首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dendritic stream networks are an intriguing subject for exploring the spatial and temporal variability of the rare and common bacterial biosphere, yet very few such studies have been conducted. We sampled riverine bacterioplankton at 13 sites in a subarctic riverine network across 3 years, with five sampling times each year. Ordinations showed a consistent pattern of downstream shift for both rare and abundant subcommunities. We also detected a temporal signal, with seasonal community shifts reflecting changes in water temperature and groundwater contribution, and an inter-annual pattern where the year 2018 differed from other years. Phylogenetic turnover of the rare subcommunity indicated homogeneous selection, whereas the abundant subcommunity was mainly stochastically structured. Transiently rare taxa were the dominant type of rarity with the highest proportion at the headwater regions. The bacterioplankton community was characterized by a small group of core taxa that occurred at most sites with little temporal variation, a very large number of permanently or transiently rare taxa, and taxa shifting through time between the rare and abundant biosphere. While this basic structure could have been detected with less extensive temporal replication, a comprehensive understanding of the rare biosphere in riverine bacterioplankton can only be achieved via inter-annual, spatially replicated sampling that covers the whole stream network.  相似文献   

2.
Revealing the biogeographies and ecologies of rare and abundant microorganisms is crucial to understand ecosystem diversity and function. In this study, we investigated the biogeographic assemblies and ecological diversity patterns of rare and abundant bacteria in long‐term oil‐contaminated soils at intervals of 46–360 km by performing high‐throughput sequencing of 16S rRNA genes. The results clearly revealed distinct distribution patterns for rare and abundant bacteria in soil samples. Rare taxa were unevenly distributed; however, abundant taxa were ubiquitous across all samples. Both rare and abundant subcommunities showed significant distance–decay relationships, and their assemblies were driven by different factors. The rare subcommunity primarily exhibited a spatially structured distribution (i.e., stochastic processes), while edaphic factors (i.e., deterministic processes) largely contributed to the structure of the abundant subcommunity. A network analysis revealed closer relationships between abundant bacteria and their heightened influence on other co‐occurrences in the community compared with rare species. In conclusion, rare microbial taxa may play potential roles in maintaining ecosystem diversity, although they do not appear to be central to microbial networks. Abundant microbes are vital for microbial co‐occurrences in oil‐contaminated soils, and high relative abundance and ubiquitous distribution suggest potential roles in the degradation of organic pollutants.  相似文献   

3.
Rare biosphere represents the majority of Earth's biodiversity and performs vital ecological functions, yet little is known about its biogeographical patterns and community assembly processes in terrestrial ecosystems. Herein, we investigated the community composition and phylogeny of rare (relative abundance <0.1%) and abundant (>1%) bacteria in dryland grassland soils on the Tibetan Plateau. Results revealed similar biogeographical patterns of rare and abundant bacteria at both compositional and phylogenetic levels, but rare subcommunity was more heavily influenced by stochasticity (72%) than the abundant (57%). The compositional variation of rare bacteria was less explained by environmental factors (41%) than that of the abundant (80%), while the phylogeny of rare bacteria (36%) was more explained than that of the abundant (29%). The phylogeny of rare bacteria was equally explained by local factors (soil and vegetation) and geospatial distance (11.5% and 11.9% respectively), while that of the abundant was more explained by geospatial distance (22.1%) than local factors (11.3%). Furthermore, a substantially tighter connection between the community phylogeny and composition was observed in rare (R2 = 0.65) than in abundant bacteria (R2 = 0.08). Our study provides novel insights into the assembly processes and biographical patterns of rare and abundant bacteria in dryland soils.  相似文献   

4.
5.
The protist assemblage in the central Arctic Ocean is scarcely surveyed despite them being the major primary producers. Elucidating their response to changing environmental variables requires an a priori analysis of their current diversity, including abundant and rare species. In late summer 2011, samples were collected during the ARK-XXVI/3 expedition (RV Polarstern) to study Arctic protist community structures, by implementation of automated ribosomal intergenic spacer analysis (ARISA) and 454-pyrosequencing. Protist assemblages were related to the hydrology and environmental variables (temperature, salinity, ice coverage, nitrate, phosphate, and silicate). The abundant (≥1 %) biosphere and rare (<1 %) biosphere were considered separately in the diversity analysis in order to reveal their mutual relationships. A relation between hydrology and protist community structure was highly supported by ARISA and partially by 454-pyrosequencing. Sea ice showed a stronger influence on the local community structure than nutrient availability, making statements on the water mass influence more difficult. Dinoflagellates (Syndiniales), chlorophytes (Micromonas spp.), and haptophytes (Phaeocystis spp.) were important contributors to the abundant biosphere, while other dinoflagellates and stramenopiles dominated the rare biosphere. No significant correlation was found between the abundant and rare biosphere. However, relative contributions of major taxonomic groups revealed an unexpected stable community structure within the rare biosphere, indicating a potential constant protist reservoir. This study provides a first molecular survey of protist diversity in the central Arctic Ocean, focusing on the diversity and distribution of abundant and rare protists according to the environmental conditions, and can serve as baseline for future analysis.  相似文献   

6.
Microbial communities have a key role in the physiology of the sponge host, and it is therefore essential to understand the stability and specificity of sponge–symbiont associations. Host-specific bacterial associations spanning large geographic distance are widely acknowledged in sponges. However, the full spectrum of specificity remains unclear. In particular, it is not known whether closely related sponges host similar or very different microbiota over wide bathymetric and geographic gradients, and whether specific associations extend to the rare members of the sponge microbiome. Using the ultra-deep Illumina sequencing technology, we conducted a comparison of sponge bacterial communities in seven closely related Hexadella species with a well-resolved host phylogeny, as well as of a distantly related sponge Mycale. These samples spanned unprecedentedly large bathymetric (15–960 m) gradients and varying European locations. In addition, this study included a bacterial community analysis of the local background seawater for both Mycale and the widespread deep-sea taxa Hexadella cf. dedritifera. We observed a striking diversity of microbes associated with the sponges, spanning 47 bacterial phyla. The data did not reveal any Hexadella microbiota co-speciation pattern, but confirmed sponge-specific and species-specific host–bacteria associations, even within extremely low abundant taxa. Oligotyping analysis also revealed differential enrichment preferences of closely related Nitrospira members in closely related sponges species. Overall, these results demonstrate highly diverse, remarkably specific and stable sponge–bacteria associations that extend to members of the rare biosphere at a very fine phylogenetic scale, over significant geographic and bathymetric gradients.  相似文献   

7.
Soil bacterial communities play fundamental roles in ecosystem functioning and often display a skewed distribution of abundant and rare taxa. So far, relatively little is known about the biogeographical patterns and mechanisms structuring the assembly of abundant and rare biospheres of soil bacterial communities. Here, we studied the geographical distribution of different bacterial sub-communities by examining the relative influence of environmental selection and dispersal limitation on taxa distributions in paddy soils across East Asia. Our results indicated that the geographical patterns of four different bacterial sub-communities consistently displayed significant distance–decay relationships (DDRs). In addition, we found niche breadth and dispersal rates to significantly explain differences in community assembly of abundant and rare taxa, directly affecting the strength of DDRs. While conditionally rare and abundant taxa displayed the strongest DDR due to higher environmental filtering and dispersal limitation, moderate taxa sub-communities had the weakest DDR due to greater environmental tolerance and dispersal rate. Random forest models indicated that soil pH (9.13%–49.78%) and average annual air temperature (16.59%–46.49%) were the most important predictors of the variation in the bacterial community. This study advances our understanding of the intrinsic links between fundamental ecological processes and microbial biogeographical patterns in paddy soils.  相似文献   

8.
Soil bacterial communities typically exhibit a distribution pattern in which most bacterial species are present in low abundance. Due to the relatively small size of most culture-independent sequencing surveys, a detailed phylogenetic analysis of rare members of the community is lacking. To gain access to the rarely sampled soil biosphere, we analyzed a data set of 13,001 near-full-length 16S rRNA gene clones derived from an undisturbed tall grass prairie soil in central Oklahoma. Rare members of the soil bacterial community (empirically defined at two different abundance cutoffs) represented 18.1 to 37.1% of the total number of clones in the data set and were, on average, less similar to their closest relatives in public databases when compared to more abundant members of the community. Detailed phylogenetic analyses indicated that members of the soil rare biosphere either belonged to novel bacterial lineages (members of five novel bacterial phyla identified in the data set, as well as members of multiple novel lineages within previously described phyla or candidate phyla), to lineages that are prevalent in other environments but rarely encountered in soil, or were close relatives to more abundant taxa in the data set. While a fraction of the rare community was closely related to more abundant taxonomic groups in the data set, a significant portion of the rare biosphere represented evolutionarily distinct lineages at various taxonomic cutoffs. We reason that these novelty and uniqueness patterns provide clues regarding the origins and potential ecological roles of members of the soil's rare biosphere.  相似文献   

9.
The taxa–area relationship (TAR) and the distance–decay relationship (DDR) both describe spatial turnover of taxa and are central patterns of biodiversity. Here, we compared TAR and DDR of bacterial communities across different marine realms and ecosystems at the global scale. To obtain reliable global estimates for both relationships, we quantified the poorly assessed effects of sequencing depth, rare taxa removal and number of sampling sites. Slope coefficients of bacterial TARs were within the range of those of plants and animals, whereas slope coefficients of bacterial DDR were much lower. Slope coefficients were mostly affected by removing rare taxa and by the number of sampling sites considered in the calculations. TAR and DDR slope coefficients were overestimated at sequencing depth <4000 sequences per sample. Noticeably, bacterial TAR and DDR patterns did not correlate with each other both within and across ecosystem types, suggesting that (i) TAR cannot be directly derived from DDR and (ii) TAR and DDR may be influenced by different ecological factors. Nevertheless, we found marine bacterial TAR and DDR to be steeper in ecosystems associated with high environmental heterogeneity or spatial isolation, namely marine sediments and coastal environments compared with pelagic ecosystems. Hence, our study provides information on macroecological patterns of marine bacteria, as well as methodological and conceptual insights, at a time when biodiversity surveys increasingly make use of high‐throughput sequencing technologies.  相似文献   

10.
Local, regional and global influences on the patterns of parasite species richness of 39 freshwater fish species from Central Europe were investigated. Host local abundance and host occurrence were considered respectively as local and regional factors, while host geographical range in longitude and latitude was considered as a global factor. Influences of size, ecology and behavior of hosts were also included in a comparative analysis using the independent contrasts method. We considered host habitat, host diet, host shoaling behavior and mobility. We found a positive relationship between local occurrence of fish and global range of their distribution. We confirmed previous findings showing the importance of host behavior and ecology on the variability of parasite species richness. Second, we showed how a global pattern, such as host geographical range, may affect the variability in parasite species richness through its effects on local abundance and distribution of hosts. A negative relationship between endoparasite species richness and host longitudinal range was found. This suggests that fish with eastern distribution live in the boundary of their distribution in Central Europe far from their center of distribution, which should also be characterized by a higher diversity of parasites.  相似文献   

11.
Evidence suggests that microbial communities show patterns of spatial scaling which can be driven by geographical distance and environmental heterogeneity. Here we demonstrate that human management can have a major impact on microbial distribution patterns at both the local and landscape scale. Mycorrhizal fungi are vital components of terrestrial ecosystems, forming a mutualistic symbiosis with plant roots which has a major impact on above ground ecology and productivity. We used contrasting agricultural systems to investigate the spatial scaling of the most widespread mycorrhizal fungus group, the arbuscular mycorrhizal fungi (AMF). Using multiple sampling sites with a maximum separation of 250 km we describe for the first time the roles which land management, environmental heterogeneity and geographical distance play in determining spatial patterns of microbial distribution. Analysis of AMF taxa–area relationships at each sampling site revealed that AMF diversity and spatial turnover was greater under organic relative to conventional farm management. At the regional scale (250 km) distance–decay analyses showed that there was significant change in AMF community composition with distance, and that this was greater under organic relative to conventional management. Environmental heterogeneity was found to be the major factor determining turnover of AMF taxa at the landscape scale. Overall we demonstrate that human management can play a key role in determining the turnover of microbial communities at both the local and regional scales.  相似文献   

12.
Coastal sands filter and accumulate organic and inorganic materials from the terrestrial and marine environment, and thus provide a high diversity of microbial niches. Sands of temperate climate zones represent a temporally and spatially highly dynamic marine environment characterized by strong physical mixing and seasonal variation. Yet little is known about the temporal fluctuations of resident and rare members of bacterial communities in this environment. By combining community fingerprinting via pyrosequencing of ribosomal genes with the characterization of multiple environmental parameters, we disentangled the effects of seasonality, environmental heterogeneity, sediment depth and biogeochemical gradients on the fluctuations of bacterial communities of marine sands. Surprisingly, only 3–5% of all bacterial types of a given depth zone were present at all times, but 50–80% of them belonged to the most abundant types in the data set. About 60–70% of the bacterial types consisted of tag sequences occurring only once over a period of 1 year. Most members of the rare biosphere did not become abundant at any time or at any sediment depth, but varied significantly with environmental parameters associated with nutritional stress. Despite the large proportion and turnover of rare organisms, the overall community patterns were driven by deterministic relationships associated with seasonal fluctuations in key biogeochemical parameters related to primary productivity. The maintenance of major biogeochemical functions throughout the observation period suggests that the small proportion of resident bacterial types in sands perform the key biogeochemical processes, with minimal effects from the rare fraction of the communities.  相似文献   

13.
Lepidopterists have long acknowledged that many uncommon butterfly species can be extremely abundant in suitable locations. If this is generally true, it contradicts the general macroecological pattern of the positive interspecific relationship between abundance and distribution, i.e. locally abundant species are often geographically more widespread than locally rare species. Indeed, a negative abundance–distribution relationship has been documented for butterflies in Finland. Here we show, using the Finnish butterflies as an example, that a positive abundance–distribution relationship results if the geographically restricted species are missed, as may be the case in studies based on random or restricted sampling protocols, or in studies that are conducted over small spatial scales. In our case, the abundance–distribution relationship becomes negative when approximately 70 per cent of the species are included. This observation suggests that the abundance–distribution relationship may in fact not be linear over the entire range of distributions. This intriguing possibility combined with some taxonomic biases in the literature may undermine the generalization that for a given taxonomic assemblage there is a positive interspecific relationship between local abundance and regional distribution.  相似文献   

14.
Aerobic anoxygenic phototrophic (AAP) bacteria are photoheterotrophic microbes that are found in a broad range of aquatic environments. Although potentially significant to the microbial ecology and biogeochemistry of marine ecosystems, their abundance and genetic diversity and the environmental variables that regulate these properties are poorly understood. Using samples along nearshore/offshore transects from five disparate islands in the Pacific Ocean (Oahu, Molokai, Futuna, Aniwa, and Lord Howe) and off California, we show that AAP bacteria, as quantified by the pufM gene biomarker, are most abundant near shore and in areas with high chlorophyll or Synechococcus abundance. These AAP bacterial populations are genetically diverse, with most members belonging to the alpha- or gammaproteobacterial groups and with subclades that are associated with specific environmental variables. The genetic diversity of AAP bacteria is structured along the nearshore/offshore transects in relation to environmental variables, and uncultured pufM gene libraries suggest that nearshore communities are distinct from those offshore. AAP bacterial communities are also genetically distinct between islands, such that the stations that are most distantly separated are the most genetically distinct. Together, these results demonstrate that environmental variables regulate both the abundance and diversity of AAP bacteria but that endemism may also be a contributing factor in structuring these communities.  相似文献   

15.
Finlay BJ  Monaghan EB  Maberly SC 《Protist》2002,153(3):261-273
We have analysed the geographical records of a representative selection of extant diatom species from a freshwater pond. The more often a species is recorded in the ecological literature, the greater is its apparent global distribution. One explanation is that the frequently recorded species are globally abundant, whereas species that are infrequently recorded are globally rare. We suggest a model in which random dispersal is the dominant force driving large-scale distribution of species, with the rate and scale of dispersal largely determined by global population size. Thus species that are locally rare or abundant are likewise rare or abundant worldwide. It is predicted that many of the rarer diatom species will, with additional sampling effort, be shown to have wide geographical distribution, but this requires intensive studies focused on revealing species that are normally cryptic. The argument in favour of endemic diatom species is untenable, because it is not possible to disprove their existence elsewhere in the biosphere.  相似文献   

16.
Winogradsky columns are model microbial ecosystems prepared by adding pond sediment to a clear cylinder with additional supplements and incubated with light. Environmental gradients develop within the column creating diverse niches that allow enrichment of specific bacteria. The enrichment culture can be used to study soil and sediment microbial community structure and function. In this study we used a 16S rRNA gene survey to characterize the microbial community dynamics during Winogradsky column development to determine the rate and extent of change from the source sediment community. Over a period of 60 days, the microbial community changed from the founding pond sediment population: Cyanobacteria, Chloroflexi, Nitrospirae, and Planctomycetes increased in relative abundance over time, while most Proteobacteria decreased in relative abundance. A unique, light-dependent surface biofilm community formed by 60 days that was less diverse and dominated by a few highly abundant bacteria. 67–72% of the surface community was comprised of highly enriched taxa that were rare in the source pond sediment, including the Cyanobacteria Anabaena, a member of the Gemmatimonadetes phylum, and a member of the Chloroflexi class Anaerolinea. This indicates that rare taxa can become abundant under appropriate environmental conditions and supports the hypothesis that rare taxa serve as a microbial seed bank. We also present preliminary findings that suggest that bacteriophages may be active in the Winogradsky community. The dynamics of certain taxa, most notably the Cyanobacteria, showed a bloom-and-decline pattern, consistent with bacteriophage predation as predicted in the kill-the-winner hypothesis. Time-lapse photography also supported the possibility of bacteriophage activity, revealing a pattern of colony clearance similar to formation of viral plaques. The Winogradsky column, a technique developed early in the history of microbial ecology to enrich soil microbes, may therefore be a useful model system to investigate both microbial and viral ecology.  相似文献   

17.
We used a partial 16S rRNA sequencing approach to compare the structure and composition of the bacterial communities in three large, deep subalpine lakes in France with those of communities in six shallow tropical reservoirs in Burkina Faso. Despite the very different characteristics of these ecosystems, we found that their bacterial communities share the same composition in regard to the relative proportions of the different phyla, suggesting that freshwater environmental conditions lead to convergence in this composition. In the same way, we found no significant difference in the richness and diversity of the bacterial communities in France and Burkina Faso. We defined core and satellite operational taxonomic units (OTUs) (sequences sharing at least 98% identity) on the basis of their abundance and their geographical distribution. The core OTUs were found either ubiquitously or only in temperate or tropical and subtropical areas, and they contained more than 70% of all the sequences retrieved in this study. In contrast, satellite OTUs were characterized by having a more restricted geographical distribution and by lower abundance. Finally, the bacterial community composition of these freshwater ecosystems in France and Burkina Faso was markedly different, showing that the history of these ecosystems and regional environmental parameters have a greater impact on the relative abundances of the different OTUs in each bacterial community than the local environmental conditions.  相似文献   

18.
Diatom blooms can significantly influence the dynamics of microbial communities, yet little is known about the interaction and assembly mechanisms of abundant and rare taxa during bloom process. Here, using 16S rRNA gene amplicon sequencing, we investigated the co-occurrence patterns and assembly processes of abundant and rare microbial communities during an early spring diatom bloom in Xiangshan bay. Our results showed that α-diversity indices in the rare subcommunity (RS) were significantly higher than those in the abundant and common subcommunities. β-Diversity of the RS was the highest among three subcommunities, and the variation of β-diversity in the three subcommunities was mainly induced by species turnover, which was also the highest in the RS. The assembly of microbial communities was mainly driven by the neutral processes, but the roles of neutral processes might differ in each subcommunity. Co-occurrence network analysis revealed that abundant and common operational taxonomic units were more often located in central positions within the network. Most of the modules in the network were specific to a particular bloom stage, owing to the succession of Skeletonema costatum. Overall, these findings expand current understanding of the microbial interaction and assembly mechanisms in marine environment suffering harmful algal bloom disturbance.  相似文献   

19.
Patterns of species’ abundance and occurrence over time and space allow division of species into (i) common species, which are abundant, but have a low diversity, and (ii) rare species, which are far more diverse and less abundant. Understanding the relationships among these two species groups and how they are affected by environmental conditions is a major challenge for ecologists, especially considering the distinction between local environmental factors and regional factors and variations in abundance over the course of the year. In this study, we focused on the long-term relationship between the abundance of rare and common ephemeropterans and abiotic factors on local and regional scales. Our hypotheses are that common species will be affected primarily by regional environmental variables (i), whereas rare species will be influenced more by temporal variation (ii). Together, both local and regional abiotic variables, plus temporal variation, best explained the abundance of the common species, whereas temporal variation was the best predictor of rare species. Considering the theoretical aspects and the empirical evidence, we discuss the results based on the plasticity of the common species and the life cycle of the rare ones. We believe that our findings reinforce the need for the deconstruction of communities for a deeper understanding of their relationships with abiotic variables and, in particular, the specific aspects of these relationships in the context of the different guilds of the community.  相似文献   

20.
Although epipelic diatoms play a key role in primary production of many ecosystems, many aspects of their biodiversity, ecology and geographical distribution are poorly understood. The present study is based on sampling of 45 man-made fishponds in the Czech Republic covering an environmental gradient from oligo/dystrophic highland ponds within protected areas to the eutrophic/hypertrophic lowland ponds used for intensive fish production. Diatom distribution patterns assessed using biomass and species composition variables were assessed along environmental and geographical gradients. In total, 185 epipelic diatom taxa were found in the investigated samples. The differences in species composition between sites were correlated with environmental parameters, but not with the geographic distance of the localities. This pattern might suggest that niche-based control, rather than the effect of dispersal limitation, is the main driving force in the species composition of epipelic diatoms in fishponds. The alpha-diversity of sites correlated with altitude, nitrogen and chlorophyll a concentrations but did not correlate with the area of the ponds. The significant relationships between local abundance of species and their regional occupancy were very similar to previous studies of diatoms in boreal streams. In addition, these data concur with patterns known for multicellular organisms suggesting that in this respect diatoms may not differ from groups of organisms with larger body sizes. Handling editor: J. Padisak  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号