共查询到20条相似文献,搜索用时 15 毫秒
1.
Jonathan P. Belman Rachel R. Bian Estifanos N. Habtemichael Don T. Li Michael J. Jurczak Abel Alcázar-Román Leah J. McNally Gerald I. Shulman Jonathan S. Bogan 《The Journal of biological chemistry》2015,290(7):4447-4463
Insulin causes the exocytic translocation of GLUT4 glucose transporters to stimulate glucose uptake in fat and muscle. Previous results support a model in which TUG traps GLUT4 in intracellular, insulin-responsive vesicles termed GLUT4 storage vesicles (GSVs). Insulin triggers TUG cleavage to release the GSVs; GLUT4 then recycles through endosomes during ongoing insulin exposure. The TUG C terminus binds a GSV anchoring site comprising Golgin-160 and possibly other proteins. Here, we report that the TUG C terminus is acetylated. The TUG C-terminal peptide bound the Golgin-160-associated protein, ACBD3 (acyl-CoA-binding domain-containing 3), and acetylation reduced binding of TUG to ACBD3 but not to Golgin-160. Mutation of the acetylated residues impaired insulin-responsive GLUT4 trafficking in 3T3-L1 adipocytes. ACBD3 overexpression enhanced the translocation of GSV cargos, GLUT4 and insulin-regulated aminopeptidase (IRAP), and ACBD3 was required for intracellular retention of these cargos in unstimulated cells. Sirtuin 2 (SIRT2), a NAD+-dependent deacetylase, bound TUG and deacetylated the TUG peptide. SIRT2 overexpression reduced TUG acetylation and redistributed GLUT4 and IRAP to the plasma membrane in 3T3-L1 adipocytes. Mutation of the acetylated residues in TUG abrogated these effects. In mice, SIRT2 deletion increased TUG acetylation and proteolytic processing. During glucose tolerance tests, glucose disposal was enhanced in SIRT2 knock-out mice, compared with wild type controls, without any effect on insulin concentrations. Together, these data support a model in which TUG acetylation modulates its interaction with Golgi matrix proteins and is regulated by SIRT2. Moreover, acetylation of TUG enhances its function to trap GSVs within unstimulated cells and enhances insulin-stimulated glucose uptake. 相似文献
2.
Characterization of Enterocoliticin, a Phage Tail-Like Bacteriocin, and Its Effect on Pathogenic Yersinia enterocolitica Strains 下载免费PDF全文
Eckhard Strauch Heike Kaspar Christoph Schaudinn Petra Dersch Kazimierz Madela Christina Gewinner Stefan Hertwig Jrg Wecke Bernd Appel 《Applied microbiology》2001,67(12):5634-5642
Yersinia enterocolitica 29930 (biogroup 1A; serogroup O:7,8) produces a bacteriocin, designated enterocoliticin, that shows inhibitory activity against enteropathogenic strains of Y. enterocolitica belonging to serogroups O:3, O:5,27 and O:9. Enterocoliticin was purified, and electron micrographs of enterocoliticin preparations revealed the presence of phage tail-like particles. The particles did not contain nucleic acids and showed contraction upon contact with susceptible bacteria. Enterocoliticin addition to logarithmic-phase cultures of susceptible bacterial strains led to a rapid dose-dependent reduction in CFU. Calorimetric measurements of the heat output of cultures of sensitive bacteria showed a complete loss of cellular metabolic activity immediately upon addition of enterocoliticin. Furthermore, a dose-dependent efflux of K+ ions into the medium was determined, indicating that enterocoliticin has channel-forming activity. 相似文献
3.
4.
The Fibronectin Type 3-Like Repeat from the Clostridium thermocellum Cellobiohydrolase CbhA Promotes Hydrolysis of Cellulose by Modifying Its Surface 总被引:1,自引:0,他引:1 下载免费PDF全文
Irina A. Kataeva Ronald D. Seidel III Ashit Shah Larry T. West Xin-Liang Li Lars G. Ljungdahl 《Applied microbiology》2002,68(9):4292-4300
Fibronectin type 3 homology domains (Fn3) as found in the cellobiohydrolase CbhA of Clostridium thermocellum are common among bacterial extracellular glycohydrolases. The function of these domains is not clear. CbhA is modular and composed of an N-terminal family IV carbohydrate-binding domain (CBDIV), an immunoglobulin-like domain, a family 9 glycosyl hydrolase catalytic domain (Gh9), two Fn3-like domains (Fn31,2), a family III carbohydrate-binding domain (CBDIII), and a dockerin domain. Efficiency of cellulose hydrolysis by truncated forms of CbhA increased in the following order: Gh9 (lowest efficiency), Gh9-Fn31,2 (more efficient), and Gh9-Fn31,2-CBDIII (greatest efficiency). Thermostability of the above constructs decreased in the following order: Gh9 (most stable), Gh9-Fn31,2, and then Gh9-Fn31,2-CBDIII (least stable). Mixing of Orpinomyces endoglucanase CelE with Fn31,2, or Fn31,2-CBDIII increased efficiency of hydrolysis of acid-swollen cellulose (ASC) and filter paper. Scanning electron microscopic studies of filter paper treated with Fn31,2, Fn31,2-CBDIII, or CBDIII showed that the surface of the cellulose fibers had been loosened up and crenellated by Fn31,2 and Fn31,2-CBDIII and to a lesser extent by CBDIII. X-ray diffraction analysis did not reveal changes in the crystallinity of the filter paper. CBDIII bound to ASC and filter paper with capacities of 2.45 and 0.73 μmoles g−1 and relative affinities (Kr) of 1.12 and 2.13 liters g−1, respectively. Fn31,2 bound weakly to both celluloses. Fn31,2-CBD bound to ASC and filter paper with capacities of 3.22 and 0.81 μmoles g−1 and Krs of 1.14 and 1.98 liters g−1, respectively. Fn31,2 and CBDIII contained 2 and 1 mol of calcium per mol, respectively. The results suggest that Fn31,2 aids the hydrolysis of cellulose by modifying its surface. This effect is enhanced by the presence of CBDIII, which increases the concentration of Fn31,2 on the cellulose surface. 相似文献
5.
Jennifer L. Larson-Casey Shubha Murthy Alan J. Ryan A. Brent Carter 《The Journal of biological chemistry》2014,289(52):36204-36219
Protein kinase B (Akt) is a key effector of multiple cellular processes, including cell survival. Akt, a serine/threonine kinase, is known to increase cell survival by regulation of the intrinsic pathway for apoptosis. In this study, we found that Akt modulated the mevalonate pathway, which is also linked to cell survival, by increasing Rho GTPase activation. Akt modulated the pathway by phosphorylating mevalonate diphosphate decarboxylase (MDD) at Ser96. This phosphorylation in macrophages increased activation of Rac1, which enhanced macrophage survival because mutation of MDD (MDDS96A) induced apoptosis. Akt-mediated activation in macrophages was specific for Rac1 because Akt did not increase activity of other Rho GTP-binding proteins. The relationship between Akt and Rac1 was biologically relevant because Akt+/− mice had significantly less active Rac1 in alveolar macrophages, and macrophages from Akt+/− mice had an increase in active caspase-9 and -3. More importantly, Akt+/− mice were significantly protected from the development of pulmonary fibrosis, suggesting that macrophage survival is associated with the fibrotic phenotype. These observations for the first time suggest that Akt plays a critical role in the development and progression of pulmonary fibrosis by enhancing macrophage survival via modulation of the mevalonate pathway. 相似文献
6.
7.
Trine Eker Christoffersen Lene Therese Olsen Hult Katarzyna Kuczkowska Kim Marius Moe Siv Skeie Tor Lea Charlotte Ramstad Kleiveland 《Probiotics and antimicrobial proteins》2014,6(1):1-10
Macrophages are important with respect to both innate and adaptive immune responses and are known to differentiate into pro-inflammatory M1- or anti-inflammatory M2-phenotypes following activation. In order to study how different bacteria affect macrophage polarization, we exposed murine RAW 264.7 macrophages to sixteen different strains representing probiotic strains, pathogens, commensals and strains of food origin. Increased inducible nitric oxide synthase (iNOS) or arginase-1 gene expression indicates M1 or M2 polarization, respectively, and was quantified by qRT-PCR. Strains of Escherichia and Salmonella elevated iNOS expression more so than strains of Enterococcus, Lactobacillus and Lactococcus, indicating that Gram-negative strains are more potent M1 inducers. However, strain-specific responses were observed. For instance, Escherichia coli Nissle 1917 was a poor inducer of iNOS gene expression compared to the other E. coli strains, while Enterococcus faecalis Symbioflor-1 was more potent in this respect compared to all the eleven Gram-positive strains tested. Macrophage polarization was further characterized by quantifying secreted pro- and anti-inflammatory cytokines. Exposure to the pathogen E. coli 042 produced a cytokine profile indicating M1 differentiation, which is in accordance with the PCR data. However, exposure to most strains resulted in either high or low secretion levels of all cytokines tested, rather than a clear M1 or M2 profile. In general, the Gram-negative strains induced high levels of cytokine secretion compared to the Gram-positive strains. Interestingly, strains of human origin had a higher impact on macrophages compared to strains of food origin. 相似文献
8.
Sa?d Taouji Arisa Higa Frédéric Delom Sandrine Palcy Fran?ois-Xavier Mahon Jean-Max Pasquet Roger Bossé Bruno Ségui Eric Chevet 《The Journal of biological chemistry》2013,288(24):17190-17201
In BCR-ABL-expressing cells, sphingolipid metabolism is altered. Because the first step of sphingolipid biosynthesis occurs in the endoplasmic reticulum (ER), our objective was to identify ABL targets in the ER. A phosphoproteomic analysis of canine pancreatic ER microsomes identified 49 high scoring phosphotyrosine-containing peptides. These were then categorized in silico and validated in vitro. We demonstrated that the ER-resident human protein serine palmitoyltransferase long chain-1 (SPTLC1), which is the first enzyme of sphingolipid biosynthesis, is phosphorylated at Tyr164 by the tyrosine kinase ABL. Inhibition of BCR-ABL using either imatinib or shRNA-mediated silencing led to the activation of SPTLC1 and to increased apoptosis in both K562 and LAMA-84 cells. Finally, we demonstrated that mutation of Tyr164 to Phe in SPTLC1 increased serine palmitoyltransferase activity. The Y164F mutation also promoted the remodeling of cellular sphingolipid content, thereby sensitizing K562 cells to apoptosis. Our observations provide a mechanistic explanation for imatinib-mediated cell death and a novel avenue for therapeutic strategies. 相似文献
9.
Autophagy has emerged as an important antimicrobial host defense mechanism that not only orchestrates the systemic immune response, but also functions in a cell autonomous manner to directly eliminate invading pathogens. Pathogenic bacteria such as Salmonella have evolved adaptations to protect themselves from autophagic elimination. Here we show that signaling through the non-receptor tyrosine kinase focal adhesion kinase (FAK) is actively manipulated by the Salmonella SPI-2 system in macrophages to promote intracellular survival. In wild-type macrophages, FAK is recruited to the surface of the Salmonella-containing vacuole (SCV), leading to amplified signaling through the Akt-mTOR axis and inhibition of the autophagic response. In FAK-deficient macrophages, Akt/mTOR signaling is attenuated and autophagic capture of intracellular bacteria is enhanced, resulting in reduced bacterial survival. We further demonstrate that enhanced autophagy in FAK−/− macrophages requires the activity of Atg5 and ULK1 in a process that is distinct from LC3-assisted phagocytosis (LAP). In vivo, selective knockout of FAK in macrophages resulted in more rapid clearance of bacteria from tissues after oral infection with S. typhimurium. Clearance was correlated with reduced infiltration of inflammatory cell types into infected tissues and reduced tissue damage. Together, these data demonstrate that FAK is specifically targeted by S. typhimurium as a novel means of suppressing autophagy in macrophages, thereby enhancing their intracellular survival. 相似文献
10.
Arielle M. Bryan Amir M. Farnoud Visesato Mor Maurizio Del Poeta 《Journal of visualized experiments : JoVE》2014,(94)
Cryptococcosis is a life-threatening infection caused by pathogenic fungi of the genus Cryptococcus. Infection occurs upon inhalation of spores, which are able to replicate in the deep lung. Phagocytosis of Cryptococcus by macrophages is one of the ways that the disease is able to spread into the central nervous system to cause lethal meningoencephalitis. Therefore, study of the association between Cryptococcus and macrophages is important to understanding the progression of the infection. The present study describes a step-by-step protocol to study macrophage infectivity by C. neoformansin vitro. Using this protocol, the role of host sterols on host-pathogen interactions is studied. Different concentrations of methyl--cyclodextrin (MCD) were used to deplete cholesterol from murine reticulum sarcoma macrophage-like cell line J774A.1. Cholesterol depletion was confirmed and quantified using both a commercially available cholesterol quantification kit and thin layer chromatography. Cholesterol depleted cells were activated using Lipopolysacharide (LPS) and Interferon gamma (IFNγ) and infected with antibody-opsonized Cryptococcus neoformans wild-type H99 cells at an effector-to-target ratio of 1:1. Infected cells were monitored after 2 hr of incubation with C. neoformans and their phagocytic index was calculated. Cholesterol depletion resulted in a significant reduction in the phagocytic index. The presented protocols offer a convenient method to mimic the initiation of the infection process in a laboratory environment and study the role of host lipid composition on infectivity. 相似文献
11.
Production of hydrogen and organic compounds by an electrosynthetic microbiome using electrodes and carbon dioxide as sole electron donor and carbon source, respectively, was examined after exposure to acidic pH (∼5). Hydrogen production by biocathodes poised at −600 mV vs. SHE increased>100-fold and acetate production ceased at acidic pH, but ∼5–15 mM (catholyte volume)/day acetate and>1,000 mM/day hydrogen were attained at pH ∼6.5 following repeated exposure to acidic pH. Cyclic voltammetry revealed a 250 mV decrease in hydrogen overpotential and a maximum current density of 12.2 mA/cm2 at −765 mV (0.065 mA/cm2 sterile control at −800 mV) by the Acetobacterium-dominated community. Supplying −800 mV to the microbiome after repeated exposure to acidic pH resulted in up to 2.6 kg/m3/day hydrogen (≈2.6 gallons gasoline equivalent), 0.7 kg/m3/day formate, and 3.1 kg/m3/day acetate ( = 4.7 kg CO2 captured). 相似文献
12.
《Bioscience, biotechnology, and biochemistry》2013,77(4):866-873
Lactobacillus casei I-5 isolated from an alcohol fermentation broth enhanced immunity and prevented pathogenic infection as a probiotic. Mice fed with I-5 cells for 11 days prior to an intraperitoneal challenge with pathogenic Escherichia coli Juhl exhibited a high survival rate compared with the control group. Rats fed with I-5 cells for 10 days significantly increased the phagocytosis of peritoneal macrophages. In a cell culture system employing peritoneal macrophages from rats, the I-5 administration activated NF-κB stimulated by LPS. It also enhanced LPS-stimulated IL-12 and TNF-α production, but not IL-6 production. These results show that L. casei I-5 effectively prevented infection by pathogenic E. coli possibly through the activation of peritoneal macrophages. The strain would be useful to prevent pathogenic microbial infections in humans and farm animals. 相似文献
13.
14.
The characteristics of acidic polysaccharides extracted from Daucus carota L. var. sativa Hoffm were investigated and its hepatoprotective effects on alcoholic liver injury were determined in the mice model. A carrot polysaccharide (CPS-I: Carrot polysaccharide-I) with the molecular weight of 3.40×104 kDa was isolated from Daucus carota L. and purified by diethylaminoethyl-52 and Sephadex G-150 column chromatography. The components were analyzed by HPLC, which revealed that CPS-I consisted of galacturonic acid, rhamnose, xylose, arabinose, fructose, and galactose at a relative ratio of 1 : 3.16 : 1.13 : 5.53 : 3.45 : 7.76. Structural characterization analysis suggested that CPS-I was mainly composed of →6)-β-D-Galp-(1→ and →5)-α-L-Araf-(1→. The hepatoprotective effect of CPS-I was evaluated by alcoholic liver injury mice model. The results showed that the administration of CPS-I (300 mg/kg/day) alleviated the alcoholic liver injury in mice by increasing the levels of ADH and ALDH and reducing oxidative stress. CPS-I ameliorated the pathological changes of liver characterized by lipid accumulation, and reduced the number of lipid droplets. 相似文献
15.
Hadar Feinberg Sabine A. F. Jégouzo Thomas J. W. Rowntree Yue Guan Matthew A. Brash Maureen E. Taylor William I. Weis Kurt Drickamer 《The Journal of biological chemistry》2013,288(40):28457-28465
Binding of the macrophage lectin mincle to trehalose dimycolate, a key glycolipid virulence factor on the surface of Mycobacterium tuberculosis and Mycobacterium bovis, initiates responses that can lead both to toxicity and to protection of these pathogens from destruction. Crystallographic structural analysis, site-directed mutagenesis, and binding studies with glycolipid mimics have been used to define an extended binding site in the C-type carbohydrate recognition domain (CRD) of bovine mincle that encompasses both the headgroup and a portion of the attached acyl chains. One glucose residue of the trehalose Glcα1–1Glcα headgroup is liganded to a Ca2+ in a manner common to many C-type CRDs, whereas the second glucose residue is accommodated in a novel secondary binding site. The additional contacts in the secondary site lead to a 36-fold higher affinity for trehalose compared with glucose. An adjacent hydrophobic groove, not seen in other C-type CRDs, provides a docking site for one of the acyl chains attached to the trehalose, which can be targeted with small molecule analogs of trehalose dimycolate that bind with 52-fold higher affinity than trehalose. The data demonstrate how mincle bridges between the surfaces of the macrophage and the mycobacterium and suggest the possibility of disrupting this interaction. In addition, the results may provide a basis for design of adjuvants that mimic the ability of mycobacteria to stimulate a response to immunization that can be employed in vaccine development. 相似文献
16.
Bruna Barneda-Zahonero Alfredo Mi?ano-Molina Nahuai Badiola Rut Fadó Xavier Xifró Carlos A. Saura José Rodríguez-Alvarez 《Molecular biology of the cell》2009,20(24):5051-5063
Bone morphogenetic proteins (BMPs) have been implicated in the generation and postnatal differentiation of cerebellar granule cells (CGCs). Here, we examined the eventual role of BMPs on the survival of these neurons. Lack of depolarization causes CGC death by apoptosis in vivo, a phenomenon that is mimicked in vitro by deprivation of high potassium in cultured CGCs. We have found that BMP-6, but not BMP-7, is able to block low potassium–mediated apoptosis in CGCs. The neuroprotective effect of BMP-6 is not accompanied by an increase of Smad translocation to the nucleus, suggesting that the canonical pathway is not involved. By contrast, activation of the MEK/ERK/CREB pathway by BMP-6 is necessary for its neuroprotective effect, which involves inhibition of caspase activity and an increase in Bcl-2 protein levels. Other pathways involved in the regulation of CGC survival, such as the c-Jun terminal kinase and the phosphatidylinositol 3-kinase (PI3K)-Akt/PKB, were not affected by BMP-6. Moreover, failure of BMP-7 to activate the MEK/ERK/CREB pathway could explain its inability to protect CGCs from low potassium–mediated apoptosis. Thus, this study demonstrates that BMP-6 acting through the noncanonical MEK/ERK/CREB pathway plays a crucial role on CGC survival. 相似文献
17.
Daniela Pontes Marcela Azevedo Silvia Innocentin Sébastien Blugeon Fran?ois Lefévre Vasco Azevedo Anderson Miyoshi Pascal Courtin Marie-Pierre Chapot-Chartier Philippe Langella Jean-Marc Chatel 《PloS one》2014,9(1)
In this study, we compared immune responses elicited by DNA immunization using Lactococcus lactis or L. lactis expressing the Staphylococcus aureus invasin Fibronectin Binding Protein A (FnBPA) at its surface. Both strains carried pValac:BLG, a plasmid containing the cDNA of Beta-Lactoglobulin (BLG), and were designated LL-BLG and LL-FnBPA+ BLG respectively. A TH2 immune response characterized by the secretion of IL-4 and IL-5 in medium of BLG reactivated splenocytes was detected after either oral or intranasal administration of LL-FnBPA+ BLG. In contrast, intranasal administration of LL-BLG elicited a TH1 immune response. After BLG sensitization, mice previously intranasally administered with LL-BLG showed a significantly lower concentration of BLG-specific IgE than the mice non-administered. Altenatively administration of LL-FnBPA+ BLG didn''t modify the BLG-specific IgE concentration obtained after sensitization, thus confirming the TH2 orientation of the immune response. To determine if the TH2-skewed immune response obtained with LL-FnBpA+ BLG was FnBPA-specific or not, mice received another L. lactis strain producing a mutated form of the Listeria monocytogenes invasin Internalin A intranasally, allowing thus the binding to murine E-cadherin, and containing pValac:BLG (LL-mInlA+ BLG). As with LL-FnBPA+ BLG, LL-mInlA+ BLG was not able to elicit a TH1 immune response. Furthermore, we observed that these difference were not due to the peptidoglycan composition of the cell wall as LL-FnBPA+ BLG, LL-mInlA+ BLG and LL-BLG strains shared a similar composition. DNA vaccination using LL-BLG elicited a pro-inflammatory TH1 immune response while using LL-FnBPA+ BLG or LL-mInlA+ BLG elicited an anti-inflammatory TH2 immune response. 相似文献
18.
Fonina L. A. Baldin M. I. Efremov M. A. Gur'yanov S. A. Belevskaya R. G. 《Russian Journal of Bioorganic Chemistry》2001,27(6):357-361
Peptide Leu-Val-Cys-Tyr-Pro-Gln, identical to the bone marrow peptide MP-3, and its Val3and Ser3analogs, lacking SH group, were synthesized by conventional methods of peptide chemistry in solution and, along with the MP-3 S–S-dimerization product, were studied with respect to their effect on the macrophage phagocytic activity. It was shown that the activity was only enhanced by peptide MP-3, which demonstrated the essential role of the SH group in this function. The dimer analog of MP-3, unlike dimer analogs of other monocycteine-containing peptides, glutathione and HP5b, did not exhibit the inhibitory effect. 相似文献
19.
自噬是细胞通过自我降解、重新利用胞内蛋白质和细胞器的过程,有利于帮助生物体抵御饥饿或其他不良环境条件。以酵母等为对象的研究揭示细胞自噬可分为3种类型:巨自噬、微自噬以及分子伴侣介导的自噬,均具有重要的生理功能,其中针对巨自噬的机理研究最为深入广泛。不同自噬相关基因分别组成不同的功能模块,各自调控或完成自噬起始、自噬体形成、泛素化修饰和底物降解等。自噬活性的启动及不同底物的降解受表观遗传、转录、转录后及翻译后等多重调控。针对不同自噬相关基因功能的研究结果表明,不同病原真菌中存在与酵母自噬同源基因既保守又高度分化的生物学功能或效应。与酵母同源基因的生物学效应不同,不同关键自噬基因可分别参与调控病原真菌产孢、菌丝生长、细胞分化、侵染结构成熟,以及致病毒力等。自噬与致病毒力的关联性拓展了病原真菌致病机理的研究范畴,进一步研究病原菌自噬与寄主免疫互作的效应机制具有重要的生物学意义。 相似文献