首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

According to the guidelines for cardiopulmonary resuscitation (CPR), the rotation time for chest compression should be about 2 min. The quality of chest compressions is related to the physical fitness of the rescuer, but this was not considered when determining rotation time. The present study aimed to clarify associations between body weight and the quality of chest compression and physical fatigue during CPR performed by 18 registered nurses (10 male and 8 female) assigned to light and heavy groups according to the average weight for each sex in Japan.

Methods

Five-minute chest compressions were then performed on a manikin that was placed on the floor. Measurement parameters were compression depth, heart rate, oxygen uptake, integrated electromyography signals, and rating of perceived exertion. Compression depth was evaluated according to the ratio (%) of adequate compressions (at least 5 cm deep).

Results

The ratio of adequate compressions decreased significantly over time in the light group. Values for heart rate, oxygen uptake, muscle activity defined as integrated electromyography signals, and rating of perceived exertion were significantly higher for the light group than for the heavy group.

Conclusion

Chest compression caused increased fatigue among the light group, which consequently resulted in a gradual fall in the quality of chest compression. These results suggested that individuals with a lower body weight should rotate at 1-min intervals to maintain high quality CPR and thus improve the survival rates and neurological outcomes of victims of cardiac arrest.  相似文献   

2.

Background

Quality of cardiopulmonary resuscitation (CPR) is key to increase survival from cardiac arrest. Providing chest compressions with adequate rate and depth is difficult even for well-trained rescuers. The use of real-time feedback devices is intended to contribute to enhance chest compression quality. These devices are typically based on the double integration of the acceleration to obtain the chest displacement during compressions. The integration process is inherently unstable and leads to important errors unless boundary conditions are applied for each compression cycle. Commercial solutions use additional reference signals to establish these conditions, requiring additional sensors. Our aim was to study the accuracy of three methods based solely on the acceleration signal to provide feedback on the compression rate and depth.

Materials and Methods

We simulated a CPR scenario with several volunteers grouped in couples providing chest compressions on a resuscitation manikin. Different target rates (80, 100, 120, and 140 compressions per minute) and a target depth of at least 50 mm were indicated. The manikin was equipped with a displacement sensor. The accelerometer was placed between the rescuer’s hands and the manikin’s chest. We designed three alternatives to direct integration based on different principles (linear filtering, analysis of velocity, and spectral analysis of acceleration). We evaluated their accuracy by comparing the estimated depth and rate with the values obtained from the reference displacement sensor.

Results

The median (IQR) percent error was 5.9% (2.8–10.3), 6.3% (2.9–11.3), and 2.5% (1.2–4.4) for depth and 1.7% (0.0–2.3), 0.0% (0.0–2.0), and 0.9% (0.4–1.6) for rate, respectively. Depth accuracy depended on the target rate (p < 0.001) and on the rescuer couple (p < 0.001) within each method.

Conclusions

Accurate feedback on chest compression depth and rate during CPR is possible using exclusively the chest acceleration signal. The algorithm based on spectral analysis showed the best performance. Despite these encouraging results, further research should be conducted to asses the performance of these algorithms with clinical data.  相似文献   

3.

Background

The survival rate of patients with out-of-hospital cardiac arrest is low, and measures to improve the quality of cardiopulmonary resuscitation (CPR) during ambulance transportation are desirable. We designed a stabilization device, and in a randomized crossover trial we found performing CPR in a moving ambulance with the device (MD) could achieve better efficiency than that without the device (MND), but the efficiency was lower than that in a non-moving ambulance (NM).

Purpose

To evaluate whether a modified version of the stabilization device, can promote further the quality of CPR during ambulance transportation.

Methods

Participants of the previous study were recruited, and they performed CPR for 10 minutes in a moving ambulance with the modified version of the stabilization device (MVSD). The primary outcomes were effective chest compressions and no-flow fraction recorded by a skill-reporter manikin. The secondary outcomes included back pain, physiological parameters, and the participants'' rating about the device after performing CPR.

Results

The overall effective compressions in 10 minutes were 86.4±17.5% for NM, 60.9±14.6% for MND, 69.7±22.4% for MD, and 86.6%±13.2% for MVSD (p<0.001). Whereas changes in back pain severity and physiology parameters were similar under all conditions, MVSD had the lowest no-flow fraction. Differences in effective compressions and the no-flow fraction between MVSD and NM did not reach statistical significance.

Conclusions

The use of the modified device can improve quality of CPR in a moving ambulance to a level similar to that in a non-moving condition without increasing the severity of back pain.  相似文献   

4.
The aim of this study was to investigate the effect of four different inertial loads (0.025, 0.050, 0.075, and 0.100 kg· m²) on concentric (CON) power, eccentric (ECC) power, and ECC overload in the flywheel Romanian deadlift (RDL). Fourteen recreationally trained males (27.9 ± 6.4 years, 90 ± 10.7 kg, 180.7 ± 5.5 cm) volunteered for the study. They had a minimum of two years of resistance training experience, although none had experience in flywheel inertia training (FIT). All participants performed the flywheel RDL on a flywheel device (kBox 3, Exxentric, AB TM, Bromma, Sweden). Each set was performed using different inertial loads, those being 0.025, 0.050, 0.075, and 0.100 kg·m². For CON, ECC power, and ECC overload, there was a significant difference (p < 0.001) between inertial loadings. In conclusion, results highlight that lower inertial load leads to higher peak CON and ECC power values, precisely 0.025 kg· m². Regarding ECC overload, medium to higher loads (0.050, 0.075, and 0.100 kg·m²) will lead to higher values.  相似文献   

5.
The study investigates the effects of the 11+ and HarmoKnee injury prevention programmes on knee strength in male soccer players. Under-21-year-old players (n=36) were divided equally into: the 11+, HarmoKnee and control groups. The programmes were performed for 24 sessions (20-25 min each). The hamstrings and quadriceps strength were measured bilaterally at 60°·s-1, 180°·s-1 and 300°·s-1. The concentric quadriceps peak torque (PT) of the 11+ increased by 27.7% at 300°·s-1 in the dominant leg (p<0.05). The concentric quadriceps PT of HarmoKnee increased by 36.6%, 36.2% and 28% in the dominant leg, and by 31.3%, 31.7% and 20.05% at 60°·s-1, 180°·s-1 and 300°·s-1 in the non-dominant leg respectively. In the 11+ group the concentric hamstring PT increased by 22%, 21.4% and 22.1% at 60°·s-1, 180°·s-1 and 300°·s-1, respectively in the dominant leg, and by 22.3%, and 15.7% at 60°·s-1 and 180°·s-1, in the non-dominant leg. In the HarmoKnee group the hamstrings in the dominant leg showed an increase in PT by 32.5%, 31.3% and 14.3% at 60°·s-1, 180°·s-1 and 300°·s-1, and in the non-dominant leg hamstrings PT increased by 21.1% and 19.3% at 60°·s-1 and 180°·s-1 respectively. The concentric hamstrings strength was significantly different between the 11+ and control groups in the dominant (p=0.01) and non-dominant legs (p=0.02). The HarmoKnee programme enhanced the concentric strength of quadriceps. The 11+ and HarmoKnee programmes are useful warm-up protocols for improving concentric hamstring strength in young professional male soccer players. The 11+ programme is more advantageous for its greater concentric hamstring strength improvement compared to the HarmoKnee programme.  相似文献   

6.
The purpose of this study was to examine the acute effects of maximal concentric vs. eccentric exercise on the isometric strength of the elbow flexor, as well as the biceps brachii muscle electromyographic (EMG) responses in resistance-trained (RT) vs. untrained (UT) men. Thirteen RT men (age: 24 ± 4 years; height: 180.2 ± 7.7 cm; body weight: 92.2 ± 16.9 kg) and twelve UT men (age: 23 ± 4 years; height: 179.2 ± 5.0 cm; body weight: 81.5 ± 8.6 kg) performed six sets of ten maximal concentric isokinetic (CON) or eccentric isokinetic (ECC) elbow flexion exercise in two separate visits. Before and after the exercise interventions, maximal voluntary contractions (MVCs) were performed for testing isometric strength. In addition, bipolar surface EMG signals were detected from the biceps brachii muscle during the strength testing. Both CON and ECC caused isometric strength to decrease, regardless of the training status. However, ECC caused greater isometric strength decline than CON did for the UT group (p = 0.006), but not for the RT group. Both EMG amplitude and mean frequency significantly decreased and increased, respectively, regardless of the training status and exercise intervention. Resistance-trained men are less susceptible to eccentric exercise-induced muscle damage, but this advantage is not likely linked to the chronic resistance training-induced neural adaptations.  相似文献   

7.

Objectives

To compare cardiopulmonary resuscitation (CPR) quality between manual CPR and miniaturized chest compressor (MCC) CPR. To improve CPR quality through evaluating the quality of our clinical work of resuscitation by real-time video recording system.

Methods

The study was a retrospective observational study of adult patients who experienced CPR at the emergency department of Shanghai Tenth People’s Hospital from March 2013 to August 2014. All the performance of CPR were checked back by the record of “digital real-time video recording system”. Average chest compression rate, actual chest compression rate, the percentage of hands-off period, time lag from patient arrival to chest compression, time lag from patient arrival to manual ventilation, time lag from patient arrival to first IV establish were compared. Causes of chest compression hands-off time were also studied.

Results

112 cases of resuscitation attempts were obtained. Average chest compression rate was over 100 compression per minute (cpm) in the majority of cases. However, indicators such as percentage of hands-off periods, time lag from patient arrival to the first manual ventilation and time lag from patient arrival to the first IV establish seemed to be worse in the manual CPR group compared to MCC CPR group. The saving of operators change time seemed to counteract the time spent on MCC equipment. Indicators such as percentage of hands-off periods, time lag between patient arrival to the first chest compression, time lag between patient arrival to the first manual ventilation and time lag from patient arrival to the first IV establish may influence the survival.

Conclusion

Our CPR quality remained to be improved. MCC may have a potentially positive role in CPR.  相似文献   

8.
The aim of the present study was to analyse the influence of congested periods of matches on the acceleration (Acc) and deceleration (Dec) profiles of elite soccer players. Twenty-three elite male professional soccer players participated in the study across 31 official matches. Assessed periods included: (i) congested periods (three to four days between games), and (ii) non-congested periods (more than four days between games). Physical activity during matches was recorded during games using a 10Hz global positioning system device, coupled with a 100 Hz accelerometer, and was analysed according to the periods. Maximal Acc- (73.2 ± 20.3 vs. 84.918.5 m), high Acc- (244.0 ± 49.5 vs. 267.0 ± 37.8 m), maximal Dec- (139.0 ± 44.8 vs. 152.039.3 m) and the total decelerating- distance (5132 ± 690 vs. 5245 ± 552 m) were lower in congested than in non-congested periods (p < 0.05, effect size 0.31–0.70). Neither a main effect of playing position nor a period*playing position interaction on Acc and Dec were observed (p > 0.05). It was concluded that Acc and Dec match activities were significantly affected during congested periods compared to non-congested highlighting a possible fatigue accumulation being responsible for the observed decrement in physical activity. Monitoring Acc and Dec metrics throughout particular periods of congested fixtures amongst professional soccer teams is advised and may be a way to assess physical and fatigue status.  相似文献   

9.

Purpose

The use of new headless compression screws (HCSs) for scaphoid fixation is growing, but the nonunion rate has remained constant. The aim of this study was to compare the stability of fixation resulting from four modern HCSs using a simulated fracture model to determine the optimal screw design(s).

Methods

We tested 40 fresh-frozen cadaver scaphoids treated with the Acumed Acutrak 2 mini (AA), the KLS Martin HBS2 midi (MH), the Stryker TwinFix (ST) and the Synthes HCS 3.0 with a long thread (SH). The bones with simulated fractures and implanted screws were loaded uniaxially into flexion for 2000 cycles with a constant bending moment of 800 Nmm. The angulation of the fracture fragments was measured continuously. Data were assessed statistically using the univariate ANOVA test and linear regression analysis, and the significance level was set at p < 0.05.

Results

The median angulation of bone fragments φ allowed by each screw was 0.89° for AA, 1.12° for ST, 1.44° for SH and 2.36° for MH. With regards to linear regression, the most reliable curve was achieved by MH, with a coefficient of determination of R2 = 0.827. This was followed by AA (R2 = 0.354), SH (R2 = 0.247) and ST (R2 = 0.019). Data assessed using an adapted ANOVA model showed no statistically significant difference (p = 0.291) between the screws.

Conclusions

The continuous development of HCSs has resulted in very comparable implants, and thus, at this time, other factors, such as surgeons’ experience, ease of handling and price, should be taken into consideration.  相似文献   

10.
We examined whether unilateral exercise creates perception bias in the non-exercised limb and ascertained whether rTMS applied to the primary motor cortex (M1) interferes with this perception. All participants completed 4 interventions: 1) 15-min learning period of intermittent isometric contractions at 35% MVC with the trained hand (EX), 2) 15-min learning period of intermittent isometric contractions at 35% MVC with the trained hand whilst receiving rTMS over the contralateral M1 (rTMS+EX); 3) 15-min of rTMS over the ‘trained’ M1 (rTMS) and 4) 15-min rest (Rest). Pre and post-interventions, the error of force output production, the perception of effort (RPE), motor evoked potentials (MEPs) and compound muscle action potentials (CMAPs) were measured in both hands. EX did not alter the error of force output production in the trained hand (Δ3%; P>0.05); however, the error of force output production was reduced in the untrained hand (Δ12%; P<0.05). rTMS+EX and rTMS alone did not show an attenuation in the error of force output production in either hand. EX increased RPE in the trained hand (9.1±0.5 vs. 11.3±0.7; P<0.01) but not the untrained hand (8.8±0.6 vs. 9.2±0.6; P>0.05). RPE was significantly higher after rTMS+EX in the trained hand (9.2±0.5 vs. 10.7±0.7; P<0.01) but ratings were unchanged in the untrained hand (8.5±0.6 vs. 9.2±0.5; P>0.05). The novel finding was that exercise alone reduced the error in force output production by over a third in the untrained hand. Further, when exercise was combined with rTMS the transfer of force perception was attenuated. These data suggest that the contralateral M1 of the trained hand might, in part, play an essential role for the transfer of force perception to the untrained hand.  相似文献   

11.
The purpose of this study was to investigate the effect of whole body vibration (WBV) training on maximal strength, squat jump, and flexibility of well-trained combat athletes. Twelve female and 8 male combat athletes (age: 22.8 ± 3.1 years, mass: 65.4 ± 10.7 kg, height: 168.8 ± 8.8 cm, training experience: 11.6 ± 4.7 years, training volume: 9.3 ± 2.8 hours/week) participated in this study. The study consisted of three sessions separated by 48 hours. The first session was conducted for familiarization. In the subsequent two sessions, participants performed WBV or sham intervention in a randomized, balanced order. During WBV intervention, four isometric exercises were performed (26 Hz, 4 mm). During the sham intervention, participants performed the same WBV intervention without vibration treatment (0 Hz, 0 mm). Hand grip, squat jump, trunk flexion, and isometric leg strength tests were performed after each intervention. The results of a two-factor (pre-post[2] × intervention[2]) repeated measures ANOVA revealed a significant interaction (p = 0.018) of pre-post × intervention only for the hand grip test, indicating a significant performance increase of moderate effect (net increase of 2.48%, d = 0.61) after WBV intervention. Squat jump, trunk flexion, and isometric leg strength performances were not affected by WBV. In conclusion, the WBV protocol used in this study potentiated hand grip performance, but did not enhance squat jump, trunk flexion, or isometric leg strength in well-trained combat athletes.  相似文献   

12.
The antimicrobial efficacies of preparations for surgical hand antisepsis can be determined according to a European standard (prEN 12791 [EN]) and a U.S. standard (tentative final monograph for health care antiseptic drug products [TFM]). The U.S. method differs in the product application mode (hands and lower forearms, versus hands only in EN), the number of applications (11 over 5 days, versus a single application in EN), the sampling times (0, 3, and 6 h after application, versus 0 and 3 h in EN), the sampling methods (glove juice versus fingertip sampling in EN), and the outcome requirements (absolute bacterial reduction factor [RF], versus noninferiority to reference treatment in EN). We have studied the efficacies of two hand rubs according to both methods. One hand rub was based on 80% ethanol and applied for 2 min, and the other one was based on 45% propan-2-ol, 30% propan-1-ol, and 0.2% mecetronium etilsulfate and applied for 1.5 min. The ethanol-based hand rub was equally effective as the 3-min reference disinfection of prEN 12791 in both the immediate (RFs, 2.97 ± 0.89 versus 2.92 ± 1.03, respectively) and sustained (RFs, 2.20 ± 1.07 versus 2.47 ± 1.25, respectively) effects. According to TFM, the immediate effects were 2.99 log10 (day 1), 3.00 log10 (day 2), and 3.43 log10 (day 5), and bacterial counts were still below baseline after 6 h. The propanol-based hand rub was even more effective than the reference disinfection of prEN 12791 in both the immediate (RFs, 2.35 ± 0.99 versus 1.86 ± 0.87, respectively) and sustained (RFs, 2.17 ± 1.00 versus 1.50 ± 1.26, respectively) effects. According to TFM, the immediate effects were 2.82 log10 (day 1), 3.29 log10 (day 2), and 3.25 log10 (day 5), and bacterial counts were still below baseline after 6 h. Some formulations have been reported to meet the efficacy requirements of one of the methods but not those of the other. That is why we conclude that, despite our results, meeting the efficacy requirements of one test method does not allow the claim that the requirements of the other test method are also met.  相似文献   

13.
Muscle force is potentiated by countermovement; this phenomenon is called stretch-shortening cycle (SSC) effect. In this study, we examined the factors strongly related to SSC effect in vivo, focusing on tendon elongation, preactivation, and residual force enhancement. Twelve healthy men participated in this study. Ankle joint angle was passively moved by a dynamometer, with a range of motion from 15° dorsiflexion (DF) to 15° plantarflexion (PF). Muscle contraction was evoked by electrical stimulation, with stimulation timing adjusted to elicit three types of contraction: (1) concentric contraction without preliminary contraction (CON), (2) concentric contraction after preliminary eccentric contraction (ECC), and (3) concentric contraction after preliminary isometric contraction (ISO). Joint torque was recorded at DF5°, PF0°, and PF5°, respectively. SSC effect was calculated as the ratio of joint torque obtained in ECC or ISO with respect to that obtained in CON at the aforementioned three joint angles. SSC effect was prominent in the first half of movement in both ECC (DF5°, 329.3 ± 101.2%; PF0°, 159.2 ± 29.4%; PF5°, 125.5 ± 20.8%) and ISO (DF5°, 276.4 ± 87.0%; PF0°, 134.5 ± 24.5%; PF5°, 106.8 ± 18.0%) conditions. SSC effect was significantly larger in ECC than in ISO at all joint angles (P < 0.001). Even without preliminary eccentric contraction (i.e., ISO condition), SSC effect was clearly large, indicating that a significant part of SSC effect is derived from preactivation. However, the active lengthening-induced force potentiation mechanism (residual force enhancement) also contributes to SSC effect.  相似文献   

14.
The study examined the relationship between psychometric status, neuromuscular, and biochemical markers of fatigue in response to an intensified training (IT) period in soccer. Fifteen professional soccer players volunteered to participate in the study (mean ± SD: age: 25 ± 1 years; body height: 179 ± 7 cm, body mass: 73.7 ± 16.2 kg, experience: 13.2 ± 3 years). Training load, monotony, strain, Hooper index and total quality recovery (TQR) were determined for each training session during a 2-week of IT. Counter-movement jump (CMJ) and biochemical responses [testosterone, cortisol, testosterone-to-cortisol ratio (T/C ratio), creatine kinase, and C-reactive protein] were collected before and after IT. Results showed that IT induced significant increases in cortisol, creatine kinase and C-reactive protein and significant decreases in T/C ratio and CMJ performance from before to after IT (p < 0.01, p < 0.001, p < 0.001, p < 0.01, p < 0.05, respectively). However, testosterone did not differ from before to after IT (p > 0.05). Training loads were positively correlated with Hooper index (p < 0.05) and negatively correlated with total quality recovery (p < 0.05). Hooper index was positively correlated with cortisol (p < 0.05), T/C ratio (p < 0.01), and creatine kinase (p < 0.01), and negatively correlated with CMJ (p < 0.05). Furthermore, TQR was negatively correlated with T/C ratio (p < 0.01), creatine kinase (p < 0.001), and C-reactive protein (p < 0.05), and positively correlated with CMJ (p < 0.01). Neuromuscular fatigue, muscle damage, and change in the anabolic/catabolic state induced by the IT were related to well-being and perceived recovery state among professional soccer players.  相似文献   

15.
Head-tilt maneuver assists with achieving airway patency during resuscitation. However, the relationship between angle of head-tilt and airway patency has not been defined. Our objective was to define an optimal head-tilt position for airway patency in neonates (age: 0–28 days) and young infants (age: 29 days–4 months). We performed a retrospective study of head and neck magnetic resonance imaging (MRI) of neonates and infants to define the angle of head-tilt for airway patency. We excluded those with an artificial airway or an airway malformation. We defined head-tilt angle a priori as the angle between occipito-ophisthion line and ophisthion-C7 spinous process line on the sagittal MR images. We evaluated medical records for Hypoxic Ischemic Encephalopathy (HIE) and exposure to sedation during MRI. We analyzed MRI of head and neck regions of 63 children (53 neonates and 10 young infants). Of these 63 children, 17 had evidence of airway obstruction and 46 had a patent airway on MRI. Also, 16/63 had underlying HIE and 47/63 newborn infants had exposure to sedative medications during MRI. In spontaneously breathing and neurologically depressed newborn infants, the head-tilt angle (median ± SD) associated with patent airway (125.3° ± 11.9°) was significantly different from that of blocked airway (108.2° ± 17.1°) (Mann Whitney U-test, p = 0.0045). The logistic regression analysis showed that the proportion of patent airways progressively increased with an increasing head-tilt angle, with > 95% probability of a patent airway at head-tilt angle 144–150°.  相似文献   

16.
The sense of body ownership can be easily disrupted during illusions and the most common illusion is the rubber hand illusion. An idea that is rapidly gaining popularity in clinical pain medicine is that body ownership illusions can be used to modify pathological pain sensations and induce analgesia. However, this idea has not been empirically evaluated. Two separate research laboratories undertook independent randomized repeated measures experiments, both designed to detect an effect of the rubber hand illusion on experimentally induced hand pain. In Experiment 1, 16 healthy volunteers rated the pain evoked by noxious heat stimuli (5 s duration; interstimulus interval 25 s) of set temperatures (47°, 48° and 49°C) during the rubber hand illusion or during a control condition. There was a main effect of stimulus temperature on pain ratings, but no main effect of condition (p = 0.32), nor a condition x temperature interaction (p = 0.31). In Experiment 2, 20 healthy volunteers underwent quantitative sensory testing to determine heat and cold pain thresholds during the rubber hand illusion or during a control condition. Secondary analyses involved heat and cold detection thresholds and paradoxical heat sensations. Again, there was no main effect of condition on heat pain threshold (p = 0.17), nor on cold pain threshold (p = 0.65), nor on any of the secondary measures (p<0.56 for all). We conclude that the rubber hand illusion does not induce analgesia.  相似文献   

17.
The aim of this study was to examine in team sports athletes the relationship between repeated sprint ability (RSA) indices and both aerobic and anaerobic fitness components. Sixteen team-sport players were included (age, 23.4 ± 2.3 years; weight, 71.2 ± 8.3 kg; height, 178 ± 7 cm; body mass index, 22.4 ± 2 kg · m−2; estimated VO2max, 54.16 ± 3.5 mL · kg−1 · min−1). Subjects were licensed in various team sports: soccer (n = 8), basketball (n = 5), and handball (n = 3). They performed 4 tests: the 20 m multi-stage shuttle run test (MSRT), the 30-s Wingate test (WingT), the Maximal Anaerobic Shuttle Running Test (MASRT), and the RSA test (10 repetitions of 30 m shuttle sprints (15 + 15 m with 180° change of direction) with 30 s passive recovery in between). Pearson''s product moment of correlation among the different physical tests was performed. No significant correlations were found between any RSA test indices and WingT. However, negative correlations were found between MASRT and RSA total sprint time (TT) and fatigue index (FI) (r = -0.53, p < 0.05 and r = -0.65, p < 0.01, respectively). No significant relationship between VO2max and RSA peak sprint time (PT) and total sprint time (TT) was found. Nevertheless, VO2max was significantly correlated with the RSA FI (r = -0.57, p < 0.05). In conclusion, aerobic fitness is an important factor influencing the ability to resist fatigue during RSA exercise. Our results highlighted the usefulness of MASRT, in contrast to WingT, as a specific anaerobic testing procedure to identify the anaerobic energy system contribution during RSA.  相似文献   

18.
The aim of this study was to evaluate the changes in pressure pain sensitivity maps in untrained subjects over 2 subsequent sessions of eccentric exercise (ECC) expected to result in (a) delayed onset muscle soreness (DOMS) and (b) adaptation/recovery, respectively. Eleven healthy male subjects participated in this study. Pressure pain threshold (PPT), rate of perceived exertion (RPE), pain intensity, soreness area drawing, maximal voluntary contraction (MVC), and shoulder range of motion were assessed in session 1 before, immediately after, and 24 hours after ECC. The ECC protocol that was used to induce DOMS consisted of 50 eccentric contractions of the right shoulder that were divided into 5 bouts, including 10 contractions at MVC level separated by a 2-minute resting period. Session 2 was identical to session 1 and performed exactly 1 week later. There was only a significant increase in the RPE assessed before the exercise and 24 hours after the exercise in session 1 (p = 0.001). The average PPT only decreased significantly from before the exercise (660.2 ± 76.2 kPa) to 24 hours after the exercise (435.6 ± 59.3 kPa) in session 1 (p = 0.016). The present study confirmed a heterogeneous distribution of mechanical sensitivity before and after sessions of ECC. The first session of ECC underlined increased mechanical sensitivity because of DOMS, whereas the second session reflected an adaptation process. Our results support the potential role of ECC bouts in training regimens.  相似文献   

19.
The aim of this study was to develop an automatic orientation calibration and reproduction method for recording the natural head position (NHP) in stereo-photogrammetry (SP). A board was used as the physical reference carrier for true verticals and NHP alignment mirror orientation. Orientation axes were detected and saved from the digital mesh model of the board. They were used for correcting the pitch, roll and yaw angles of the subsequent captures of patients’ facial surfaces, which were obtained without any markings or sensors attached onto the patient. We tested the proposed method on two commercial active (3dMD) and passive (DI3D) SP devices. The reliability of the pitch, roll and yaw for the board placement were within ±0.039904°, ±0.081623°, and ±0.062320°; where standard deviations were 0.020234°, 0.045645° and 0.027211° respectively. Conclusion: Orientation-calibrated stereo-photogrammetry is the most accurate method (angulation deviation within ±0.1°) reported for complete NHP recording with insignificant clinical error.  相似文献   

20.
We investigated the time course effects of eccentric training on muscular size, strength, and growth factor/cytokine production by using an isokinetic-exercise system for rats. Male Wistar rats (n = 34) were randomly assigned into 4 groups: 5 session eccentric-training group (ECC5S, n = 10); 5 session sham-operated group (CON5S, n = 10); 10 session eccentric-training group (ECC10S, n = 7); 10 session sham-operated group (CON10S, n = 7). In each group, a session of either training or sham operation was performed every 2 days. The training consisted of 4 sets of forced dorsiflexion (5 repetitions) combined with electric stimulation of plantar flexors. The wet weight of medial gastrocnemius muscle did not increase significantly after 5 sessions of training, whereas that after 10 sessions of training significantly increased with a concomitant increase in the cross-sectional area (CSA) of muscle fibers (weight, p < 0.05; fiber CSA, p < 0.001). Interleukin (IL)-6 in ECC5S and ECC10S groups showed significant increases (p < 0.01), whereas those of tumor necrosis factor (TNF)-α and IL-10 did not. The phospho-stat-3 showed a significant increase in ECC10S (p < 0.001) but not in ECC5S. Myostatin and follistatin also showed significant differences only between ECC10S and CON10S (p < 0.05). The results showed that repeated sessions of eccentric training for 20 days cause increases in muscular size and strength associated with increases in IL-6, follistatin, phospho-stat-3, and a decrease in myostatin. The delayed responses of IL-6, myostatin, phospho-stat-3, and follistatin would be due to the chronic effects of repeated training and possibly important for muscular hypertrophy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号