首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Proper utilization of plant disease resistance genes requires a good understanding of their short- and long-term evolution. Here we present a comprehensive study of the long-term evolutionary history of nucleotide-binding site (NBS)-leucine-rich repeat (LRR) genes within and beyond the legume family. The small group of NBS-LRR genes with an amino-terminal RESISTANCE TO POWDERY MILDEW8 (RPW8)-like domain (referred to as RNL) was first revealed as a basal clade sister to both coiled-coil-NBS-LRR (CNL) and Toll/Interleukin1 receptor-NBS-LRR (TNL) clades. Using Arabidopsis (Arabidopsis thaliana) as an outgroup, this study explicitly recovered 31 ancestral NBS lineages (two RNL, 21 CNL, and eight TNL) that had existed in the rosid common ancestor and 119 ancestral lineages (nine RNL, 55 CNL, and 55 TNL) that had diverged in the legume common ancestor. It was shown that, during their evolution in the past 54 million years, approximately 94% (112 of 119) of the ancestral legume NBS lineages experienced deletions or significant expansions, while seven original lineages were maintained in a conservative manner. The NBS gene duplication pattern was further examined. The local tandem duplications dominated NBS gene gains in the total number of genes (more than 75%), which was not surprising. However, it was interesting from our study that ectopic duplications had created many novel NBS gene loci in individual legume genomes, which occurred at a significant frequency of 8% to 20% in different legume lineages. Finally, by surveying the legume microRNAs that can potentially regulate NBS genes, we found that the microRNA-NBS gene interaction also exhibited a gain-and-loss pattern during the legume evolution.To combat the constant challenges by pathogens, plants have evolved a sophisticated two-layered defense system, in which proteins encoded by disease RESISTANCE (R) genes serve to sense pathogen invasion signals and to elicit defense responses (Jones and Dangl, 2006; McDowell and Simon, 2006; Bent and Mackey, 2007). Over 140 R genes have been characterized from different flowering plants, which confer resistance to a large array of pathogens, including bacteria, fungi, oomycetes, viruses, and nematodes (Liu et al., 2007; Yang et al., 2013). Among these, about 80% belong to the NBS-LRR class, which encodes a central nucleotide-binding site (NBS) domain and a C-terminal leucine-rich repeat (LRR) domain. Based on whether their N termini are homologous to the Toll/Interleukin1 receptor (TIR), the angiosperm NBS-LRR genes are further divided into the TIR-NBS-LRR (TNL) subclass and the non-TIR-NBS-LRR (nTNL) subclass (Meyers et al., 1999; Bai et al., 2002; Cannon et al., 2002). The latter has been also called CC-NBS-LRR (CNL) subclass, since a coiled-coil (CC) structure is often detected at the N terminus (Meyers et al., 2003). Interestingly, a small group of nTNL genes have an N-terminal RPW8-like domain with a transmembrane region before the CC structure (Xiao et al., 2001). This group of RPW8-NBS-LRR (RNL) genes has been usually viewed as a specific lineage of CNLs (Bonardi et al., 2011; Collier et al., 2011); however, its real phylogenetic relationship with CNLs and TNLs requires further investigation.NBS-LRR genes have been surveyed in many sequenced genomes of flowering plants, including four monocots: rice (Oryza sativa), maize (Zea mays), sorghum (Sorghum bicolor), and Brachypodium distachyon; one basal eudicot: Nelumbo nucifera; two asterid species: potato (Solanum tuberosum) and tomato (Solanum lycopersicum); and 14 rosids: Vitis vinifera, Populus trichocarpa, Ricinus communis, Medicago truncatula, soybean (Glycine max), Lotus japonicus, Cucumis sativus, Cucumis melo, Citrullus lanatus, Gossypium raimondii, Carica papaya, Arabidopsis (Arabidopsis thaliana), Arabidopsis lyrata, and Brassica rapa (Bai et al., 2002; Meyers et al., 2003; Monosi et al., 2004; Zhou et al., 2004; Yang et al., 2006, 2008b; Ameline-Torregrosa et al., 2008; Mun et al., 2009; Porter et al., 2009; Chen et al., 2010; Li et al., 2010a, 2010b; Guo et al., 2011; Zhang et al., 2011; Jupe et al., 2012; Lozano et al., 2012; Luo et al., 2012; Tan and Wu, 2012; Andolfo et al., 2013; Jia et al., 2013; Lin et al., 2013; Wan et al., 2013; Wei et al., 2013; Wu et al., 2014). Variable numbers (from dozens to hundreds) of NBS-LRR genes were reported from these genomes, making one wonder: how did these genes evolve so variably during flowering plant speciation?Comparative genomic studies conducted in the available genome sequences of closely related species or subspecies revealed that a significant proportion of NBS-LRR genes are not shared. For example, 70 NBS-LRR genes between Arabidopsis and A. lyrata show the presence/absence of polymorphisms (Chen et al., 2010; Guo et al., 2011). Moreover, synteny analysis revealed that, among 363 NBS-LRR gene loci in indica (cv 93-11) and japonica (cv Nipponbare) rice, 124 loci exist in only one genome (Luo et al., 2012). Unequal crossover, homologous repair, and nonhomologous repair are the three ways that NBS-LRR gene deletions are caused in rice genomes (Luo et al., 2012).In many surveyed genomes, the majority of NBS-LRR genes are found in a clustered organization (physically close to each other), with the rest exhibited as singletons. Many clusters are homogenous, with only duplicated members occupying the same phylogenetic lineage, whereas heterogenous clusters comprise members from distantly related clades (Meyers et al., 2003). Leister (2004) defined three types of NBS gene duplications: local tandem, ectopic, and segmental duplications. Although a general agreement on the widespread occurrence of local tandem duplications can be reached by various genome survey studies, the relative importance of ectopic and segmental duplications has been seldom investigated since the earliest surveys of the Arabidopsis genome (Richly et al., 2002; Baumgarten et al., 2003; Meyers et al., 2003; McDowell and Simon, 2006).With more genomic data available in certain angiosperm families, NBS-LRR genes should be further investigated among phylogenetically distant species to fill the gaps in the understanding of their long-term evolutionary patterns. The legume family contains many economically important crop species, such as clover (Trifolium spp.), soybean, peanut (Arachis hypogaea), and common bean (Phaseolus vulgaris). Although these legumes are constantly threatened by various pathogens, only a few functional legume R genes have been characterized, and all of them belong to the NBS-LRR class (Ashfield et al., 2004; Hayes et al., 2004; Gao et al., 2005; Seo et al., 2006; Yang et al., 2008a; Meyer et al., 2009). Therefore, it would be interesting to investigate the NBS-LRR gene repertoire among different legume species. Here, we carried out a comprehensive analysis of NBS-LRR genes in four divergent legume genomes, M. truncatula, pigeon pea (Cajanus cajan), common bean, and soybean, which shared a common ancestor approximately 54 million years ago (MYA; Fig. 1; Lavin et al., 2005). Approximately 1,000 nTNL and 667 TNL subclass NBS-encoding genes were identified in our study. Their genomic distribution, organization modes, phylogenetic relationships, and syntenic patterns were examined to obtain insight into the long-term evolutionary patterns of NBS-LRR genes.Open in a separate windowFigure 1.The phylogenetic tree of four investigated legume species (M. truncatula, pigeon pea, common bean, and soybean). Two WGD events are indicated with triangles: one occurred approximately 59 MYA in the common ancestor of the four investigated legumes, and the other occurred approximately 13 MYA in the Glycine spp. lineage alone (Schmutz et al., 2010). The numbers at the branch nodes indicate divergence times (Lavin et al., 2005; Stefanovic et al., 2009). [See online article for color version of this figure.]  相似文献   

3.
4.
5.
6.
7.
8.
Necrotrophic and biotrophic pathogens are resisted by different plant defenses. While necrotrophic pathogens are sensitive to jasmonic acid (JA)-dependent resistance, biotrophic pathogens are resisted by salicylic acid (SA)- and reactive oxygen species (ROS)-dependent resistance. Although many pathogens switch from biotrophy to necrotrophy during infection, little is known about the signals triggering this transition. This study is based on the observation that the early colonization pattern and symptom development by the ascomycete pathogen Plectosphaerella cucumerina (P. cucumerina) vary between inoculation methods. Using the Arabidopsis (Arabidopsis thaliana) defense response as a proxy for infection strategy, we examined whether P. cucumerina alternates between hemibiotrophic and necrotrophic lifestyles, depending on initial spore density and distribution on the leaf surface. Untargeted metabolome analysis revealed profound differences in metabolic defense signatures upon different inoculation methods. Quantification of JA and SA, marker gene expression, and cell death confirmed that infection from high spore densities activates JA-dependent defenses with excessive cell death, while infection from low spore densities induces SA-dependent defenses with lower levels of cell death. Phenotyping of Arabidopsis mutants in JA, SA, and ROS signaling confirmed that P. cucumerina is differentially resisted by JA- and SA/ROS-dependent defenses, depending on initial spore density and distribution on the leaf. Furthermore, in situ staining for early callose deposition at the infection sites revealed that necrotrophy by P. cucumerina is associated with elevated host defense. We conclude that P. cucumerina adapts to early-acting plant defenses by switching from a hemibiotrophic to a necrotrophic infection program, thereby gaining an advantage of immunity-related cell death in the host.Plant pathogens are often classified as necrotrophic or biotrophic, depending on their infection strategy (Glazebrook, 2005; Nishimura and Dangl, 2010). Necrotrophic pathogens kill living host cells and use the decayed plant tissue as a substrate to colonize the plant, whereas biotrophic pathogens parasitize living plant cells by employing effector molecules that suppress the host immune system (Pel and Pieterse, 2013). Despite this binary classification, the majority of pathogenic microbes employ a hemibiotrophic infection strategy, which is characterized by an initial biotrophic phase followed by a necrotrophic infection strategy at later stages of infection (Perfect and Green, 2001). The pathogenic fungi Magnaporthe grisea, Sclerotinia sclerotiorum, and Mycosphaerella graminicola, the oomycete Phytophthora infestans, and the bacterial pathogen Pseudomonas syringae are examples of hemibiotrophic plant pathogens (Perfect and Green, 2001; Koeck et al., 2011; van Kan et al., 2014; Kabbage et al., 2015).Despite considerable progress in our understanding of plant resistance to necrotrophic and biotrophic pathogens (Glazebrook, 2005; Mengiste, 2012; Lai and Mengiste, 2013), recent debate highlights the dynamic and complex interplay between plant-pathogenic microbes and their hosts, which is raising concerns about the use of infection strategies as a static tool to classify plant pathogens. For instance, the fungal genus Botrytis is often labeled as an archetypal necrotroph, even though there is evidence that it can behave as an endophytic fungus with a biotrophic lifestyle (van Kan et al., 2014). The rice blast fungus Magnaporthe oryzae, which is often classified as a hemibiotrophic leaf pathogen (Perfect and Green, 2001; Koeck et al., 2011), can adopt a purely biotrophic lifestyle when infecting root tissues (Marcel et al., 2010). It remains unclear which signals are responsible for the switch from biotrophy to necrotrophy and whether these signals rely solely on the physiological state of the pathogen, or whether host-derived signals play a role as well (Kabbage et al., 2015).The plant hormones salicylic acid (SA) and jasmonic acid (JA) play a central role in the activation of plant defenses (Glazebrook, 2005; Pieterse et al., 2009, 2012). The first evidence that biotrophic and necrotrophic pathogens are resisted by different immune responses came from Thomma et al. (1998), who demonstrated that Arabidopsis (Arabidopsis thaliana) genotypes impaired in SA signaling show enhanced susceptibility to the biotrophic pathogen Hyaloperonospora arabidopsidis (formerly known as Peronospora parastitica), while JA-insensitive genotypes were more susceptible to the necrotrophic fungus Alternaria brassicicola. In subsequent years, the differential effectiveness of SA- and JA-dependent defense mechanisms has been confirmed in different plant-pathogen interactions, while additional plant hormones, such as ethylene, abscisic acid (ABA), auxins, and cytokinins, have emerged as regulators of SA- and JA-dependent defenses (Bari and Jones, 2009; Cao et al., 2011; Pieterse et al., 2012). Moreover, SA- and JA-dependent defense pathways have been shown to act antagonistically on each other, which allows plants to prioritize an appropriate defense response to attack by biotrophic pathogens, necrotrophic pathogens, or herbivores (Koornneef and Pieterse, 2008; Pieterse et al., 2009; Verhage et al., 2010).In addition to plant hormones, reactive oxygen species (ROS) play an important regulatory role in plant defenses (Torres et al., 2006; Lehmann et al., 2015). Within minutes after the perception of pathogen-associated molecular patterns, NADPH oxidases and apoplastic peroxidases generate early ROS bursts (Torres et al., 2002; Daudi et al., 2012; O’Brien et al., 2012), which activate downstream defense signaling cascades (Apel and Hirt, 2004; Torres et al., 2006; Miller et al., 2009; Mittler et al., 2011; Lehmann et al., 2015). ROS play an important regulatory role in the deposition of callose (Luna et al., 2011; Pastor et al., 2013) and can also stimulate SA-dependent defenses (Chaouch et al., 2010; Yun and Chen, 2011; Wang et al., 2014; Mammarella et al., 2015). However, the spread of SA-induced apoptosis during hyperstimulation of the plant immune system is contained by the ROS-generating NADPH oxidase RBOHD (Torres et al., 2005), presumably to allow for the sufficient generation of SA-dependent defense signals from living cells that are adjacent to apoptotic cells. Nitric oxide (NO) plays an additional role in the regulation of SA/ROS-dependent defense (Trapet et al., 2015). This gaseous molecule can stimulate ROS production and cell death in the absence of SA while preventing excessive ROS production at high cellular SA levels via S-nitrosylation of RBOHD (Yun et al., 2011). Recently, it was shown that pathogen-induced accumulation of NO and ROS promotes the production of azelaic acid, a lipid derivative that primes distal plants for SA-dependent defenses (Wang et al., 2014). Hence, NO, ROS, and SA are intertwined in a complex regulatory network to mount local and systemic resistance against biotrophic pathogens. Interestingly, pathogens with a necrotrophic lifestyle can benefit from ROS/SA-dependent defenses and associated cell death (Govrin and Levine, 2000). For instance, Kabbage et al. (2013) demonstrated that S. sclerotiorum utilizes oxalic acid to repress oxidative defense signaling during initial biotrophic colonization, but it stimulates apoptosis at later stages to advance necrotrophic colonization. Moreover, SA-induced repression of JA-dependent resistance not only benefits necrotrophic pathogens but also hemibiotrophic pathogens after having switched from biotrophy to necrotrophy (Glazebrook, 2005; Pieterse et al., 2009, 2012).Plectosphaerella cucumerina ((P. cucumerina, anamorph Plectosporum tabacinum) anamorph Plectosporum tabacinum) is a filamentous ascomycete fungus that can survive saprophytically in soil by decomposing plant material (Palm et al., 1995). The fungus can cause sudden death and blight disease in a variety of crops (Chen et al., 1999; Harrington et al., 2000). Because P. cucumerina can infect Arabidopsis leaves, the P. cucumerina-Arabidopsis interaction has emerged as a popular model system in which to study plant defense reactions to necrotrophic fungi (Berrocal-Lobo et al., 2002; Ton and Mauch-Mani, 2004; Carlucci et al., 2012; Ramos et al., 2013). Various studies have shown that Arabidopsis deploys a wide range of inducible defense strategies against P. cucumerina, including JA-, SA-, ABA-, and auxin-dependent defenses, glucosinolates (Tierens et al., 2001; Sánchez-Vallet et al., 2010; Gamir et al., 2014; Pastor et al., 2014), callose deposition (García-Andrade et al., 2011; Gamir et al., 2012, 2014; Sánchez-Vallet et al., 2012), and ROS (Tierens et al., 2002; Sánchez-Vallet et al., 2010; Barna et al., 2012; Gamir et al., 2012, 2014; Pastor et al., 2014). Recent metabolomics studies have revealed large-scale metabolic changes in P. cucumerina-infected Arabidopsis, presumably to mobilize chemical defenses (Sánchez-Vallet et al., 2010; Gamir et al., 2014; Pastor et al., 2014). Furthermore, various chemical agents have been reported to induce resistance against P. cucumerina. These chemicals include β-amino-butyric acid, which primes callose deposition and SA-dependent defenses, benzothiadiazole (BTH or Bion; Görlach et al., 1996; Ton and Mauch-Mani, 2004), which activates SA-related defenses (Lawton et al., 1996; Ton and Mauch-Mani, 2004; Gamir et al., 2014; Luna et al., 2014), JA (Ton and Mauch-Mani, 2004), and ABA, which primes ROS and callose deposition (Ton and Mauch-Mani, 2004; Pastor et al., 2013). However, among all these studies, there is increasing controversy about the exact signaling pathways and defense responses contributing to plant resistance against P. cucumerina. While it is clear that JA and ethylene contribute to basal resistance against the fungus, the exact roles of SA, ABA, and ROS in P. cucumerina resistance vary between studies (Thomma et al., 1998; Ton and Mauch-Mani, 2004; Sánchez-Vallet et al., 2012; Gamir et al., 2014).This study is based on the observation that the disease phenotype during P. cucumerina infection differs according to the inoculation method used. We provide evidence that the fungus follows a hemibiotrophic infection strategy when infecting from relatively low spore densities on the leaf surface. By contrast, when challenged by localized host defense to relatively high spore densities, the fungus switches to a necrotrophic infection program. Our study has uncovered a novel strategy by which plant-pathogenic fungi can take advantage of the early immune response in the host plant.  相似文献   

9.
10.
In Arabidopsis (Arabidopsis thaliana), the Pseudomonas syringae effector proteins AvrB and AvrRpm1 are both detected by the RESISTANCE TO PSEUDOMONAS MACULICOLA1 (RPM1) disease resistance (R) protein. By contrast, soybean (Glycine max) can distinguish between these effectors, with AvrB and AvrRpm1 being detected by the Resistance to Pseudomonas glycinea 1b (Rpg1b) and Rpg1r R proteins, respectively. We have been using these genes to investigate the evolution of R gene specificity and have previously identified RPM1 and Rpg1b. Here, we report the cloning of Rpg1r, which, like RPM1 and Rpg1b, encodes a coiled-coil (CC)-nucleotide-binding (NB)-leucine-rich repeat (LRR) protein. As previously found for Rpg1b, we determined that Rpg1r is not orthologous with RPM1, indicating that the ability to detect both AvrB and AvrRpm1 evolved independently in soybean and Arabidopsis. The tightly linked soybean Rpg1b and Rpg1r genes share a close evolutionary relationship, with Rpg1b containing a recombination event that combined a NB domain closely related to Rpg1r with CC and LRR domains from a more distantly related CC-NB-LRR gene. Using structural modeling, we mapped polymorphisms between Rpg1b and Rpg1r onto the predicted tertiary structure of Rpg1b, which revealed highly polymorphic surfaces within both the CC and LRR domains. Assessment of chimeras between Rpg1b and Rpg1r using a transient expression system revealed that AvrB versus AvrRpm1 specificity is determined by the C-terminal portion of the LRR domain. The P. syringae effector AvrRpt2, which targets RPM1 INTERACTOR4 (RIN4) proteins in both Arabidopsis and soybean, partially blocked recognition of both AvrB and AvrRpm1 in soybean, suggesting that both Rpg1b and Rpg1r may detect these effectors via modification of a RIN4 homolog.Effector triggered immunity in plants involves highly specific recognition events in which plant resistance (R) proteins detect pathogen effector proteins directly or, alternatively, the modifications that they induce on host proteins (Bonardi et al., 2012). The largest group of R proteins belongs to the nucleotide-binding (NB)-leucine-rich repeat (LRR) family (McHale et al., 2006). The NB-LRR family can be further subdivided based on N-terminal domains into the Toll-Interleukin and R protein (TIR) class and non-TIR-NB-LRR class (McHale et al., 2006). The latter most often contain a coiled-coil (CC) domain at the N terminus. The contributions of the TIR, CC, and LRR domains to R protein specificity, and how new specificities evolve, remain important questions.There are relatively few NB-LRR R proteins characterized to date that are thought to detect pathogen effectors directly; these include Pi-ta from rice (Oryza sativa), L and M variants from flax (Linum usitatissimum), and RESISTANCE TO RALSTONIA SOLANACEARUM1 and RESISTANCE TO PERONOSPORA PARASITICA1 (RPP1) from Arabidopsis (Arabidopsis thaliana; Jia et al., 2000; Deslandes et al., 2003; Dodds et al., 2006; Ueda et al., 2006; Catanzariti et al., 2010; Krasileva et al., 2010). In at least some of these examples, the R genes are found in clusters of NB-LRR paralogs in which multiple recognition specificities are represented (Ellis et al., 1995; Botella et al., 1998) or belong to allelic series (Ellis et al., 1995), arrangements that may promote evolution of recognition specificity via recombination between alleles and paralogs. Interestingly, sequence comparisons and domain swaps involving alleles at the L locus implicate both the LRR and TIR regions as determinants of recognition specificity (Ellis et al., 1999; Luck et al., 2000). Subsequently, domain swaps involving paralogs clustered at the barley (Hordeum vulgare) MILDEW A (MLA) and potato (Solanum tuberosum) Resistance to Potato Virus X (Rx)/Globodera pallida (Gpa) loci have provided additional support for the LRR domain playing a key role in conferring recognition specificity (Ellis et al., 1999; Luck et al., 2000; Shen et al., 2003; Rairdan and Moffett, 2006).Several R proteins are known to detect the presence of pathogen effectors indirectly by monitoring the activity of pathogen effectors within the plant cell. For example, the Arabidopsis RESISTANCE TO PSEUDOMONAS MACULICOLA1 (RPM1) and RESISTANCE TO PSEUDOMONAS SYRINGAE2 (RPS2) R proteins detect modification of the effector target RPM1 INTERACTOR4 (RIN4), while the Arabidopsis RPS5 protein detects modification of the effector target AvrPphB SUSCEPTIBLE1 (Mackey et al., 2002, 2003; Axtell and Staskawicz, 2003; Shao et al., 2003). At least for the well-studied examples in Arabidopsis, R proteins that employ indirect recognition mechanisms are encoded by NB-LRR genes that are not members of large clusters, or allelic series, with variants encoding distinct recognition specificities. Correlated with this genomic structure, such loci are typically relatively stable, with RPM1 and RPS5 existing as presence/absence polymorphisms that have been maintained over long evolutionary periods (Stahl et al., 1999; Tian et al., 2002). Both functional and nonfunctional alleles of RPS2 have been isolated, but only a single recognition specificity has been detected at this locus, despite sequence polymorphisms between alleles (Caicedo et al., 1999).Most likely, specificity for this class of R proteins is determined by a combination of the ability to associate with the host protein targeted by the effector and the ability to detect effector-induced modification of this target. Consistent with this hypothesis, it has been shown that the CC domains from at least some R proteins interact with the host proteins they are monitoring, even in the absence of pathogen effectors, in a prerecognition complex (Mackey et al., 2002; Ade et al., 2007). Hence, evolution of recognition specificity in R proteins that employ indirect recognition mechanisms may involve evolution of both the N-terminal CC and LRR domains.To better understand the evolution and function of R proteins that detect pathogen effectors indirectly, we have been studying two soybean (Glycine max) R genes, with known recognition specificities, that are members of a complex NB-LRR cluster. The R genes involved, Resistance to Pseudomonas glycinea 1b (Rpg1b) and Rpg1r, mediate detection of the Pseudomonas syringae effector proteins AvrB and AvrRpm1, respectively (Staskawicz et al., 1984; Ashfield et al., 1995). We have previously cloned Rpg1b, which is a CC-NB-LRR (CNL) gene that maps to a cluster of R genes effective against a diverse range of pathogens (Ashfield et al., 1998, 2004). Rpg1r is present in the same cluster and maps 0.56 centiMorgans from Rpg1b (Ashfield et al., 1995); however, the evolutionary relationship shared by the two R genes is not known. The cluster is associated with numerous NB-LRR genes, of both the CC and TIR subgroups, spread over more than a megabase of soybean chromosome 13 (Peñuela et al., 2002; Hayes et al., 2004; Innes et al., 2008; Ashfield et al., 2012; Wen et al., 2013). The NB-LRR family in this region is evolving rapidly, with duplications/deletions of paralogs, recombination, and positive selection all playing a role (Ashfield et al., 2012).While soybean can distinguish between AvrB and AvrRpm1, both effectors are detected by a single R protein, RPM1, in Arabidopsis (Bisgrove et al., 1994; Grant et al., 1995). It is known that RPM1 recognizes the effector proteins indirectly by detecting effector-dependent phosphorylation of a second Arabidopsis protein, RIN4 (Mackey et al., 2002; Chung et al., 2011; Liu et al., 2011). The available evidence suggests that a related strategy is employed by soybean, at least for the Rpg1b protein, despite the AvrB recognition specificity having evolved independently in these plant species (Ashfield et al., 2004; Selote and Kachroo, 2010; Selote et al., 2013). Soybean contains four RIN4 homologs (Chen et al., 2010), three of which interact physically with Rpg1b, with two required for full resistance conferred by this R gene (Selote and Kachroo, 2010; Selote et al., 2013). It is not known whether RIN4 homologs are required for Rpg1r function.Here, we report the map-based cloning of the soybean Rpg1r gene. Comparison of the Rpg1r protein to Rpg1b, combined with structural modeling, revealed highly polymorphic surfaces in the CC and LRR domains. Transient expression of chimeric Rpg1 proteins demonstrated that specificity for AvrB versus AvrRpm1 is determined by the C-terminal LRR region. Finally, we provide evidence that Rpg1r, like Rpg1b, detects its corresponding pathogen effector indirectly, most likely by monitoring a RIN4 homolog, indicating convergent evolution of recognition mechanisms in separate plant families.  相似文献   

11.
12.
13.
14.
Cytosolic Ca2+ in guard cells plays an important role in stomatal movement responses to environmental stimuli. These cytosolic Ca2+ increases result from Ca2+ influx through Ca2+-permeable channels in the plasma membrane and Ca2+ release from intracellular organelles in guard cells. However, the genes encoding defined plasma membrane Ca2+-permeable channel activity remain unknown in guard cells and, with some exceptions, largely unknown in higher plant cells. Here, we report the identification of two Arabidopsis (Arabidopsis thaliana) cation channel genes, CNGC5 and CNGC6, that are highly expressed in guard cells. Cytosolic application of cyclic GMP (cGMP) and extracellularly applied membrane-permeable 8-Bromoguanosine 3′,5′-cyclic monophosphate-cGMP both activated hyperpolarization-induced inward-conducting currents in wild-type guard cells using Mg2+ as the main charge carrier. The cGMP-activated currents were strongly blocked by lanthanum and gadolinium and also conducted Ba2+, Ca2+, and Na+ ions. cngc5 cngc6 double mutant guard cells exhibited dramatically impaired cGMP-activated currents. In contrast, mutations in CNGC1, CNGC2, and CNGC20 did not disrupt these cGMP-activated currents. The yellow fluorescent protein-CNGC5 and yellow fluorescent protein-CNGC6 proteins localize in the cell periphery. Cyclic AMP activated modest inward currents in both wild-type and cngc5cngc6 mutant guard cells. Moreover, cngc5 cngc6 double mutant guard cells exhibited functional abscisic acid (ABA)-activated hyperpolarization-dependent Ca2+-permeable cation channel currents, intact ABA-induced stomatal closing responses, and whole-plant stomatal conductance responses to darkness and changes in CO2 concentration. Furthermore, cGMP-activated currents remained intact in the growth controlled by abscisic acid2 and abscisic acid insensitive1 mutants. This research demonstrates that the CNGC5 and CNGC6 genes encode unique cGMP-activated nonselective Ca2+-permeable cation channels in the plasma membrane of Arabidopsis guard cells.Plants lose water via transpiration and take in CO2 for photosynthesis through stomatal pores. Each stomatal pore is surrounded by two guard cells, and stomatal movements are driven by the change of turgor pressure in guard cells. The intracellular second messenger Ca2+ functions in guard cell signal transduction (Schroeder and Hagiwara, 1989; McAinsh et al., 1990; Webb et al., 1996; Grabov and Blatt, 1998; Allen et al., 1999; MacRobbie, 2000; Mori et al., 2006; Young et al., 2006; Siegel et al., 2009; Chen et al., 2010; Hubbard et al., 2012). Plasma membrane ion channel activity and gene expression in guard cells are finely regulated by the intracellular free calcium concentration ([Ca2+]cyt; Schroeder and Hagiwara, 1989; Webb et al., 2001; Allen et al., 2002; Siegel et al., 2009; Kim et al., 2010; Stange et al., 2010). Ca2+-dependent protein kinases (CPKs) function as targets of the cytosolic Ca2+ signal, and several members of the CPK family have been shown to function in stimulus-induced stomatal closing, including the Arabidopsis (Arabidopsis thaliana) CPK3, CPK4, CPK6, CPK10, and CPK11 proteins (Mori et al., 2006; Zhu et al., 2007; Zou et al., 2010; Brandt et al., 2012; Hubbard et al., 2012). Further research found that several CPKs could activate the S-type anion channel SLAC1 in Xenopus laevis oocytes, including CPK21, CPK23, and CPK6 (Geiger et al., 2010; Brandt et al., 2012). At the same time, the Ca2+-independent protein kinase Open Stomata1 mediates stomatal closing and activates the S-type anion channel SLAC1 (Mustilli et al., 2002; Yoshida et al., 2002; Geiger et al., 2009; Lee et al., 2009; Xue et al., 2011), indicating that both Ca2+-dependent and Ca2+-independent pathways function in guard cells.Multiple essential factors of guard cell abscisic acid (ABA) signal transduction function in the regulation of Ca2+-permeable channels and [Ca2+]cyt elevations, including Abscisic Acid Insensitive1 (ABI1), ABI2, Enhanced Response to Abscisic Acid1 (ERA1), the NADPH oxidases AtrbohD and AtrbohF, the Guard Cell Hydrogen Peroxide-Resistant1 (GHR1) receptor kinase, as well as the Ca2+-activated CPK6 protein kinase (Pei et al., 1998; Allen et al., 1999, 2002; Kwak et al., 2003; Miao et al., 2006; Mori et al., 2006; Hua et al., 2012). [Ca2+]cyt increases result from both Ca2+ release from intracellular Ca2+ stores (McAinsh et al., 1992) and Ca2+ influx across the plasma membrane (Hamilton et al., 2000; Pei et al., 2000; Murata et al., 2001; Kwak et al., 2003; Hua et al., 2012). Electrophysiological analyses have characterized nonselective Ca2+-permeable channel activity in the plasma membrane of guard cells (Schroeder and Hagiwara, 1990; Hamilton et al., 2000; Pei et al., 2000; Murata et al., 2001; Köhler and Blatt, 2002; Miao et al., 2006; Mori et al., 2006; Suh et al., 2007; Vahisalu et al., 2008; Hua et al., 2012). However, the genetic identities of Ca2+-permeable channels in the plasma membrane of guard cells have remained unknown despite over two decades of research on these channel activities.The Arabidopsis genome includes 20 genes encoding cyclic nucleotide-gated channel (CNGC) homologs and 20 genes encoding homologs to animal Glu receptor channels (Lacombe et al., 2001; Kaplan et al., 2007; Ward et al., 2009), which have been proposed to function in plant cells as cation channels (Schuurink et al., 1998; Arazi et al., 1999; Köhler et al., 1999). Recent research has demonstrated functions of specific Glu receptor channels in mediating Ca2+ channel activity (Michard et al., 2011; Vincill et al., 2012). Previous studies have shown cAMP activation of nonselective cation currents in guard cells (Lemtiri-Chlieh and Berkowitz, 2004; Ali et al., 2007). However, only a few studies have shown the disappearance of a defined plasma membrane Ca2+ channel activity in plants upon mutation of candidate Ca2+ channel genes (Ali et al., 2007; Michard et al., 2011; Laohavisit et al., 2012; Vincill et al., 2012). Some CNGCs have been found to be involved in cation nutrient intake, including monovalent cation intake (Guo et al., 2010; Caballero et al., 2012), salt tolerance (Guo et al., 2008; Kugler et al., 2009), programmed cell death and pathogen responses (Clough et al., 2000; Balagué et al., 2003; Urquhart et al., 2007; Abdel-Hamid et al., 2013), thermal sensing (Finka et al., 2012; Gao et al., 2012), and pollen tube growth (Chang et al., 2007; Frietsch et al., 2007; Tunc-Ozdemir et al., 2013a, 2013b). Direct in vivo disappearance of Ca2+ channel activity in cngc disruption mutants has been demonstrated in only a few cases thus far (Ali et al., 2007; Gao et al., 2012). In this research, we show that CNGC5 and CNGC6 are required for a cyclic GMP (cGMP)-activated nonselective Ca2+-permeable cation channel activity in the plasma membrane of Arabidopsis guard cells.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号