manner. Further analysis revealed that the PpkA kinase activity is responsible for the Thr 14 phosphorylation, which is critical for the secretion of the T6SS hallmark protein Hcp and the putative toxin effector Atu4347. TssL phosphorylation is not required for the formation of the TssM-TssL inner-membrane complex but is critical for TssM conformational change and binding to Hcp and Atu4347. Importantly, Fha specifically interacts with phosphothreonine of TssL via its pThr-binding motif in vivo and in vitro and this interaction is crucial for TssL interaction with Hcp and Atu4347 and activation of type VI secretion. In contrast, pThr-binding ability of Fha is dispensable for TssM structural transition. In conclusion, we discover a novel Thr phosphorylation event, in which PpkA phosphorylates TssL to activate type VI secretion via its direct binding to Fha in A. tumefaciens. A model depicting an ordered TssL phosphorylation-induced T6SS assembly pathway is proposed.  相似文献   

4.
5.
6.
7.
The Toll-like receptor (TLR)-mediated NF-κB pathway is tightly controlled because overactivation may result in severe damage to the host, such as in the case of chronic inflammatory diseases and cancer. In mammals, sterile-alpha and armadillo motif-containing protein (SARM) plays an important role in negatively regulating this pathway. While Caenorhabditis elegans SARM is crucial for an efficient immune response against bacterial and fungal infections, it is still unknown whether Drosophila SARM participates in immune responses. Here, Litopenaeus vannamei SARM (LvSARM) was cloned and functionally characterized. LvSARM shared signature domains with and exhibited significant similarities to mammalian SARM. Real-time quantitative PCR analysis indicated that the expression of LvSARM was responsive to Vibrio alginolyticus and white spot syndrome virus (WSSV) infections in the hemocyte, gill, hepatopancreas and intestine. In Drosophila S2 cells, LvSARM was widely distributed in the cytoplasm and could significantly inhibit the promoters of the NF-κB pathway-controlled antimicrobial peptide genes (AMPs). Silencing of LvSARM using dsRNA-mediated RNA interference increased the expression levels of Penaeidins and antilipopolysaccharide factors, which are L.vannamei AMPs, and increased the mortality rate after V. alginolyticus infection. Taken together, our results reveal that LvSARM may be a novel component of the shrimp Toll pathway that negatively regulates shrimp AMPs, particularly Penaeidins and antilipopolysaccharide factors.  相似文献   

8.
9.
Cerebellar granule cells from sphingosine 1-phosphate (S1P) lyase-deficient mice were used to study the toxicity of this potent sphingolipid metabolite in terminally differentiated postmitotic neurons. Based on earlier findings with the lyase-stable, semi-synthetic, cis-4-methylsphingosine phosphate, we hypothesized that accumulation of S1P above a certain threshold induces neuronal apoptosis. The present studies confirmed this conclusion and further revealed that for S1P to induce apoptosis in lyase-deficient neurons it must also be produced by sphingosine-kinase2 (SK2). These conclusions are based on the finding that incubation of lyase-deficient neurons with either sphingosine or S1P results in a similar elevation in cellular S1P; however, only S1P addition to the culture medium induces apoptosis. This was not due to S1P acting on the S1P receptor but to hydrolysis of S1P to sphingosine that was phosphorylated by the cells, as described before for cis-4-methylsphingosine. Although the cells produced S1P from both exogenously added sphingosine as well as sphingosine derived from exogenous S1P, the S1P from these two sources were not equivalent, because the former was primarily produced by SK1, whereas the latter was mainly formed by SK2 (as also was cis-4-methylsphingosine phosphate), based on studies in neurons lacking SK1 or SK2 activity. Thus, these investigations show that, due to the existence of at least two functionally distinct intracellular origins for S1P, exogenous S1P can be neurotoxic. In this model, S1P accumulated due to a defective lyase, however, this cause of toxicity might also be important in other cases, as illustrated by the neurotoxicity of cis-4-methylsphingosine phosphate.Sphingosine 1-phosphate (S1P)2 is a potent lipid mediator that has been shown to regulate a wide range of physiological processes, including proliferation, differentiation, motility, cytoskeleton rearrangements, and calcium homeostasis (1, 2). There is convincing experimental evidence that this bioactive sphingolipid can act both extracellularly, as a ligand for a family of five specific G protein-coupled receptors, and inside the cells, as a second messenger (3, 4). In most cell types described so far, S1P and its metabolic precursor ceramide exert antagonistic effects on cell survival with S1P being generally regarded as a survival signal, whereas ceramide and sphingosine are generally toxic (5, 6). Interestingly, generation of sphingosine and S1P is generally thought to be dependent on the availability of ceramide (7), however, relatively high amounts of S1P are also present in blood, lymph, and cerebrospinal fluid (8, 9) and may serve as additional sources for some cells.More than a decade ago, we introduced the synthetic sphingosine analog cis-4-methylsphingosine as a tool for studies of sphingoid base metabolism and function (10). When added to the culture medium, this analog is taken up and mainly phosphorylated to the respective cis-4-methylsphingosine phosphate, which accumulates intracellularly, because it is poorly cleaved (if at all) by S1P lyase (10). Intriguingly, this compound promoted proliferation of quiescent Swiss 3T3 fibroblasts (11), as does S1P (12), but induced apoptosis in postmitotic terminally differentiated primary cultured neurons (13).Despite the fact that neither S1P nor sphingosine were able to induce apoptosis in neurons, we proposed that cis-4-methylsphingosine is phosphorylated by cells yielding a metabolically stable analog of S1P. This prediction was based on experimental results indicating that the different physiological effects, apoptosis in the case of the accumulating metabolically stable synthetic compound versus no apoptosis in the case of the short living S1P, rely only on nuances of impact (13). Both sphingoid phosphates affected similar pathways. However, the effect of the synthetic accumulated compound was more pronounced and persistent when compared with the more transient and less pronounced effect of the short living physiological counterpart (13). We therefore assumed that conditions that allow sufficient accumulation of S1P in primary cultured neurons should end up in neuronal apoptosis.To explore this hypothesis, which might be relevant to neurodegenerative processes, we attempted to elevate intracellular S1P using siRNAs directed to S1P lyase (encoded by the Sgpl1 gene). However, suppression of lyase by ∼70% did not result in an accumulation of endogenous S1P in primary cultured neurons (14).The central aim of the present study was to evaluate the hypothesis that endogenous S1P induces neuronal apoptosis when it exceeds a certain threshold by a more effective method for lyase activity suppression. We thus used primary cultured neurons prepared from cerebella of 6-day-old lyase-deficient mice (15). The present studies not only confirmed that elevation of S1P induced cell death but also revealed that the origin of the S1P was important. Intriguingly, neuronal apoptosis was induced only by S1P derived from exogenous S1P that was dephosphorylated and then resynthesized to S1P by sphingosine kinase 2 (SK2). Interestingly, we then found that this is also the kinase responsible for synthesis of cis-4-methylsphingosine phosphate. In addition, our data document that the pro-apoptotic effect of S1P is independent of cellular ceramide content.  相似文献   

10.
Semipermeable cell walls or apoplastic “membranes” have been hypothesized to be present in various plant tissues. Although often associated with suberized or lignified walls, the wall component that confers osmotic semipermeability is not known. In muskmelon (Cucumis melo L.) seeds, a thin, membranous endosperm completely encloses the embryo, creating a semipermeable apoplastic envelope. When dead muskmelon seeds are allowed to imbibe, solutes leaking from the embryo are retained within the envelope, resulting in osmotic water uptake and swelling called osmotic distention (OD). The endosperm envelope of muskmelon seeds stained with aniline blue, which is specific for callose (β-1,3-glucan). Outside of the aniline-blue-stained layer was a Sudan III- and IV-staining (lipid-containing) layer. In young developing seeds 25 d after anthesis (DAA) that did not exhibit OD, the lipid layer was already present but callose had not been deposited. At 35 DAA, callose was detected as distinct vesicles or globules in the endosperm envelope. A thick callose layer was evident at 40 DAA, coinciding with development of the capacity for OD. Removal of the outer lipid layer by brief chloroform treatment resulted in more rapid water uptake by both viable and nonviable (boiled) seeds, but did not affect semipermeability of the endosperm envelope. The aniline-blue-staining layer was digested by β-1,3-glucanase, and these envelopes lost OD. Thus, apoplastic semipermeability of the muskmelon endosperm envelope is dependent on the deposition of a thick callose-containing layer outside of the endosperm cell walls.  相似文献   

11.
We have previously shown that the binding of epidermal growth factor (EGF) to its receptor can best be described by a model that involves negative cooperativity in an aggregating system (Macdonald, J. L., and Pike, L. J. (2008) Proc. Natl. Acad. Sci. U. S. A. 105, 112–117). However, despite the fact that biochemical analyses indicate that EGF induces dimerization of its receptor, the binding data provided no evidence for positive linkage between EGF binding and dimer assembly. By analyzing the binding of EGF to a number of receptor mutants, we now report that in naive, unphosphorylated EGF receptors, ligand binding is positively linked to receptor dimerization but the linkage is abolished upon autophosphorylation of the receptor. Both phosphorylated and unphosphorylated EGF receptors exhibit negative cooperativity, indicating that mechanistically, cooperativity is distinct from the phenomenon of linkage. Nonetheless, both the positive linkage and the negative cooperativity observed in EGF binding require the presence of the intracellular juxtamembrane domain. This indicates the existence of inside-out signaling in the EGF receptor system. The intracellular juxtamembrane domain has previously been shown to be required for the activation of the EGF receptor tyrosine kinase (Thiel, K. W., and Carpenter, G. (2007) Proc. Natl. Acad. Sci. U. S. A. 104, 19238–19243). Our experiments expand the role of this domain to include the allosteric control of ligand binding by the extracellular domain.The EGF2 receptor is a tyrosine kinase composed of an ∼620-amino-acid extracellular domain that recognizes and binds EGF, a single pass α-helical transmembrane domain, and an intracellular tyrosine kinase domain, encompassing roughly residues 685–950 (1). In addition, the receptor contains an ∼230-amino-acid-long C-terminal tail that contains the bulk of the sites of receptor autophosphorylation (24). An intracellular juxtamembrane domain of about 40 residues connects the transmembrane domain to the kinase domain and has been shown to be crucial in the allosteric activation of the EGF receptor kinase (5, 6).In the membrane, the EGF receptor exists as a monomer, but a wealth of data indicate that the binding of EGF induces the formation of EGF receptor dimers (710). Dimerization appears to be mediated in large part by the extracellular domain of the receptor, which is comprised of four subdomains, designated I through IV. X-ray crystallography data suggest that in the absence of ligand, the extracellular domain is held in a closed configuration through the interaction of loops or arms that extend from the backs of subdomains II and IV (11). Upon binding of EGF, this intramolecular tether is released, allowing the receptor to adopt an open conformation in which EGF is tightly bound between subdomains I and III. In this configuration, the “dimerization arm” that was previously involved in tethering the receptor closed mediates the formation of a back-to-back EGF receptor dimer (12, 13).Analyses of the binding of 125I-EGF to its receptor have invariably resulted in concave up Scatchard plots that have been interpreted as indicating the presence of two classes of EGF binding sites. However, we have recently used global analysis of the binding of 125I-EGF to cells expressing increasing levels of EGF receptors to show that EGF binding is best described by a model involving negative cooperativity in an aggregating system (14) (see Fig. 6). Ligand binding is negatively cooperative if the binding of ligand to the first site on a dimer reduces the affinity of the ligand for binding to the second site on the dimer.Open in a separate windowFIGURE 6.Model for the binding of EGF to its receptor. Circles represent receptor subunits. E represents a molecule of EGF. The equilibrium association constants are written above or beside the reaction to which they apply.The concept of cooperativity only applies to existing dimers. It does not relate to the effect of ligand on the assembly or disassembly of those dimers. The effect of ligand on the formation of receptor dimers is captured in the concept of linkage (15, 16). If ligand binding is positively linked to dimer formation, then ligand promotes the assembly of receptor dimers. In a monomer-dimer equilibrium, positive linkage arises when a ligand binds with higher affinity to the first site on the dimer than to the monomer. Under these circumstances, the ligand will preferentially bind to the dimer, shifting the equilibrium in favor of the dimeric species. In the case of the EGF receptor, biochemical data suggest that EGF induces receptor dimerization; however, evidence for positive linkage in binding studies has been lacking.By analyzing the binding of 125I-EGF to cells expressing various EGF receptor mutants, we now report that in naive, unphosphorylated EGF receptors, ligand binding is, in fact, positively linked to receptor dimerization. Autophosphorylation of the EGF receptor abolishes the positive linkage that is present during the initial phase of the ligand binding reaction. Negative cooperativity is present in both the phosphorylated and the non-phosphorylated states of the receptor. Structure-function analyses demonstrate that both cooperativity and linkage are lost when the EGF receptor is truncated immediately after the transmembrane domain. However, both forms of regulation are restored in receptors that include the additional 40 amino acids that correspond to the intracellular juxtamembrane domain. These data expand the role of the intracellular juxtamembrane domain to include the allosteric regulation of EGF binding by the extracellular domain and demonstrate the presence of inside-out signaling in the EGF receptor system.  相似文献   

12.
Ubiquitin (Ub) and ubiquitin-like (UBL) proteins regulate a diverse array of cellular pathways through covalent as well as non-covalent interactions with target proteins. Yeast protein Mdy2 (Get5) and its human homolog GdX (Ubl4a) belong to the class of UBL proteins which do not form conjugates with other proteins. Mdy2 is required for cell survival under heat stress and for efficient mating. As part of a complex with Sgt2 and Get4 it has been implicated in the biogenesis of tail-anchored proteins. Interestingly, in response to heat stress, Mdy2 protein that is predominantly localized in the nucleus co-localized with poly(A)-binding protein Pab1 to cytoplasmic stress granules suggesting that nucleocytoplasmic shuttling is of functional importance. Here we investigate the nuclear import of Mdy2, a process that is independent of the Get4/Sgt2 complex but required for stress response. Nuclear import is mediated by an N-terminal nuclear localization signal (NLS) and this process is essential for the heat stress response. In contrast, cells expressing Mdy2 lacking a nuclear export signal (NES) behave like wild type. Importantly, both Mdy2 and Mdy2-ΔNES, but not Mdy2-ΔNLS, physically interact with Pab1 and this interaction correlates with the accumulation in cytoplasmic stress granules. Thus, the nuclear history of the UBL Mdy2 appears to be essential for its function in cytoplasmic stress granules during the rapid cellular response to heat stress.  相似文献   

13.
During apoptosis the Golgi apparatus undergoes irreversible fragmentation. In part, this results from caspase-mediated cleavage of several high molecular weight coiled-coil proteins, termed golgins. These include GM130, golgin 160, and the Golgi vesicle tethering protein p115, whose caspase cleavage generates a C-terminal fragment (CTF) of 205 residues. Here we demonstrate that early during apoptosis, following the rapid cleavage of p115, endogenous CTF translocated to the cell nucleus and its nuclear import was required to enhance the apoptotic response. Expression of a series of deletion constructs identified a putative α-helical region of 26 amino acids, whose expression alone was sufficient to induce apoptosis; deletion of these 26 residues from the CTF diminished its proapoptotic activity. This region contains several potential SUMOylation sites and co-expression of SUMO together with the SUMO ligase, UBC9, resulted in SUMOylation of the p115 CTF. Significantly, when cells were treated with drugs that induce apoptosis, SUMOylation enhanced the efficiency of p115 cleavage and the kinetics of apoptosis. A construct in which a nuclear export signal was fused to the N terminus of p115 CTF accumulated in the cytoplasm and surprisingly, its expression did not induce apoptosis. In contrast, treatment of cells expressing this chimera with the antibiotic leptomycin induced its translocation into the nucleus and resulted in the concomitant induction of apoptosis. These results demonstrate that nuclear import of the p115 CTF is required for it to stimulate the apoptotic response and suggest that its mode of action is confined to the nucleus.In mammalian cells the Golgi apparatus is a highly polarized organelle comprising a series of stacked cisternae, which form a lace-like network in the perinuclear region of the cell. It receives de novo synthesized secretory and membrane proteins, as well as lipids from the endoplasmic reticulum (ER)2; these cargo molecules are then modified, sorted, and transported to lysosomes, endosomes, secretory granules, and the plasma membrane. Although it is well established that the Golgi apparatus undergoes reversible disassembly during mitosis (1, 2), indeed this appears to be a prerequisite for mitosis (3), studies from several laboratories including our own, have also established a link between the Golgi apparatus and apoptosis (programmed cell death). During apoptosis, the Golgi apparatus undergoes extensive and irreversible fragmentation (4), the ER vesiculates (5) and secretion is inhibited (6).Golgi disassembly during apoptosis results, in part, from caspase-mediated cleavage of several golgins (7). Proteolysis of golgin 160 by caspase-2, as well as GRASP65, GM130, p115, syntaxin5, and giantin by caspases-3 and -7 contributes significantly to Golgi fragmentation (6, 813). Consistent with this idea, overexpression of caspase-resistant forms of golgin 160, GRASP65, or p115 has been shown to delay the kinetics of Golgi fragmentation during apoptosis (810). In addition, immunoreactive caspase-2, an upstream caspase, localizes to the Golgi apparatus (9) and caspase-2-mediated cleavage of golgin 160 also appears to be an early event during apoptosis. Depending on the apoptotic stimulus, expression of a golgin 160 triple mutant resistant to caspase cleavage delays the onset of apoptosis (12). Recently, our laboratory demonstrated that Golgi fragmentation is an early apoptotic event that occurs close to or soon after release of cytochrome c from mitochondria, an early indicator of apoptosis (13). Together these observations demonstrate that specific Golgi proteins may function early during apoptosis, although their role in this process and the detailed molecular mechanism by which Golgi fragmentation occurs is not well understood.A key molecule in mediating Golgi fragmentation during apoptosis is the vesicle tethering protein p115 (10), a 962-residue peripheral membrane protein. p115 is an elongated homodimer consisting of two globular “head” domains, an extended “tail” region reminiscent of the myosin-II structure (14), and 4 sequential coil-coil domains distal to the globular head region, the first of which, CC1, has been implicated in soluble NSF attachment protein receptors (SNARE) binding (15). Earlier in vitro studies on mitotic Golgi reassembly demonstrated that p115 interacts with GM130 and giantin and implicated it in Golgi cisternal stacking (16). Consistent with this idea, microinjection of anti-p115 antibodies caused Golgi fragmentation (17). Based on data demonstrating p115 binding to GM130, giantin, GOS28, and syntaxin-5, Shorter et al. (15) suggested that p115 promotes formation of a GOS28-syntaxin-5 (v-/t-SNARE) complex and hypothesized that it coordinates the sequential tethering and docking of COPI vesicles to Golgi membranes. Interestingly, p115 has also been shown to be a Rab-1 effector that binds Rab-1-GTP directly and cross-linking experiments showed that it interacts with Syntaxin5, sly1, membrin, and rbet1 on microsomal membranes and COPII vesicles suggesting that p115-SNARE interactions may facilitate membrane “docking” (18).More recent in vivo studies showed that inhibition of GM130 or giantin binding to p115 had little effect on Golgi morphology or reassembly following mitosis, suggesting its role in maintaining Golgi structure might be independent of GM130 binding (19, 20). Thus post-mitotic Golgi reassembly could be rescued by p115 lacking the C-terminal GM130 binding motif (residues 935–962) but not by a mutant lacking the SNARE interacting CC1 domain (20). In addition, other studies have implicated GM130 and GRASP65 in Golgi ribbon formation and suggested that this may occur independently of interactions with p115 (21). Most significantly, knockdown of p115 using siRNA demonstrated that it is essential for maintaining Golgi structure, compartmentalization, and cargo traffic to the plasma membrane (20, 22).Earlier work from our laboratory demonstrated that p115 is cleaved in vitro by caspase-8, an initiator caspase, as well as by the executioner caspase-3 (10, 13). In response to apoptosis inducing drugs, p115 is cleaved in vivo at Asp757 to generate a 205-residue C-terminal fragment and an N-terminal polypeptide of 757 amino acids. Most significantly, expression of the p115 C-terminal fragment in otherwise healthy cells results in its translocation to the nucleus and the induction of apoptosis suggesting that this polypeptide plays a role in potentiating the apoptotic response. To further dissect p115 function during cell death, we have now determined the minimal domain in its C terminus that mediates apoptosis efficiently and analyzed the requirement of nuclear translocation in triggering the apoptotic response.  相似文献   

14.
15.
Low transformation efficiency is one of the main limiting factors in the establishment of genetic transformation of wheat via Agrobacterium tumefaciens. To determine more favorable conditions for T-DNA delivery and explant regeneration after infection, this study investigated combinations of acetosyringone concentration and pH variation in the inoculation and co-cultivation media and co-culture temperatures using immature embryos from two Brazilian genotypes (BR 18 Terena and PF 020037). Based on transient expression of uidA, the most favorable conditions for T-DNA delivery were culture media with pH 5.0 and 5.4 combined with co-culture temperatures of 22 °C and 25 °C, and a 400 μM acetosyringone supplement. These conditions resulted in blue foci in 81% of the embryos. Media with more acidic pH also presented reduced A. tumefaciens overgrowth during co-culture, and improved regeneration frequency of the inoculated explants. BR 18 Terena was more susceptible to infection by A. tumefaciens than PF 020037. We found that it is possible to improve T-DNA delivery and explant regeneration by adjusting factors involved in the early stages of A. tumefaciens infection. This can contribute to establishing a stable transformation procedure in the future.  相似文献   

16.
We previously demonstrated that the ATP/PKA?dependent activation of the human intermediate conductance, Ca2+?activated K+ channel, hIK1, is dependent upon a C?terminal motif. The NH2?terminus of hIK1 contains a multi?basic 13RRRKR17 motif, known to be important in the trafficking and function of ion channels. While individual mutations within this domain have no effect on channel function, the triple mutation (15RKR17/AAA), as well as additional double mutations, result in a near complete loss of functional channels, as assessed by whole?cell patch?clamp. However, cell?surface -immunoprecipitation studies confirmed expression of these mutated channels at the plasma membrane. To elucidate the functional consequences of the 15RKR17/AAA mutation we performed inside?out patch clamp recordings where we observed no difference in Ca2+ affinity between the wild?type and mutated channels. However, in contrast to wild?type hIK1, channels expressing the 15RKR17/AAA mutation exhibited rundown, which could not be reversed by the addition of ATP. Wild-type hIK1 channel activity was reduced by alkaline phosphatase both in the presence and absence of ATP, indicative of a phosphorylation event, whereas the 15RKR17/AAA mutation eliminated this effect of alkaline phosphatase. Further, single channel analysis demonstrated that the 15RKR17/AAA mutation resulted in a four?fold lower channel open probability (Po), in the presence of saturating Ca2+ and ATP, compared to wild?type hIK1. In conclusion, these results represent the first demonstration for a role of the NH2?terminus in the second messenger?dependent regulation of hIK1 and, in -combination with our previous findings, suggest that this regulation is dependent upon a close NH2/C?terminal association.  相似文献   

17.
Meprin A, composed of α and β subunits, is a membrane-bound metalloproteinase in renal proximal tubules. Meprin A plays an important role in tubular epithelial cell injury during acute kidney injury (AKI). The present study demonstrated that during ischemia-reperfusion-induced AKI, meprin A was shed from proximal tubule membranes, as evident from its redistribution toward the basolateral side, proteolytic processing in the membranes, and excretion in the urine. To identify the proteolytic enzyme responsible for shedding of meprin A, we generated stable HEK cell lines expressing meprin β alone and both meprin α and meprin β for the expression of meprin A. Phorbol 12-myristate 13-acetate and ionomycin stimulated ectodomain shedding of meprin β and meprin A. Among the inhibitors of various proteases, the broad spectrum inhibitor of the ADAM family of proteases, tumor necrosis factor-α protease inhibitor (TAPI-1), was most effective in preventing constitutive, phorbol 12-myristate 13-acetate-, and ionomycin-stimulated shedding of meprin β and meprin A in the medium of both transfectants. The use of differential inhibitors for ADAM10 and ADAM17 indicated that ADAM10 inhibition is sufficient to block shedding. In agreement with these results, small interfering RNA to ADAM10 but not to ADAM9 or ADAM17 inhibited meprin β and meprin A shedding. Furthermore, overexpression of ADAM10 resulted in enhanced shedding of meprin β from both transfectants. Our studies demonstrate that ADAM10 is the major ADAM metalloproteinase responsible for the constitutive and stimulated shedding of meprin β and meprin A. These studies further suggest that inhibiting ADAM 10 activity could be of therapeutic benefit in AKI.  相似文献   

18.
Patients with Huntington’s disease exhibit memory and cognitive deficits many years before manifesting motor disturbances. Similarly, several studies have shown that deficits in long-term synaptic plasticity, a cellular basis of memory formation and storage, occur well before motor disturbances in the hippocampus of the transgenic mouse models of Huntington’s disease. The autosomal dominant inheritance pattern of Huntington’s disease suggests the importance of the mutant protein, huntingtin, in pathogenesis of Huntington’s disease, but wild type huntingtin also has been shown to be important for neuronal functions such as axonal transport. Yet, the role of wild type huntingtin in long-term synaptic plasticity has not been investigated in detail. We identified a huntingtin homolog in the marine snail Aplysia, and find that similar to the expression pattern in mammalian brain, huntingtin is widely expressed in neurons and glial cells. Importantly the expression of mRNAs of huntingtin is upregulated by repeated applications of serotonin, a modulatory transmitter released during learning in Aplysia. Furthermore, we find that huntingtin expression levels are critical, not only in presynaptic sensory neurons, but also in the postsynaptic motor neurons for serotonin-induced long-term facilitation at the sensory-to-motor neuron synapse of the Aplysia gill-withdrawal reflex. These results suggest a key role for huntingtin in long-term memory storage.  相似文献   

19.
20.
TrkA receptor signaling is essential for nerve growth factor (NGF)-induced survival and differentiation of sensory neurons. To identify possible effectors or regulators of TrkA signaling, yeast two-hybrid screening was performed using the intracellular domain of TrkA as bait. We identified muc18-1-interacting protein 2 (Mint2) as a novel TrkA-binding protein and found that the phosphotyrosine binding domain of Mint2 interacted with TrkA in a phosphorylation- and ligand-independent fashion. Coimmunoprecipitation assays showed that endogenous TrkA interacted with Mint2 in rat tissue homogenates, and immunohistochemical evidence revealed that Mint2 and TrkA colocalized in rat dorsal root ganglion neurons. Furthermore, Mint2 overexpression inhibited NGF-induced neurite outgrowth in both PC12 and cultured dorsal root ganglion neurons, whereas inhibition of Mint2 expression by RNA interference facilitated NGF-induced neurite outgrowth. Moreover, Mint2 was found to promote the retention of TrkA in the Golgi apparatus and inhibit its surface sorting. Taken together, our data provide evidence that Mint2 is a novel TrkA-regulating protein that affects NGF-induced neurite outgrowth, possibly through a mechanism involving retention of TrkA in the Golgi apparatus.The neurotrophin family member nerve growth factor (NGF)3 is essential for proper development, patterning, and maintenance of nervous systems (1, 2). NGF has two known receptors; TrkA, a single-pass transmembrane receptor-tyrosine kinase that binds selectively to NGF, and p75, a transmembrane glycoprotein that binds all members of the neurotrophin family (3, 4). NGF binding activates the kinase domain of TrkA, leading to autophosphorylation (5). The resulting phosphotyrosines become docking sites for adaptor proteins involved in signal transduction pathways that lead to the activation of Ras, Rac, phosphatidylinositol 3-kinase, phospholipase Cγ, and other effectors (2, 6). Many of these TrkA-interacting adaptor proteins have been identified and include, Grb2, APS, SH2B, fibroblast growth factor receptor substrate 2 (FRS-2), Shc, and human tumor imaginal disc 1 (TID1) (7-10). The identification of these binding partners has contributed greatly to our understanding of the mechanisms underlying the functional diversity of NGF-TrkA signaling.Studies have indicated that the transmission of NGF signaling in neurons involves retrograde transport of NGF-TrkA complexes from the neurite tip to the cell body (11-14). TrkA associates with components of cytoplasmic dynein, and it is thought that vesicular trafficking of neurotrophins occurs via direct interaction of Trk receptors with the dynein motor machinery (14). Furthermore, the atypical protein kinase C-interacting protein, p62, associates with TrkA and plays a novel role in connecting receptor signals with the endosomal signaling network required for mediating TrkA-induced differentiation (15). Recently, the membrane-trafficking protein Pincher has been found to mediate macroendocytosis underlying retrograde signaling by TrkA (16). Despite the progress made to date in understanding Trk complex internalization and trafficking, the mechanisms remain poorly understood.Mint2 (muc18-1-interacting protein 2) belongs to the Mint protein family, which consists of three members, Mint1, Mint2, and Mint3. Mint proteins were first identified as interacting proteins of the synaptic vesicle-docking protein Munc18-1 (17, 18). Mint1 is also sometimes referred to as mLIN-10, as it is the mammalian orthologue of the Caenorhabditis elegans LIN-10 (19). Additionally, Mint1, Mint2, and Mint3 are also referred to as X11α or X11, X11β or X11L (X11-like), and X11γ or X11L2 (X11-like 2), respectively (20). All Mint proteins contain a conserved central phosphotyrosine binding (PTB) domain and two contiguous C-terminal PDZ domains (repeated sequences in the brain-specific protein PSD-95, the Drosophila septate junction protein Discs large, and the epithelial tight junction protein ZO-1) (17, 18, 21). Mint1 and Mint2 are expressed only in neuronal tissue (17), whereas Mint3 is ubiquitously expressed (18). Although the function of Mints proteins is not fully clear, their interactions with the docking and exocytosis factors Mun18 -1 and CASK, ADP-ribosylation factor (Arf) GTPases involved in vesicle budding (22), and other synaptic adaptor proteins, such as neurabin-II/spinophilin (23), tamalin (24), and kalirin-7 (25), all suggest possible roles for Mints in synaptic vesicle docking and exocytosis. Mint proteins have also been implicated in the trafficking and/or processing of β-amyloid precursor protein (β-APP). Through their PTB domains, all three Mints bind to a motif within the cytoplasmic domain of β-APP (21, 26-29), and Mint1 and Mint2 can stabilize β-APP, affect β-APP processing, and inhibit the production and secretion of Aβ (28, 30-32). Although the mechanisms by which Mints inhibit β-APP processing are not yet well known, Mints and their binding partners have emerged as potential therapeutic targets for the treatment of Alzheimer disease.To uncover new TrkA-interacting factors and gain insight into the mechanisms that guide TrkA intracellular trafficking and other aspects of TrkA signaling, we conducted a yeast two-hybrid screen of a brain cDNA library using the intracellular domain of TrkA as bait. The screen identified several candidate TrkA-interacting proteins, one of which was Mint2. Follow-up binding assays showed that the PTB domain of Mint2 alone was necessary and sufficient for mediating the interaction with TrkA. Endogenous Mint2 was also coimmunoprecipitated and colocalized with TrkA in rat DRG tissue. Overexpression and knockdown studies showed that Mint2 could significantly inhibit NGF-induced neurite outgrowth in both TrkA-expressing PC12 cells and DRG neurons. Moreover, Mint2 was found to induce the retention of TrkA in the Golgi apparatus and inhibit its surface sorting. Our results suggest that Mint2 is a novel regulator of TrkA receptor signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号