首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Junctional adhesion molecule-A (JAM-A) is a tight junction–associated signaling protein that regulates epithelial cell proliferation, migration, and barrier function. JAM-A dimerization on a common cell surface (in cis) has been shown to regulate cell migration, and evidence suggests that JAM-A may form homodimers between cells (in trans). Indeed, transfection experiments revealed accumulation of JAM-A at sites between transfected cells, which was lost in cells expressing cis- or predicted trans-dimerization null mutants. Of importance, microspheres coated with JAM-A containing alanine substitutions to residues 43NNP45 (NNP-JAM-A) within the predicted trans-dimerization site did not aggregate. In contrast, beads coated with cis-null JAM-A demonstrated enhanced clustering similar to that observed with wild-type (WT) JAM-A. In addition, atomic force microscopy revealed decreased association forces in NNP-JAM-A compared with WT and cis-null JAM-A. Assessment of effects of JAM-A dimerization on cell signaling revealed that expression of trans- but not cis-null JAM-A mutants decreased Rap2 activity. Furthermore, confluent cells, which enable trans-dimerization, had enhanced Rap2 activity. Taken together, these results suggest that trans-dimerization of JAM-A occurs at a unique site and with different affinity compared with dimerization in cis. Trans-dimerization of JAM-A may thus act as a barrier-inducing molecular switch that is activated when cells become confluent.  相似文献   

2.
3.
Perillyl alcohol (POH), a metabolite of d-limonene and a component of the lavender oil, is currently in Phase I clinical trials both as a chemopreventative and chemotherapeutic agent. In vivo, POH is metabolized to less active perillic acid (PA) and cis- and trans-dihydroperillic acids [DHPA, 4-(1′-methylethenyl)-cyclohexane-1-carboxylic acid]. Previous pharmacokinetic studies using a GC–MS method detected POH metabolites but not POH itself; thus these studies lacked information on the parent drug. The present report describes a sensitive GC–MS method for the quantitation of POH and metabolites using stable-isotopically labeled internal standards. The residue obtained from CH2Cl2 extraction of a plasma sample was silylated. The products were separated on a capillary column and analyzed by an ion-trap GC–MS using NH3 chemical ionization. POH-d3 was used as the internal standard for POH while 13C-PA-d2 was used as the internal standards for the metabolites. The quantitation limits for POH, PA, cis- and trans-DPA were <10 ng/ml using 1–2 ml plasma. The assay was validated in rat and human plasma. The assay was linear from 2 to 2000 ng/ml for POH, 10 to 1000 ng/ml for PA and trans-DHPA, and 20 to 1000 ng/ml for cis-DHPA monitored. The within-run and between-run coefficients of variation were all <8%. Preliminary pharmacokinetic data from a rat following i.v. administration of POH at 23 mg/kg and from a patient receiving POH at 500 mg/m2 p.o. was also provided. Intact POH, PA, cis- and trans-DHPA were all detected in plasma in both cases. Two new major metabolites were found in human and one in the rat plasma.  相似文献   

4.
5.
Gene expression divergence between closely related species could be attributed to both cis- and trans- DNA sequence changes during evolution, but it is unclear how the evolutionary dynamics of epigenetic marks are regulated. In eutherian mammals, biparental DNA methylation marks are erased and reset during gametogenesis, resulting in paternal or maternal imprints, which lead to genomic imprinting. Whether DNA methylation reprogramming exists in insects is not known. Wasps of the genus Nasonia are non-social parasitoids that are emerging as a model for studies of epigenetic processes in insects. In this study, we quantified allele-specific expression and methylation genome-wide in Nasonia vitripennis and Nasonia giraulti and their reciprocal F1 hybrids. No parent-of-origin effect in allelic expression was found for >8,000 covered genes, suggesting a lack of genomic imprinting in adult Nasonia. As we expected, both significant cis- and trans- effects are responsible for the expression divergence between N. vitripennis and N. giraulti. Surprisingly, all 178 differentially methylated genes are also differentially methylated between the two alleles in F1 hybrid offspring, recapitulating the parental methylation status with nearly 100% fidelity, indicating the presence of strong cis-elements driving the target of gene body methylation. In addition, we discovered that total and allele-specific expression are positively correlated with allele-specific methylation in a subset of the differentially methylated genes. The 100% cis-regulation in F1 hybrids suggests the methylation machinery is conserved and DNA methylation is targeted by cis features in Nasonia. The lack of genomic imprinting and parent-of-origin differentially methylated regions in Nasonia, together with the stable inheritance of methylation status between generations, suggests either a cis-regulatory motif for methylation at the DNA level or highly stable inheritance of an epigenetic signal in Nasonia.  相似文献   

6.

Background

In eukaryotes, PPP (p rotein p hosphatase P) family is one of the two known protein phosphatase families specific for Ser and Thr. The role of PPP phosphatases in multiple signaling pathways in eukaryotic cell has been extensively studied. Unlike eukaryotic PPP phosphatases, bacterial members of the family have broad substrate specificity or may even be Tyr-specific. Moreover, one group of bacterial PPPs are diadenosine tetraphosphatases, indicating that bacterial PPP phosphatases may not necessarily function as protein phosphatases.

Results

We describe the presence in eukaryotes of three groups of expressed genes encoding "non-conventional" phosphatases of the PPP family. These enzymes are more closely related to bacterial PPP phosphatases than to the known eukaryotic members of the family. One group, found exclusively in land plants, is most closely related to PPP phosphatases from some α-Proteobacteria, including Rhizobiales, Rhodobacterales and Rhodospirillaceae. This group is therefore termed Rhi zobiales / Rh odobacterales / Rh odospirillaceae-l ike ph osphatases, or Rhilphs. Phosphatases of the other group are found in Viridiplantae, Rhodophyta, Trypanosomatidae, Plasmodium and some fungi. They are structurally related to phosphatases from psychrophilic bacteria Shewanella and Colwellia, and are termed She wanella-l ike ph osphatases, or Shelphs. Phosphatases of the third group are distantly related to ApaH, bacterial diadenosine tetraphosphatases, and are termed A paH-l ike ph osphatases, or Alphs. Patchy distribution of Alphs in animals, plants, fungi, diatoms and kinetoplasts suggests that these phosphatases were present in the common ancestor of eukaryotes but were independently lost in many lineages. Rhilphs, Shelphs and Alphs form PPP clades, as divergent from "conventional" eukaryotic PPP phosphatases as they are from each other and from major bacterial clades. In addition, comparison of primary structures revealed a previously unrecognised (I/L/V)D(S/T)G motif, conserved in all bacterial and "bacterial-like" eukaryotic PPPs, but not in "conventional" eukaryotic and archaeal PPPs.

Conclusions

Our findings demonstrate that many eukaryotes possess diverse "bacterial-like" PPP phosphatases, the enzymatic characteristics, physiological roles and precise evolutionary history of which have yet to be determined.
  相似文献   

7.
A systematic approach is described for analysis of evolutionarily conserved cis-regulatory DNA using cis-Decoder, a tool for discovery of conserved sequence elements that are shared between similarly regulated enhancers. Analysis of 2,086 conserved sequence blocks (CSBs), identified from 135 characterized enhancers, reveals most CSBs consist of shorter overlapping/adjacent elements that are either enhancer type-specific or common to enhancers with divergent regulatory behaviors. Our findings suggest that enhancers employ overlapping repertoires of highly conserved core elements.  相似文献   

8.
Conjugated linoleic acid (CLA) has been shown to reduce body fat mass in various experimental animals. It is valuable to identify its influence on enzymes involved in energy expenditure, apoptosis, fatty acid oxidation and lipolysis. We investigated isomer-specific effects of high dose, long treatment of CLA (75.4 μmol/L, 8 days) on protein and gene expression of these enzymes in cultured 3T3-L1 cells. Proteomics identified significant up- or down-regulation of 52 proteins by either CLA isomer. Protein and gene expression of uncoupling protein (UCP) 1, UCP3, perilipin and peroxisome proliferator-activated receptor (PPAR) α increased whereas UCP2 reduced for both CLA isomers. And eight-day treatment of trans-10,cis-12 CLA, but not cis-9,trans-11 CLA, significantly up-regulated protein and mRNA levels of PKA (P<.05), CPT-1 and TNF-α (P<.01). Compared to protein expression, both isomers did not significantly influence the mRNA expression of HSL, ATGL, ACO and leptin. In conclusion, high-dose, long treatment of cis-9,trans-11 CLA did not promote apoptosis, fatty acid oxidation and lipolysis in adipocytes, but may induce an increase in energy expenditure. trans-10,cis-12 CLA exhibited greater influence on lipid metabolism, stimulated adipocyte energy expenditure, apoptosis and fatty acid oxidation, but its effect on lipolysis was not obvious.  相似文献   

9.
The Ca2+/calmodulin-dependent protein phosphatase calcineurin is a key mediator in antigen-specific T cell activation. Thus, inhibitors of calcineurin, such as cyclosporin A or FK506, can block T cell activation and are used as immunosuppressive drugs to prevent graft-versus-host reactions and autoimmune diseases. In this study we describe the identification of 2,6- diaryl-substituted pyrimidine derivatives as a new class of calcineurin inhibitors, obtained by screening of a substance library. By rational design of the parent compound we have attained the derivative 6-(3,4-dichloro-phenyl)-4-(N,N-dimethylaminoethylthio)-2-phenyl-pyrimidine (CN585) that noncompetitively and reversibly inhibits calcineurin activity with a Ki value of 3.8 μm. This derivative specifically inhibits calcineurin without affecting other Ser/Thr protein phosphatases or peptidyl prolyl cis/trans isomerases. CN585 shows potent immunosuppressive effects by inhibiting NFAT nuclear translocation and transactivation, cytokine production, and T cell proliferation. Moreover, the calcineurin inhibitor exhibits no cytotoxicity in the effective concentration range. Therefore, calcineurin inhibition by CN585 may represent a novel promising strategy for immune intervention.  相似文献   

10.
The retinoid visual cycle is an ocular retinoid metabolism specifically dedicated to support vertebrate vision. The visual cycle serves not only to generate light-sensitive visual chromophore 11-cis-retinal, but also to clear toxic byproducts of normal visual cycle (i.e. all-trans-retinal and its condensation products) from the retina, ensuring both the visual function and the retinal health. Unfortunately, various conditions including genetic predisposition, environment and aging may attribute to a functional decline of the all-trans-retinal clearance. To combat all-trans-retinal mediated retinal degeneration, we sought to slow down the retinoid influx from the RPE by inhibiting the visual cycle with a small molecule. The present study describes identification of CU239, a novel non-retinoid inhibitor of RPE65, a key enzyme in the visual cycle. Our data demonstrated that CU239 selectively inhibited isomerase activity of RPE65, with IC50 of 6 μM. Further, our results indicated that CU239 inhibited RPE65 via competition with its substrate all-trans-retinyl ester. Mice with systemic injection of CU239 exhibited delayed chromophore regeneration after light bleach, and conferred a partial protection of the retina against injury from high intensity light. Taken together, CU239 is a potent visual cycle modulator and may have a therapeutic potential for retinal degeneration.  相似文献   

11.
The target of the immunosuppressants cyclosporin A(CsA) and FK506 is calcineurin, a highly conserved protein phosphatase that is required for T-cell activation and the regulation of ion homeostasis in yeast. Here we identify two genes, PMR2B and LIC4 which, when overexpressed, suppress the cation-sensitive phenotype of yeast cells lacking calcineurin. PMR2B encodes a Na+/Li+-specific plasma membrane pump and is similar to PMR2A, whose expression is known to be regulated by calcineurin. LIC4 (lithium comvertas) encodes a novel 33-kDa protein with no identity to known proteins. LIC4 overexpression suppresses the Li+-sensitive phenotype of calcineurin mutants but not the defect in recovery from pheromone arrest or viability of calcineurin dependent mutants, indicating a specific role in cation homeostasis. Similarly, lic4 mutations increase the Li+ sensitivity of both wild-type and calcineurin mutant strains, and reduce expression of pmr2A in calcineurin mutant strains, indicating that calcineurin and Lic4 may regulate parallel cation homeostatic pathways. lic4 mutations also exacerbate the Li+-sensitive phenotype of hal3 mutant strains, and overexpression of either Lic4 or Hal3 suppresses the salt sensitivity of mutant strains lacking calcineurin, Hal3, or Lic4, either singly or in combination. Taken together, these observations suggest that calcineurin, Hal3, and Lic4 cooperatively regulate the response of yeast cells to?cation stress. Lic4 is phosphoprotein in vivo and a calcineurin substrate in vitro. By indirect and direct immunofluorescence detection of HA- and GFP-tagged proteins, Lic4 is localized in the nucleus in wild-type cells but predominantly cytoplasmic in cells lacking calcineurin. Taken together, our findings support a model in which calcineurin and Lic4 are components of signalling cascades that regulate cation stress responses in yeast.  相似文献   

12.
PPP protein phosphatases are an important enzyme family involved in a variety of aspects of cellular signalling and metabolism. PPPs are ubiquitous in eukaryotes, and are also present in many bacteria. Canonical eukaryotic PPP phosphotases are represented by five major subfamilies (PP1, PP2A, calcineurin, PP5 and PPEF/PP7). We previously reported that three “bacterial-like” PPP groups span the prokaryote–eukaryote boundary, including “Shewanella-like” phosphatases (Shelphs), which are in the focus of this study. Here we predict possible biological functions and functional partners of Shelphs by examining composition of bacterial operons and expression data for eukaryotes available in public databases. In Arabidopsis thaliana, the predicted possible roles include light-dependent regulation of chloroplast functions, signalling between the nucleus and the chloroplast, and defence responses. In Plasmodium falciparum, Shelphs are predicted to be associated with host cell invasion. One isoform has been located in the apical complex, essential for the interaction with the host cell. This makes P. falciparum Shelphs obvious potential candidates for therapeutic targets. Shelphs are also present in bacteria that constitute a considerable proportion of symbiotic microflora in humans. The predicted involvement of bacterial Shelphs in sensing and import of nutrients and extrusion of toxins may be relevant to the links between physiology of humans and our symbionts. Thus, despite the absence of Shelphs in animals, including humans, they may have a direct relationship to human health. Some predicted biological processes and potential functional partners of Shelphs are common between different bacterial and/or eukaryotic lineages, suggesting evolutionary conservation of some Shelph regulatory modules.  相似文献   

13.
Although Ca transport in plants is highly complex, the overexpression of vacuolar Ca2+ transporters in crops is a promising new technology to improve dietary Ca supplies through biofortification. Here, we sought to identify novel targets for increasing plant Ca accumulation using genetical and comparative genomics. Expression quantitative trait locus (eQTL) mapping to 1895 cis- and 8015 trans-loci were identified in shoots of an inbred mapping population of Brassica rapa (IMB211 × R500); 23 cis- and 948 trans-eQTLs responded specifically to altered Ca supply. eQTLs were screened for functional significance using a large database of shoot Ca concentration phenotypes of Arabidopsis thaliana. From 31 Arabidopsis gene identifiers tagged to robust shoot Ca concentration phenotypes, 21 mapped to 27 B. rapa eQTLs, including orthologs of the Ca2+ transporters At-CAX1 and At-ACA8. Two of three independent missense mutants of BraA.cax1a, isolated previously by targeting induced local lesions in genomes, have allele-specific shoot Ca concentration phenotypes compared with their segregating wild types. BraA.CAX1a is a promising target for altering the Ca composition of Brassica, consistent with prior knowledge from Arabidopsis. We conclude that multiple-environment eQTL analysis of complex crop genomes combined with comparative genomics is a powerful technique for novel gene identification/prioritization.  相似文献   

14.
15.
White DJ  Reiter NJ  Sikkink RA  Yu L  Rusnak F 《Biochemistry》2001,40(30):8918-8929
Bacteriophage lambda phosphoprotein phosphatase (lambdaPP) has structural similarity to the mammalian Ser/Thr phosphoprotein phosphatases (PPPs) including the immunosuppressant drug target calcineurin. PPPs possess a conserved active site containing a dinuclear metal cluster, with metal ligands provided by a phosphoesterase motif plus two additional histidine residues at the C-terminus. Multiple sequence alignment of lambdaPP with 28 eubacterial and archeal phosphoesterases identified active site residues from the phosphoesterase motif and in many cases 2 additional C-terminal His metal ligands. Most highly similar to lambdaPP are E. coli PrpA and PrpB. Using the crystal structure of lambdaPP [Voegtli, W. C., et al. (2000) Biochemistry 39, 15365-15374] as a structural and active site model for PPPs and related bacterial phosphoesterases, we have studied mutant forms of lambdaPP reconstituted with Mn(2+) by electron paramagnetic resonance (EPR) spectroscopy, Mn(2+) binding analysis, and phosphatase kinetics. Analysis of Mn(2+)-bound active site mutant lambdaPP proteins shows that H22N, N75H, and H186N mutations decrease phosphatase activity but still allow mononuclear Mn(2+) and [(Mn(2+))(2)] binding. The high affinity Mn(2+) binding site is shown to consist of M2 site ligands H186 and Asn75, but not H22 from the M1 site which is ascribed as the lower affinity site.  相似文献   

16.
It has long been understood that the proline residue has lower configurational entropy than any other amino acid residue due to pyrrolidine ring hindrance. The peptide bond between proline and its preceding amino acid (Xaa-Pro) typically exists as a mixture of cis- and trans-isomers in the unfolded protein. Cis–trans isomerization of Xaa-Pro peptide bonds are infrequent, but still occur in folded proteins. Therefore, the effects of the cis–trans isomerization equilibrium in both unfolded and folded states should be taken into account when estimating the stability contribution of a specific proline residue. In order to study the stability contribution of the four proline residues to the hyperthermophilic protein Ssh10b, in this work, we expressed and purified a series of Pro→Ala mutants of Ssh10b, and performed correlative unfolding experiments in detail. We proposed a new unfolding model including proline isomerization. The model predicts that the contribution of a proline residue to protein stability is associated with the thermodynamic equilibrium between cis- and trans-isomers both in the unfolded and folded states, agreeing well with the experimental results.  相似文献   

17.
Intracellular Ca2+ signals are temporally controlled and spatially restricted. Signaling occurs adjacent to sites of Ca2+ entry and/or release, where Ca2+-dependent effectors and their substrates co-localize to form signaling microdomains. Here we review signaling by calcineurin, the Ca2+/calmodulin regulated protein phosphatase and target of immunosuppressant drugs, Cyclosporin A and FK506. Although well known for its activation of the adaptive immune response via NFAT dephosphorylation, systematic mapping of human calcineurin substrates and regulators reveals unexpected roles for this versatile phosphatase throughout the cell. We discuss calcineurin function, with an emphasis on where signaling occurs and mechanisms that target calcineurin and its substrates to signaling microdomains, especially binding of cognate short linear peptide motifs (SLiMs). Calcineurin is ubiquitously expressed and regulates events at the plasma membrane, other intracellular membranes, mitochondria, the nuclear pore complex and centrosomes/cilia. Based on our expanding knowledge of localized CN actions, we describe a cellular atlas of Ca2+/calcineurin signaling.  相似文献   

18.
19.
CCK increases the rate of net protein synthesis in rat pancreatic acini by activating initiation and elongation factors required for translation. The immunosuppressant FK506 inhibits the Ca2+-calmodulin-dependent phosphatase calcineurin in pancreatic acinar cells and blocks pancreatic growth induced by chronic CCK treatment. To test a requirement for calcineurin in the activation of the translational machinery stimulated by CCK, we evaluated the effects of FK506 on protein synthesis and on regulatory initiation and elongation factors in rat pancreatic acini in vitro. CCK acutely increased protein synthesis in acini from normal rats with a maximum increase at 100 pM CCK to 170 ± 11% of control. The immunosuppressant FK506 dose-dependently inhibited CCK-stimulated protein synthesis over the same concentration range that blocked calcineurin activity, as assessed by dephosphorylation of the calcineurin substrate calcium-regulated heat-stable protein of 24 kDa. Another immunosuppressant, cyclosporin A, inhibited protein synthesis, but its effects appeared more complex. FK506 also inhibited protein synthesis stimulated by bombesin and carbachol. FK506 did not significantly affect the activity of the initiation factor-2B, or the phosphorylation of the initiation factor-2, ribosomal protein protein S6, or the mRNA cap binding protein eukaryotic initiation factor (eIF) 4E. Instead, blockade of calcineurin with FK506 reduced the phosphorylation of the eIF4E binding protein, reduced the formation of the eIF4F complex, and increased the phosphorylation of eukaryotic elongation factor 2. From these results, we conclude that calcineurin activity is required for protein synthesis, and this action may be related to an effect on the formation of the mRNA cap binding complex and the elongation processes. exocrine pancreas; cholecystokinin; translation initiation factors; protein phosphatase 2B; immunosuppressants  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号