首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The surgical repair of heart and vascular disease often requires implanting synthetic grafts. While synthetic grafts have been successfully used for medium-to-large sized arteries, applications for small diameter arteries (<6 mm) is limited due to high rates of occlusion by thrombosis. Our objective was to develop a tissue engineered vascular graft (TEVG) for small diameter arteries. TEVGs composed of polylactic acid nanofibers with inner luminal diameter between 0.5 and 0.6 mm were surgically implanted as infra-renal aortic interposition conduits in 25 female C17SCID/bg mice. Twelve mice were given sham operations. Survival of mice with TEVG grafts was 91.6% at 12 months post-implantation (sham group: 83.3%). No instances of graft stenosis or aneurysmal dilatation were observed over 12 months post-implantation, assessed by Doppler ultrasound and microCT. Histologic analysis of explanted TEVG grafts showed presence of CD31-positive endothelial monolayer and F4/80-positive macrophages after 4, 8, and 12 months in vivo. Cells positive for α-smooth muscle actin were observed within TEVG, demonstrating presence of smooth muscle cells (SMCs). Neo-extracellular matrix consisting mostly of collagen types I and III were observed at 12 months post-implantation. PCR analysis supports histological observations. TEVG group showed significant increases in expressions of SMC marker, collagen-I and III, matrix metalloproteinases-2 and 9, and itgam (a macrophage marker), when compared to sham group. Overall, patency rates were excellent at 12 months after implantation, as structural integrity of these TEVG. Tissue analysis also demonstrated vessel remodeling by autologous cell.  相似文献   

2.
Purpose: To evaluate the morphological and histological changes induced by PGA scaffold seeded with autologous adipose or muscle derived stem cells implanted on rabbit bladder wall. Material and Methods: Adipose derived stem cells (ADSCs) were obtained from the inguinal fat of eight rabbits and muscle derived stem cells (MDSCs) from the anterior tibial muscle of other eight rabbits. After culture and isolation, the cells were stained with Vybrant Red CM DiI and then implanted at third passage. Two PGA scaffolds were implanted on the bladder submucosa of each animal. On the right bladder side was implanted unseeded PGA scaffold while on the left side was implanted ADSCs or skeletal MDSCs seeded PGA scaffold. ADSCs were implanted in eight animals and MDSC in other eight animals. The animals were sacrificed at four and eight weeks. Histological evaluation was performed with Hematoxylin and Eosin, Masson's Trichrome and smooth muscle α-actin. Results: We observed a mild inflammatory response in all the three groups. Seeded scaffolds induced higher lymphocytes and lower polimorphonuclear migration than controls. Fibrosis was more pronounced in the control groups. Smooth muscle α-actin was positive only in ADSC and MDSC seeded scaffolds. At four and eight weeks ADCSs and skeletal MDSCs labeled cells were found at the implant sites. Conclusions: The implantation of PGA scaffolds seeded with ADSC and MDSC induced less fibrosis than control and smooth muscle regeneration.  相似文献   

3.
Previously we have screened out Insulin-like Growth Factor Binding Protein 7 (IGFBP7) as a differentially expressed gene in post-implantation uterus versus pre-implantation uterus by suppressive subtractive hybridation. However its function in uterus was not clearly identified. In this research, the expression and function of IGFBP7 during post-implantation were studied. We found that IGFBP7 was mainly located in the glandular epithelium and the stroma, and was upregulated after embryo implantation. The vector pCR3.1-IGFBP7-t expressing partial IGFBP7 was constructed. Inhibition of IGFBP7 by specific DNA immunization induced significant reduction of implanted embryos and pregnancy rate. The number of implanted embryos (5.68±0.46) was significantly reduced after immunization with pCR3.1-IGFBP7-t, as compared with that of the mice immunized with the control vector (12.29±0.36) or saline (14.58±0.40) (p<0.01). After specific inhibition of IGFBP7, the T helper type 1 (Th1) cytokine IFNγ, was significantly elevated (p<0.05) and the Th2 cytokines IL-4 and IL-10, were reduced in uteri (p<0.05). The increase of Tbet and the decrease of Gata3 were found in mice peripheral lymphocytes by flow cytometry. The expression of decidualization marker IGFBP1 and angiogenesis regulator VEGF were declined in uteri (p<0.05). The expression of apoptosis-associated proteins, caspase3 and Bcl-2, were also declined (p<0.05). These results showed that inhibition of IGFBP7 induced pregnancy failure by shifting uterine cytokines to Th1 type dominance and repressing uterine decidualization.  相似文献   

4.
Bone quality as well as its quantity at the implant interface is responsible for determining stability of the implant system. The objective of this study is to examine the nanoindentation based elastic modulus (E) at different bone regions adjacent to titanium dental implants with guided bone regeneration (GBR) treated with DBM and BMP-2 during different post-implantation periods. Six adult male beagle dogs were used to create circumferential defects with buccal bone removal at each implantation site of mandibles. The implant systems were randomly assigned to only GBR (control), GBR with demineralized bone matrix (DBM), and GBR with DBM + recombinant human bone morphogenetic protein-2 (rhBMP-2) (BMP) groups. Three animals were sacrificed at each 4 and 8 weeks of post-implantation healing periods. Following buccolingual dissection, the E values were assessed at the defects (Defect), interfacial bone tissue adjacent to the implant (Interface), and pre-existing bone tissue away from the implant (Pre-existing). The E values of BMP group had significantly higher than control and DBM groups for interface and defect regions at 4 weeks of post-implantation period and for the defect region at 8 weeks (p < 0.043). DBM group had higher E values than control group only for the defect region at 4 weeks (p < 0.001). The current results indicate that treatment of rhBMP-2 with GBR accelerates bone tissue mineralization for longer healing period because the GBR likely facilitates a microenvironment to provide more metabolites with open space of the defect region surrounding the implant.  相似文献   

5.
Multimodality imaging has emerged as a common technological approach used in both preclinical and clinical research. Advanced techniques that combine in vivo optical and μCT imaging allow the visualization of biological phenomena in an anatomical context. These imaging modalities may be especially useful to study conditions that impact bone. In particular, orthopaedic implant infections are an important problem in clinical orthopaedic surgery. These infections are difficult to treat because bacterial biofilms form on the foreign surgically implanted materials, leading to persistent inflammation, osteomyelitis and eventual osteolysis of the bone surrounding the implant, which ultimately results in implant loosening and failure. Here, a mouse model of an infected orthopaedic prosthetic implant was used that involved the surgical placement of a Kirschner-wire implant into an intramedullary canal in the femur in such a way that the end of the implant extended into the knee joint. In this model, LysEGFP mice, a mouse strain that has EGFP-fluorescent neutrophils, were employed in conjunction with a bioluminescent Staphylococcus aureus strain, which naturally emits light. The bacteria were inoculated into the knee joints of the mice prior to closing the surgical site. In vivo bioluminescent and fluorescent imaging was used to quantify the bacterial burden and neutrophil inflammatory response, respectively. In addition, μCT imaging was performed on the same mice so that the 3D location of the bioluminescent and fluorescent optical signals could be co-registered with the anatomical μCT images. To quantify the changes in the bone over time, the outer bone volume of the distal femurs were measured at specific time points using a semi-automated contour based segmentation process. Taken together, the combination of in vivo bioluminescent/fluorescent imaging with μCT imaging may be especially useful for the noninvasive monitoring of the infection, inflammatory response and anatomical changes in bone over time.  相似文献   

6.
Implants are widely used in various clinical disciplines to replace or stabilize organs. The challenge for the future is to apply implant materials to specifically control the biology of the surrounding tissue for repair and regeneration. This field of research is highly interdisciplinary and combines scientists from technical and life sciences disciplines. To successfully apply materials for regenerative processes in the body, the understanding of the mechanisms at the interface between cells or tissues and the artificial material is of critical importance. The research focuses on stem cells, design of material surfaces, and mechanisms of cell adhesion. For the third time around 200 scientists met in Rostock, Germany for the international symposium “Interface Biology of Implants.” The aim of the symposium is to promote the interdisciplinary dialogue between the scientists from the different disciplines to develop smart implants for medical use. In addition, researchers from basic sciences, notably cell biology presented new findings concerning mechanisms of cell adhesion to stimulate research in the applied field of implant technology.Key words: interface, implant, stem cells, adhesion, mechanics, surface, biomaterialMedical implants play a growing role in routine clinical practice. In addition to replace or stabilize injured tissue permanently or transiently, the application of implant materials to stimulate the regeneration of tissue is becoming a challenge in the field of regenerative medicine. The use of implant materials is based on the idea that biomaterials function not only as mechanical support for cells and tissue but also provide a matrix to induce signal transduction in the cells that control complex molecular mechanisms responsible for proliferation und differentiation. In this context, the interface between artificial materials and living cells or tissue is an exciting field of great scientific interest and constitutes one of the most dynamic and expanding field in science and technology. Progress in this field is mainly driven by the fundamental importance for clinical applications. The research is characterized by a multidisciplinary collaboration between physics, engineers, biologists and clinicians.In May 2009, for the third time after 2003 and 2006 around 200 scientists met in Rostock-Warnemünde for the symposium “Interface Biology of Implants” to discuss biointerface processes at a fundamental level. The main goals of this symposium are to simulate the interdisciplinary dialogue between scientists of the different disciplines and to introduce current knowledge of basic research in cell biology and material science into the applied field of implant technology. The programme was organized in invited presentations of 20 internationally renowned scientists and complemented by short talks of mostly young scientists selected from the submitted abstracts. In addition, 80 posters presented latest results in this multidisciplinary field.The symposium was opened with a keynote lecture presented by Hartmut Hildebrand (Lille). He gave an overview about the 7,000 years old history of application of implant materials. Rare photographs were shown which demonstrated that in these early times prostheses mainly made from metallic materials were used to restore teeth, extremities and the skull of the human body. These old documents stressed the historical relevance of medical application of implant materials.The symposium on two days was composed of four sessions covering the interdisciplinary research in the field. The session “Stem cells and biomaterials” discussed the biological response and signalling mechanism of stem cells in the interaction with a material surface. The session “Bioactivation of implant surfaces” focussed on the tailoring of surfaces to control the cell physiology. To stimulate the field by recent data in basic cell biology, talks were presented in the third session, dealing with molecular mechanisms involved in cell adhesion. A special session dealt with the role and mechanism of controlling cells by mechanics.  相似文献   

7.
The tissue expansion technique has been applied to obtain new skin tissue to repair large defects in clinical practice. The implantation of tissue expander could initiate a host response to foreign body (FBR), which leads to fibrotic encapsulation around the expander and prolongs the period of tissue expansion. Tanshinon IIA (Tan IIA) has been shown to have anti-inflammation and immunoregulation effect. The rat tissue expansion model was used in this study to observe whether Tan IIA injection systematically could inhibit the FBR to reduce fibrous capsule formation and accelerate the process of tissue expansion. Forty-eight rats were randomly divided into the Tan IIA group and control group with 24 rats in each group. The expansion was conducted twice a week to maintain a capsule pressure of 60 mmHg. The expansion volume and expanded area were measured. The expanded tissue in the two groups was harvested, and histological staining was performed; proinflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) and transforming growth factor-β (TGF-β) were examined. The expansion volume and the expanded area in the Tan IIA group were greater than that of the control group. The thickness of the fibrous capsule in the Tan IIA group was reduced with no influence on the normal skin regeneration. Decreased infiltration of macrophages, lower level of TNF-α, IL-6, IL-1β and TGF-β, less proliferating myofibroblasts and enhanced neovascularization were observed in the Tan IIA group. Our findings indicated that the Tan IIA injection reduced the formation of the fibrous capsule and accelerated the process of tissue expansion by inhibiting the FBR.  相似文献   

8.
Inflammasome activation permits processing of interleukins (IL)-1β and 18 and elicits cell death (pyroptosis). Whether these responses are independently licensed or are “hard-wired” consequences of caspase-1 (casp1) activity has not been clear. Here, we show that that each of these responses is independently regulated following activation of NLRP3 inflammasomes by a “non-canonical” stimulus, the secreted Listeria monocytogenes (Lm) p60 protein. Primed murine dendritic cells (DCs) responded to p60 stimulation with reactive oxygen species (ROS) production and secretion of IL-1β and IL-18 but not pyroptosis. Inhibitors of ROS production inhibited secretion of IL-1β, but did not impair IL-18 secretion. Furthermore, DCs from caspase-11 (casp11)-deficient 129S6 mice failed to secrete IL-1β in response to p60 but were fully responsive for IL-18 secretion. These findings reveal that there are distinct licensing requirements for processing of IL-18 versus IL-1β by NLRP3 inflammasomes.  相似文献   

9.
UV-curable chitosans (UVCC-7-10) were synthesized using less-toxic agents. The UVCC-7 was completely cured by UV spot irradiation for 4 s. The UVCC-7 was implanted into murine subcutaneous tissues, and the response to the implantation was observed by histological examination at 7 days after implantation. In the histological findings, the implant was surrounded by thin fibrous granulating tissue with no inflammatory cellular infiltration. Fibroblasts infiltrate between the cured implant. The novel synthesized UVCC-7 showed good biocompatibility.  相似文献   

10.
The use of glycosaminoglycans (GAGs) as the second macromolecular component with collagen for the membrane preparation is based on the idea to create a biodegradable scaffold for new tissue. A hybrid collagen/hyaluronan membrane with specific bubble macrostructure was designed to serve as a synthetic dermal substitute. The objectives were to explain the two questions: what is the local biological response to the implanted membrane, and what is its reconstruction rate in tissue. The histological study proved low irritability, good compatibility, ingrowth of autologous tissue starting on day 7 post implantation, and resorption within four weeks. The major part of the implant was replaced by autologous tissue at the end of three weeks post implantation. The overall local biological response to implant was very good.  相似文献   

11.
In vivo implantation of sterile materials and devices results in a foreign body immune response leading to fibrosis of implanted material. Neutrophils, one of the first immune cells to be recruited to implantation sites, have been suggested to contribute to the establishment of the inflammatory microenvironment that initiates the fibrotic response. However, the precise numbers and roles of neutrophils in response to implanted devices remains unclear. Using a mouse model of peritoneal microcapsule implantation, we show 30–500 fold increased neutrophil presence in the peritoneal exudates in response to implants. We demonstrate that these neutrophils secrete increased amounts of a variety of inflammatory cytokines and chemokines. Further, we observe that they participate in the foreign body response through the formation of neutrophil extracellular traps (NETs) on implant surfaces. Our results provide new insight into neutrophil function during a foreign body response to peritoneal implants which has implications for the development of biologically compatible medical devices.  相似文献   

12.
Potential benefits of co-culturing monocytes (MC) with vascular smooth muscle cells have been reported on for tissue engineering applications with a degradable, polar, hydrophobic, and ionic polyurethane (D-PHI). Since the interaction of MC and endothelial cells (EC) within the blood vessel endothelium is also a process of wound repair it was of interest to investigate their function when cultured on the synthetic D-PHI materials, prior to considering the materials' use in vascular engineering. The co-culture (MC/EC) in vitro studies were carried out on films in 96 well plates and porous scaffold disks were prepared for implant studies in an in vivo subcutaneous mouse model. After 7 days in culture, the MC/EC condition was equal to EC growth but had lower esterase activity (a measure of degradative potential), no pro-inflammatory TNF-α and a relatively high anti-inflammatory IL-10 release while the ECs maintained their functional marker CD31. After explantation of the porous scaffolds, a live/dead stain showed that the cells infiltrating the scaffolds were viable and histological stains (May-Grunwald, Trichrome) demonstrated tissue in growth and extracellular matrix synthesis. Lysates from the implant scaffolds analyzed with a cytokine antibody array showed decreased pro-inflammatory cytokines (IL-6, TNF-α, GM-CSF), increased anti-inflammatory cytokines (IL-10, IL-13, TNF-RI), and increased chemotactic cytokines (MCP-1, MCP-5, RANTES). The low foreign body response elicited by D-PHI when implanted in vivo supported the in vitro studies (EC and MC co-culture), demonstrating that D-PHI promoted EC growth along with an anti-inflammatory MC, further demonstrating its potential as a tissue engineering scaffold for vascular applications.  相似文献   

13.
Currently, studies connected with Computational Fluid Dynamic (CFD) techniques focus on assessing hemodynamic of blood flow in vessels in different conditions e.g. after stent-graft’s placement. The paper propose a novel method of standardization of results obtained from calculations of stent-grafts'' “pushing forces” (cumulative WSS—Wall Shear Stress), and describes its usefulness in diagnostic process. AngioCT data from 27 patients were used to reconstruct 3D geometries of stent-grafts which next were used to create respective reference cylinders. We made an assumption that both the side surface and the height of a stent-graft and a reference cylinder were equal. The proposed algorithm in conjunction with a stent-graft “pushing forces” on an implant wall, allowed us to determine which spatial configuration of a stent-graft predispose to the higher risk of its migration. For stent-grafts close to cylindrical shape (shape factor φ close to 1) WSS value was about 267Pa, while for stent-grafts different from cylindrical shape (φ close to 2) WSS value was about 635Pa. It was also noticed that deformation in the stent-graft’s bifurcation part impaired blood flow hemodynamic. Concluding the proposed algorithm of standardization proved its usefulness in estimating the WSS values that may be useful in diagnostic process. Angular bends or tortuosity in bifurcations of an aortic implant should be considered in further studies of estimation of the risk of implantation failure.  相似文献   

14.
Alzheimer’s disease (AD) has been associated with increased local inflammation in the affected brain regions, and in some studies also with elevated levels of proinflammatory cytokines in peripheral blood. Cytomegalovirus (CMV) is known to promote a more effector-oriented phenotype in the T-cell compartment, increasing with age. The aim of this study was to investigate the inflammatory response of peripheral blood mononuclear cells (PBMCs) from AD patients and non-demented (ND) controls. Using a multiplex Luminex xMAP assay targeting GM-CSF, IFN-γ, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IP-10 and TNF-α, cytokine profiles from PBMCs were analysed after stimulation with anti-CD3/CD28 beads, CMV pp65 peptide mix or amyloid β (Aβ) protofibrils, respectively. CMV seropositive AD subjects presented with higher IFN-γ levels after anti-CD3/CD28 and CMV pp65 but not after Aβ stimulation, compared to CMV seropositive ND controls. When analysing IFN-γ response to anti-CD3/CD28 stimulation on a subgroup level, CMV seropositive AD subjects presented with higher levels compared to both CMV seronegative AD and CMV seropositive ND subjects. Taken together, our data from patients with clinically manifest AD suggest a possible role of CMV as an inflammatory promoter in AD immunology. Further studies of AD patients at earlier stages of disease, could provide better insight into the pathophysiology.  相似文献   

15.
Calcium phosphate ceramics with specific physicochemical properties have been shown to induce de novo bone formation upon ectopic implantation in a number of animal models. In this study we explored the influence of physicochemical properties as well as the animal species on material-induced ectopic bone formation. Three bioceramics were used for the study: phase-pure hydroxyapatite (HA) sintered at 1200°C and two biphasic calcium phosphate (BCP) ceramics, consisting of 60 wt.% HA and 40 wt.% TCP (β-Tricalcium phosphate), sintered at either 1100°C or 1200°C. 108 samples of each ceramic were intramuscularly implanted in dogs, rabbits, and rats for 6, 12, and 24 weeks respectively. Histological and histomorphometrical analyses illustrated that ectopic bone and/or osteoid tissue formation was most pronounced in BCP sintered at 1100°C and most limited in HA, independent of the animal model. Concerning the effect of animal species, ectopic bone formation reproducibly occurred in dogs, while in rabbits and rats, new tissue formation was mainly limited to osteoid. The results of this study confirmed that the incidence and the extent of material-induced bone formation are related to both the physicochemical properties of calcium phosphate ceramics and the animal model.  相似文献   

16.

Background

Inflammation is a key hallmark of ALI and is mediated through ungoverned cytokine signaling. One such cytokine, interleukin-1beta (IL-1β) has been demonstrated to be the most bioactive cytokine in ALI patients. Macrophages are the key players responsible for IL-1β secretion into the alveolar space. Following the binding of IL-1β to its receptor, “activated” alveolar epithelial cells show enhanced barrier dysfunction, adhesion molecule expression, cytokine secretion, and leukocyte attachment. More importantly, it is an important communication molecule between the macrophage and alveolar epithelium. While the molecular determinants of this inflammatory event have been well documented, endogenous resolution processes that decrease IL-1β secretion and resolve alveolar epithelial cell activation and tissue inflammation have not been well characterized. Lipid mediator Aspirin-Triggered Resolvin D1 (AT-RvD1) has demonstrated potent pro-resolutionary effects in vivo models of lung injury; however, the contribution of the alveoli to the protective benefits of this molecule has not been well documented. In this study, we demonstrate that AT-RvD1 treatment lead to a significant decrease in oxidant induced macrophage IL-1β secretion and production, IL-1β-mediated cytokine secretion, adhesion molecule expression, leukocyte adhesion and inflammatory signaling.

Methods

THP-1 macrophages were treated with hydrogen peroxide and extracellular ATP in the presence or absence of AT-RvD1 (1000–0.1 nM). A549 alveolar-like epithelial cells were treated with IL-1β (10 ng/mL) in the presence or absence of AT-RvD1 (0.1 μM). Following treatment, cell lysate and cell culture supernatants were collected for Western blot, qPCR and ELISA analysis of pro-inflammatory molecules. Functional consequences of IL-1β induced alveolar epithelial cell and macrophage activation were also measured following treatment with IL-1β ± AT-RvD1.

Results

Results demonstrate that macrophages exposed to H2O2 and ATP in the presence of resolvins show decreased IL-1β production and activity. A549 cells treated with IL-1β in the presence of AT-RvD1 show a reduced level of proinflammatory cytokines IL-6 and IL-8. Further, IL-1β-mediated adhesion molecule expression was also reduced with AT-RvD1 treatment, which was correlated with decreased leukocyte adhesion. AT-RvD1 treatment demonstrated reduced MAP-Kinase signaling. Taken together, our results demonstrate AT-RvD1 treatment reduced IL-1β-mediated alveolar epithelial cell activation. This is a key step in unraveling the protective effects of resolvins, especially AT-RvD1, during injury.  相似文献   

17.
To design scaffolds for tissue regeneration, details of the host body reaction to the scaffolds must be studied. Host body reactions have been investigated mainly by immunohistological observations for a long time. Despite of recent dramatic development in genetic analysis technologies, genetically comprehensive changes in host body reactions are hardly studied. There is no information about host body reactions that can predict successful tissue regeneration in the future. In the present study, porous polyethylene scaffolds were coated with bioactive collagen or bio-inert poly(2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate) (PMB) and were implanted subcutaneously and compared the host body reaction to those substrates by normalizing the result using control non-coat polyethylene scaffold. The comprehensive analyses of early host body reactions to the scaffolds were carried out using a DNA microarray assay. Within numerous genes which were expressed differently among these scaffolds, particular genes related to inflammation, wound healing, and angiogenesis were focused upon. Interleukin (IL)-1β and IL-10 are important cytokines in tissue responses to biomaterials because IL-1β promotes both inflammation and wound healing and IL-10 suppresses both of them. IL-1β was up-regulated in the collagen-coated scaffold. Collagen-specifically up-regulated genes contained both M1- and M2-macrophage-related genes. Marked vessel formation in the collagen-coated scaffold was occurred in accordance with the up-regulation of many angiogenesis-inducible factors. The DNA microarray assay provided global information regarding the host body reaction. Interestingly, several up-regulated genes were detected even on the very bio-inert PMB-coated surfaces and those genes include inflammation-suppressive and wound healing-suppressive IL-10, suggesting that not only active tissue response but also the inert response may relates to these genetic regulations.  相似文献   

18.
Macrophages (Mϕ) are well documented to produce IL-1β through various signaling pathways in response to small particles such as silica, asbestos and urea crystals, in the presence of lipopolysaccharide (LPS). However, it has not been clear to what extent particle size affects the response. To investigate this point, we stimulated bone marrow-derived macrophages (BMDM) with size-defined latex beads (LxB). Although both nano-sized (20 nm) and micro-sized (1,000 nm) LxB induced IL-1β production, only the nano-sized particles formed large intracellular vacuoles. In contrast, 100 nm LxB did not induce either of the responses. The same cellular responses were also observed in primary microglia cells. Although K+ efflux and NLRP3 activation in BMDM were crucial in response to both 20 and 1,000 nm LxB, only IL-1β production by 20 nm LxB was sensitive to cathepsin B and P2X7, a receptor for ATP. The response by 1,000 nm LxB relied on a robust production of reactive oxygen species (ROS), since IL-1β production was remarkably reduced by ROS inhibitors such as diphenylene iodonium (DPI) and N-acetylcysteine (NAC). In contrast, IL-1β production by 20 nm LxB was augmented by NAC and in BMDM deficient in thioredoxin-binding protein-2 (TBP-2), a negative regulator of the ROS scavenger thioredoxin. These results suggest that the cells responded differently in their secretion of IL-1β depending on particle size, and that there is a range within which neither pathway works.  相似文献   

19.
One hundred Danish dairy calves had temperature loggers implanted subcutaneously on the neck. Post-operatively, the calves were given a single antibiotic treatment, and tissue reactions were assessed on 6 post-operative visits. After approximately 5 months, the loggers were removed and material submitted for histologic examination. This paper presents 1) the surgical procedure, 2) the prevalence of tissue reaction at the post-operative visits, 3) the degree of implant recovery, 4) the results of histopathologic examinations, 5) an evaluation of age at implantation or veterinary practitioner as risk factors for tissue reaction and missing implant recovery 5 months after implantation, and 6) evaluation of tissue reaction as a risk factor for lack of recovery 5 months after implantation. The implant was rejected on 7 calves (7%). Additionally, 5 calves (5%) had the temperature logger removed because of presence of an abcess. No migration of the temperature loggers were observed. The results of a repeated measures analysis and the histopathological findings indicate that contamination during the surgery resulted in inflammation and abcess formation. It is recommended that in the presence of an abcess, the temperature logger should be removed.  相似文献   

20.
Periodontitis is an infectious inflammatory disease that results in the destruction of the tooth-supporting (periodontal) tissues. The Gram-negative anaerobic species Porphyromonas gingivalis, Tannerella forsythia and Treponema denticola, (also known as the “red complex” species) are highly associated with subgingival biofilms at periodontitis-affected sites. A major chemokine produced by the gingival epithelium in response to biofilm challenge, is interleukin (IL)-8. The aim of this in vitro study was to investigate the relative effect of the “red complex” species as constituents of subgingival biofilms, on the regulation of IL-8 by gingival epithelia. Multi-layered organotypic human gingival epithelial cultures were challenged with a 10-species in vitro subgingival biofilm model, or its 7-species variant, excluding the “red complex”. IL-8 gene expression and secretion analyses were performed by qPCR and ELISA, respectively. After 3 h, both biofilms up-regulated IL-8 gene expression, but the presence of the “red complex” resulted in 3-fold greater response. IL-8 secretion was also up-regulated by both biofilms, with no differences between them. After 24 h, the 10-species biofilm reduced IL-8 secretion to 50% of the control, but this was not affected when the “red complex” was absent. In conclusion, as part of biofilms, “red complex” species differentially regulate IL-8 in gingival epithelia, potentially affecting the chemotactic responses of the tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号