首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wallachian and Sumava sheep are autochthonous breeds that have undergone a significant bottleneck effect and subsequent restoration efforts. The first objective of this study was to evaluate the degree of genetic variability of both breeds and, therefore, the current management of the breeding. The second was to determine whether these two breeds still retain their genetic uniqueness in relation to each other and other breeds, despite regenerative interventions. Our data consisted of 48 individuals of Sumava and 37 individuals of Wallachian sheep. The comparison data contained 25 other breeds (primarily European) from the HapMap dataset generated by the International Sheep Genomics Consortium. When comparing all 27 breeds, the Czech breeds clustered with 15 other breeds and formed a single branch with them according to Nei's distances. At the same time, however, the clusters of both breeds were integral and easily distinguishable from the others when displayed with principal component analysis (PCA). Population substructure analysis did not show any common genetic ancestry of the Czech national breeds and breeds used for regeneration or, eventually, breeds whose ancestral population was used for regeneration. The average values of FST were higher in Wallachian sheep (FST = 0.14) than in Sumava sheep (FST = 0.08). The linkage disequilibrium (LD) extension per autosome was higher in Wallachian than in Sumava sheep. Consequently, the Ne estimates five generations ago were 68 for Sumava versus 34 for Wallachian sheep. Both native Czech breeds exhibit a wide range of inbreeding based on the excess of homozygosity (FHOM) among individuals, from ?0.04 to 0.16 in Sumava and from ?0.13 to 0.12 in Wallachian. Average inbreeding based on runs of homozygosity was 0.21 in Sumava and 0.27 in Wallachian. Most detected runs of homozygosity (ROH) were less than 5 Mb long for both breeds. ROH segments longer than 15 Mb were absent in Wallachian sheep. Concerning putative selection signatures, a total of 471 candidate genes in Wallachian sheep within 11 hotspots and 653 genes within 13 hotspots in Sumava sheep were identified. Czech breeds appear to be well differentiated from each other and other European breeds. Their genetic diversity is low, especially in the case of the Wallachian breed. Sumava is not so threatened by low diversity but has a larger share of the non-native gene pool.  相似文献   

2.
The reproductive performance of ewes and the survivability of lambs to weaning have a critical economic impact on sheep farming worldwide. Further, knowledge of major mortality causes allows an opportunity for improved flock management to evade financial losses. The maximum likelihood estimates for generalised linear mixed models and chi-square test methods were used to examine 971 mating records, 839 and 763 lambs born and weaned (singles or twins) from the Naivasha Sheep and Goats station in Kenya for the years 2011 to 2020 consisting of Dorper, Red Maasai (RedM), and Merino breeds. The RedM (P < 0.05) outperformed Dorper and Merino in weaning rate, whereas reproductive performance between the three breeds was not significantly different (P > 0.05) in litter size and multiple lambings per ewe lambing. On the one hand, Dorper significantly (P < 0.05) outperformed the other two breeds only in weaning weight per lamb born. In addition, among all the major causes of death, pneumonia appeared to be the one to which Dorper breeds were most susceptible (chi-square test, P < 0.05). According to the findings of this study, neither the Dorper nor the Merino sheep breeds were reproductively superior to the RedM in an extensive semi-arid production environment. In addition, Dorper's susceptibility to the leading causes of mortality, particularly pneumonia and sheep pox, were relatively high compared to other breeds and could be a precursor to massive economic losses for Dorper sheep producers. In contrast to the indigenous RedM breed, imported sheep breeds appeared to be more susceptible to major mortality-related under an extensive production system. Therefore, regardless of weaning weight, RedM breed production appears to be a more viable investment for small-scale farmers, particularly in semi-arid regions.  相似文献   

3.
North European short-tailed breeds of sheep: a review   总被引:2,自引:0,他引:2  
The short-tailed sheep, native of an area stretching from Russia to Iceland, are generally considered a primitive type. These robust northern sheep seem to have been spread by Norse vikings to several countries in this area from the late eighth century to the middle of the eleventh century ad. They have several common characteristics in addition to the fluke-shaped and tapered short tail, such as a wide range of colour patterns, dual-coated wool and the ability to thrive under harsh environmental conditions, often in isolated marginal areas. While 34 short-tailed breeds of North European origin can still be identified, it is clear that their population sizes have declined in most cases and several of them are now rare and endangered. Although these breeds have mainly been confined to certain localities, some of them have gained considerable distribution due to their genetic merits, such as prolificacy. Of these, the Finnsheep and the Romanov are best known being exported to several countries in the world where their genetic material has been utilized through crossbreeding with local sheep. This has resulted in the production of some new synthetic breeds. Meat is now generally the main product of the North European short-tailed breeds and their crossbreds, whereas wool, skins and milk are normally regarded as byproducts, yet of considerable economic importance in some cases. Such breeds have clearly a role to play in sustainable grassland-based production systems in the future.  相似文献   

4.
5.
Knowledge of linkage disequilibrium (LD) is important for effective genome-wide association studies and accurate genomic prediction. Chinese Merino (Xinjiang type) is well-known fine wool sheep breed. However, the extent of LD across the genome remains unexplored. In this study, we calculated autosomal LD based on genome-wide SNPs of 635 Chinese Merino (Xinjiang type) sheep by Illumina Ovine SNP50 BeadChip. A moderate level of LD (r 2?≥?0.25) across the whole genome was observed at short distances of 0–10 kb. Further, the ancestral effective population size (N e ) was analyzed by extent of LD and found that N e increased with the increase of generations and declined rapidly within the most recent 50 generations, which is consistent with the history of Chinese Merino sheep breeding, initiated in 1971. We also noted that even when the effective population size was estimated across different single chromosomes, N e only ranged from 140.36 to 183.33 at five generations in the past, exhibiting a rapid decrease compared with that at ten generations in the past. These results indicated that the genetic diversity in Chinese Merino sheep recently decreased and proper protective measures should be taken to maintain the diversity. Our datasets provided essential genetic information to track molecular variations which potentially contribute to phenotypic variation in Chinese Merino sheep.  相似文献   

6.
A Spanish Merino sheep population is characterized, for the first time, according to its frequencies for a total of nine polymorphic loci: three blood group factor systems, A, B and C, and the following red cell or serum polymorphisms: haemoglobin (Hb), carbonic anhydrase (CA), 'X protein', transferrin (Tf), arylesterase (EsA) and albumin (Al). Another locus, amylase (Am), did not show polymorphism.  相似文献   

7.
Variation at 22 gene loci was investigated in a flock of Australian Merino sheep using restriction fragment length polymorphism (RFLP) analysis. Polymorphism was observed at 20 loci, including loci for wool keratin, hormone and immunoglobulin light chain genes. Eleven loci yielded unambiguous genotypes suitable for population data analysis. Average heterozygosity, determined from these and two monomorphic loci, was estimated as 0.107 (SE = 0.024). Average heterozygosity excluding all monomorphic data was estimated as 0–377 (SE = 0.031), which is comparable with human RFLP heterozygosities for loci chosen in the same way that we selected sheep loci.  相似文献   

8.
9.
With nine genetic markers of the blood, genetic distances between eight breeds of sheep was estimated after the method of Nei & Roychoudury (1972). The largest distance was found between Dorset Horn and Merino and the smallest between Navajo and Suffolk. Also the average proportion of polymorphic loci in the eight breeds of sheep was estimated. The results are discussed.  相似文献   

10.
The structure and the genetic diversity of the Churra, Lacha and Manchega sheep breeds have been analysed using hemotypes observed in eight loci. The three breeds are different in their hemotypes in terms both of quantity and quality. The proportions of unique hemotypes in Churra (60%), Lacha (61%) and Manchega (67%) revealed a high level of individual diversity within each breed. Racial genetic diversity follows the descending order of: Manchega-Lacha-Churra. The value of N:H (number of animals: total hemotypes) in the multi-racial population was 3.05.  相似文献   

11.
In developing countries, cross‐breeding between local breeds and indigene or exotic breeds represents one of the main threats to the livestock diversity, leading to genetic dilution and loss of unique allelic combination underlying essential local adaptive traits. In this study, two Algerian sheep breeds, known to be highly admixed, were considered as a case study, to demonstrate how combination of different methodologies coupled with the use of specific softwares can be efficient to assess the spatial structuration of a hybrid zone, even in a case of extreme admixture. A fine sampling covering distribution areas of both breeds was implemented in order to study the admixture area and adjacent zones from a phenotypic (i.e., 19 quantitative traits were considered) and a genetic point of view (i.e., 21 microsatellites markers were used). Both approaches gave concordant patterns, highlighting areas with sheep most differentiated (or less admixed) for each breed. In detail, the region of Biskra appeared as the most preserved for the Ouled‐Djellal breed and the northwest of Laghouat was identified as the most preserved area for the Rembi breed. The approach proposed in the study offers a low‐cost solution to identify the most representative flocks of a breed, allowing the implementation of efficient conservation plans.  相似文献   

12.
A quantitative trait loci (QTL) analysis of wool traits from experimental half-sib data of Merino sheep is presented. A total of 617 animals distributed in 10 families were genotyped for 36 microsatellite markers on four ovine chromosomes OAR1, OAR3, OAR4 and OAR11. The markers covering OAR3 and OAR11 were densely spaced, at an average distance of 2.8 and 1.2 cM, respectively. Body weight and wool traits were measured at first and second shearing. Analyses were conducted under three hypotheses: (i) a single QTL controlling a single trait (for multimarker regression models); (ii) two linked QTLs controlling a single trait (using maximum likelihood techniques) and (iii) a single QTL controlling more than one trait (also using maximum likelihood techniques). One QTL was identified for several wool traits on OAR1 (average curvature of fibre at first and second shearing, and clean wool yield measured at second shearing) and on OAR11 (weight and staple strength at first shearing, and coefficient of variation of fibre diameter at second shearing). In addition, one QTL was detected on OAR4 affecting weight measured at second shearing. The results of the single trait method and the two-QTL hypotheses showed an additional QTL segregating on OAR11 (for greasy fleece weight at first shearing and clean wool yield trait at second shearing). Pleiotropic QTLs (controlling more than one trait) were found on OAR1 (clean wool yield, average curvature of fibre, clean and greasy fleece weightand staple length, all measured at second shearing).  相似文献   

13.
The concentration of GSSG was determined in the erythrocytes of Merino sheep. These sheep were grouped according to erythrocyte potassium type, haemoglobin type, and GSH type. It was found that haemoglobin and potassium type were not correlated with GSSG concentration; however, GSSG concentration was found to be significantly correlated with GSH concentration. This relationship may explain previously reported differences in ATPase activity and may reflect further metabolic differences in the erythrocytes of GSH-high and GSH-low type Merino sheep.  相似文献   

14.
《Genomics》2019,111(6):1583-1589
Growth and fat deposition are important economic traits due to the influence on production in pigs. In this study, a dataset of 1200 pigs with 345,570 SNPs genotyped by sequencing (GBS) was used to conduct a GWAS with single-marker regression method to identify SNPs associated with body weight and backfat thickness (BFT) and to search for candidate genes in Landrace and Yorkshire pigs. A total of 27 and 13 significant SNPs were associated with body weight and BFT, respectively. In the region of 149.85–149.89 Mb on SSC6, the SNP (SSC6: 149876737) for body weight and the SNP (SSC6: 149876507) for BFT were in the same locus region (a gap of 230 bp). Two SNPs were located in the DOCK7 gene, which is a protein-coding gene that plays an important role in pigmentation. Two SNPs located on SSC8: 54567459 and SSC11: 33043081 were found to overlap weight and BFT; however, no candidate gene was found in these regions. In addition, based on other significant SNPs, two positional candidate genes, NSRP1 and CADPS, were proposed to influence weight. In conclusion, this is the first study report using GBS data to identify the significant SNPs for weight and BFT. A total of four particularly interesting SNPs and one potential candidate genes (DOCK7) were found for these traits in domestic pigs. This study improves our knowledge to better understand the complex genetic architecture of weight and BFT, but further validation studies of these candidate loci and genes are recommended in pigs  相似文献   

15.
16.

Background

From domestication to the current pattern of differentiation, domestic species have been influenced by reticulate evolution with multiple events of migration, introgression, and isolation; this has resulted in a very large number of breeds. In order to manage these breeds and their genetic diversity, one must know the current genetic structure of the populations and the relationships among these. This paper presents the results of a genetic diversity analysis on an almost exhaustive sample of the sheep breeds reared in France. Molecular characterization was performed with a set of 21 microsatellite markers on a collection of 49 breeds that include five breed types: meat, hardy meat, dairy, high prolificacy and patrimonial breeds.

Results

Values of expected heterozygosity ranged from 0.48 to 0.76 depending on the breed, with specialized meat breeds exhibiting the lowest values. Neighbor-Net, multidimensional analysis or clustering approaches revealed a clear differentiation of the meat breeds compared to the other breed types. Moreover, the group that clustered meat breeds included all the breeds that originated from the United Kingdom (UK) and those that originated from crossbreeding between UK breeds and French local breeds. We also highlighted old genetic introgression events that were related to the diffusion of Merino rams to improve wool production. As a result of these introgression events, especially that regarding the UK breeds, the breeds that were clustered in the ‘meat type cluster’ exhibited the lowest contribution to total diversity. That means that similar allelic combinations could be observed in different breeds of this group.

Conclusions

The genetic differentiation pattern of the sheep breeds reared in France results from a combination of factors, i.e. geographical origin, historic gene flow, and breed use. The Merino influence is weaker than that of UK breeds, which is consistent with how sheep use changed radically at the end of 19th century when wool-producing animals (Merino-like) were replaced by meat-producing breeds. These results are highly relevant to monitor and manage the genetic diversity of sheep and can be used to set priorities in conservation programs when needed.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-015-0131-7) contains supplementary material, which is available to authorized users.  相似文献   

17.
Genetic structure of European sheep breeds   总被引:5,自引:0,他引:5  
Large-scale evaluations of genetic diversity in domestic livestock populations are necessary so that region-specific conservation measures can be implemented. We performed the first such survey in European sheep by analysing 820 individuals from 29 geographically and phenotypically diverse breeds and a closely related wild species at 23 microsatellite loci. In contrast to most other domestic species, we found evidence of widespread heterozygote deficit within breeds, even after removing loci with potentially high frequency of null alleles. This is most likely due to subdivision among flocks (Wahlund effect) and use of a small number of rams for breeding. Levels of heterozygosity were slightly higher in southern than in northern breeds, consistent with declining diversity with distance from the Near Eastern centre of domestication. Our results highlight the importance of isolation in terms of both geography and management in augmenting genetic differentiation through genetic drift, with isolated northern European breeds showing the greatest divergence and hence being obvious targets for conservation. Finally, using a Bayesian cluster analysis, we uncovered evidence of admixture between breeds, which has important implications for breed management.  相似文献   

18.
Economically important reproduction traits in sheep, such as number of lambs weaned and litter size, are expressed only in females and later in life after most selection decisions are made, which makes them ideal candidates for genomic selection. Accurate genomic predictions would lead to greater genetic gain for these traits by enabling accurate selection of young rams with high genetic merit. The aim of this study was to design and evaluate the accuracy of a genomic prediction method for female reproduction in sheep using daughter trait deviations (DTD) for sires and ewe phenotypes (when individual ewes were genotyped) for three reproduction traits: number of lambs born (NLB), litter size (LSIZE) and number of lambs weaned. Genomic best linear unbiased prediction (GBLUP), BayesR and pedigree BLUP analyses of the three reproduction traits measured on 5340 sheep (4503 ewes and 837 sires) with real and imputed genotypes for 510 174 SNPs were performed. The prediction of breeding values using both sire and ewe trait records was validated in Merino sheep. Prediction accuracy was evaluated by across sire family and random cross‐validations. Accuracies of genomic estimated breeding values (GEBVs) were assessed as the mean Pearson correlation adjusted by the accuracy of the input phenotypes. The addition of sire DTD into the prediction analysis resulted in higher accuracies compared with using only ewe records in genomic predictions or pedigree BLUP. Using GBLUP, the average accuracy based on the combined records (ewes and sire DTD) was 0.43 across traits, but the accuracies varied by trait and type of cross‐validations. The accuracies of GEBVs from random cross‐validations (range 0.17–0.61) were higher than were those from sire family cross‐validations (range 0.00–0.51). The GEBV accuracies of 0.41–0.54 for NLB and LSIZE based on the combined records were amongst the highest in the study. Although BayesR was not significantly different from GBLUP in prediction accuracy, it identified several candidate genes which are known to be associated with NLB and LSIZE. The approach provides a way to make use of all data available in genomic prediction for traits that have limited recording.  相似文献   

19.
《Small Ruminant Research》2008,74(1-3):291-295
An investigation using random amplified polymorphic DNA (RAPD) markers was performed to determine the breed-specific primers and designate the RAPD fingerprints and genetic diversities of sheep breeds (Morkaraman, Akkaraman, Tuj and Hemshin) in northeastern Anatolia. The DNA samples were isolated from a total of 91 animals from four breeds, and 50 random primers were screened. Estimation of genetic relationships between the breeds revealed two clearly distinct groups of breeds: one consisted of the Morkaraman and Akkaraman breeds, and the other consisted of the Tuj and Hemshin breeds.  相似文献   

20.
Adiponectin is associated with obesity and insulin resistance. To date, there has been no genome-wide association study (GWAS) of adiponectin levels in Asians. Here we present a GWAS of a cohort of Korean volunteers. A total of 4,001 subjects were genotyped by using a genome-wide marker panel in a two-stage design (979 subjects initially and 3,022 in a second stage). Another 2,304 subjects were used for follow-up replication studies with selected markers. In the discovery phase, the top SNP associated with mean log adiponectin was rs3865188 in CDH13 on chromosome 16 (p = 1.69 × 10(-15) in the initial sample, p = 6.58 × 10(-39) in the second genome-wide sample, and p = 2.12 × 10(-32) in the replication sample). The meta-analysis p value for rs3865188 in all 6,305 individuals was 2.82 × 10(-83). The association of rs3865188 with high-molecular-weight adiponectin (p = 7.36 × 10(-58)) was even stronger in the third sample. A reporter assay that evaluated the effects of a CDH13 promoter SNP in complete linkage disequilibrium with rs3865188 revealed that the major allele increased expression 2.2-fold. This study clearly shows that genetic variants in CDH13 influence adiponectin levels in Korean adults.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号