首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gene expression in diseased tissues can indicate the contribution to a disease process and potentially guide therapeutic decision-making. Archival tissues with associated clinical outcome may be useful to discover or validate the role of a candidate gene in a disease process or the response to therapy. Such archival tissues are commonly formalin-fixed and paraffin-embedded, restricting the methods available for gene expression analysis. Obviously, the detection of proteins in tissues requires adaptation for each protein and the detection of secreted proteins can prove difficult or of reduced value since the protein detected may not reflect the total amount produced. Thus, we describe here a reliable method for the detection of mRNA in archival tissues. The method for mRNA in situ hybridization (ISH) was adapted by us for >15 different genes and applied to several hundred tissue microarrays (TMAs) and full sections generating >10,000 expression data points. We also discuss the utility of TMAs to simultaneously analyze several hundred tissue samples on one slide to minimize variability and preserve valuable tissue samples. Experimental protocols are provided that can be implemented without major hurdles in a typical molecular pathology laboratory and we discuss quantitative analysis as well as advantages and limitations of ISH with a special focus on secreted proteins. We conclude that ISH is a reliable and cost effective approach to gene expression analysis in archival tissues that is amenable to screening of series of tissues or of genes of interest.  相似文献   

2.
Implementation of interphase fluorescence in situ hybridization (FISH) assays in the clinical laboratory requires validation against established methods. Validation tools in common use include exchange of consecutive sections with another institution that has already established the FISH assay, comparison with conventional banded metaphase cytogenetics, confirmation of specificity using probed normal metaphases, consecutive paraffin sections of a validation set tested by a reference laboratory, and specificity assessment against well characterized cell lines. We have investigated the feasibility of using tissue microarrays (TMA) constructed from murine xenografts as a preliminary specificity-screening tool for validation of interphase FISH assays. Cell lines currently in use for FISH controls are used to generate xenografts in SCID mice which are fixed in formalin and paraffin embedded. A TMA is constructed using duplicate donor cores from the xenograft blocks. Xenografts used represent a wide range of translocations used routinely for formalin fixed paraffin embedded sections evaluated by FISH. Probe cocktails (Abbott-Vysis), for several non-random translocations associated with hematologic neoplasms and soft tissue sarcomas have been used in this manner. On-line deparaffinization, cell conditioning, and prehybridization steps are automated using a staining workstation (Ventana Discovery XT); hybridization and stringency washes are performed manually offline. FISH-probed TMAs are tracked using a Metasystems image scanner and analyzed using classifiers specifically developed for each molecular abnormality. FISH results for each xenograft in the TMA correspond exactly to the genotype previously established for the parent cell line from which the xenograft was prepared. Moderate complexity tissue microarrays constructed from murine xenografts are excellent validation tools for initial assessment of interphase FISH probe specificity.  相似文献   

3.
Altered expression of genes in diseased tissues can prognosticate a distinct natural progression of the disease as well as predict sensitivity or resistance to particular therapies. Archival tissues from patients with a known medical history and treatments are an invaluable resource to validate the utility of candidate genes for prognosis and prediction of therapy outcomes. However, stored tissues with associated long-term follow-up information typically are formalin-fixed, paraffin-embedded specimen and this can severely restrict the methods applicable for gene expression analysis. We report here on the utility of tissue microarrays (TMAs) that use valuable tissues sparingly and provide a platform for simultaneous analysis of gene expression in several hundred samples. In particular, we describe a stable method applicable to mRNA expression screening in such archival tissues. TMAs are constructed from sections of small drill cores, taken from tissue blocks of archival tissues and multiple samples can thus be arranged on a single microscope slide. We used mRNA in situ hybridization (ISH) on >500 full sections and >100 TMAs for >10 different cDNAs that yielded >10,000 data points. We provide detailed experimental protocols that can be implemented without major hurdles in a molecular pathology laboratory and discuss quantitative analysis and the advantages and limitations of ISH. We conclude that gene expression analysis in archival tissues by ISH is reliable and particularly useful when no protein detection methods are available for a candidate gene.  相似文献   

4.
Modern expression-screening platforms such as complementary DNA (cDNA) arrays allow for high-throughput lead discovery in cancer and other diseases. For evaluation of promising candidate genes, however, in situ analysis of high numbers of clinical tissues samples--for example, by immunohistochemistry or fluorescence in situ hybridisation--is mandatory. Tissue microarray (TMA) technology greatly facilitates such analysis. Minute tissue cores (diameter 0.6 mm) are removed from up to a thousand different conventional paraffin blocks and re-assembled in a single empty paraffin block at predefined positions. Sections of the resulting TMA can be utilised for the range of research applicable to conventional tissue sections. Important advantages of the TMA technology are speed (parallel analysis of up to a thousand tissues), cost efficiency (the same amount of reagents required for a single large-section analysis is sufficient for a thousand samples), and standardisation (the same experimental conditions are applied to all samples). Because of the high numbers of samples usually included in TMAs, they are optimally suited to detect genotype-phenotype associations with high statistical power. Thus, TMA technology will markedly accelerate the transition from basic research to clinical applications.  相似文献   

5.
发明一种组织微阵列供体取样与受体蜡块制作的新器具和新方法 . 利用这种新器具和新方法成功地制作了分别含 448 和 390 个供体组织点阵的组织微阵列受体蜡块和切片 . 这种新方法制作的组织微阵列切片经 H&E 染色,显微镜下观察证实,所有切片均无供体点阵组织脱落,切片厚度适中,组织结构无挤压变形,细胞形态均匀一致 . 免疫组化检测 P53 和 P16 蛋白在组织微阵列切片与其相应的常规组织切片中的表达结果完全一致 . 这种组织微阵列供体取样与受体蜡块制作新器具和新方法成本低廉,操作简便,具有在实验室推广应用的价值 .  相似文献   

6.
Abstract

Fixation and processing of tissue to paraffin blocks permit thin (4-5 µm) sections of tissues to be cut. Tissues and their subcellular components and surrounding stroma are visualized by cutting thin sections and staining them histochemically or immunohistochemically and viewing the sections using a bright field microscope. During the last century, anatomists and pathologists have used fixation with 10% neutral buffered formalin (10% NBF) as the fixative of choice. Also, both human and veterinary pathologists have trained to use fixation with 10% NBF, so these professionals are reluctant to change the familiar microscopic appearance of diagnostic tissues by using different fixatives. In addition, the effects of tissue processing on the microscopic appearance of tissue essentially has been ignored in most studies. Archives of paraffin blocks of pathological tissue contain essentially paraffin blocks fixed in 10% NBF. Therefore, if retrospective studies use archival paraffin blocks to correlate the molecular features of diseases with their outcomes, the studies must be based on tissue fixed in 10% NBF. Studies of how fixation in 10% NBF interacts with histochemical and immunohistochemical staining are limited in number and most are based on relatively long fixation times (≥36 h). Currently, fixation times in 10% NBF have been reduced to <24 h. Little is known about fixation in 10% NBF and its interaction with tissue processing for any period of fixation, especially short times. Less is known about how fixation of tissues with 10% NBF interacts with more modern assays using immunohistochemistry, real time quantitative polymerise chain reaction (PCR), and techniques that depend on analysis of proteins extracted from paraffin blocks including multiplex immunoassays or mass spectrometry. In general, multiple antibody–antigen combinations are reported not to work in tissues fixed in 10% NBF, i.e., loss of immunorecognition is nearly complete for such antibody–antigen combinations as Ki67/MIB, estrogen receptor alpha (ERα) and Progesterone receptor (PR), and partial for Bcl-2. Several models have been developed to study the interactions of tissue fixation and immunorecognition, but most have viewed the problem with immunorecognition as completely caused by fixation. Also, some of the models discussed in this special symposium do not predict the effects of fixation on frozen tissues fixed in 10% NBF and not processed to paraffin blocks. This article is a brief review of issues attending the use of 10% NBF combined with tissue processing as an interrelated process to study biomarkers identified by immunohistochemistry.  相似文献   

7.
Tissue microarrays maximize returns in cellular pathology whilst minimizing the use of cells and tissues. They are made by arraying cores of tissue taken from multiple donor blocks into a single recipient block. Accordingly, the histology and pathology of several hundred tissues can be represented in one tissue microarray that, when stained by immunohistochemistry, provides comprehensive topographic information on protein expression. Used with complimentary techniques, such as complementary DNA microarray analysis, tissue microarrays are providing valuable data for the identification of new markers of disease and assisting in the discovery of therapeutic targets. They are also leading a revolution in cellular pathology as high-throughput technology is introduced to maximize the information provided.  相似文献   

8.
Tissue microarrays maximize returns in cellular pathology whilst minimizing the use of cells and tissues. They are made by arraying cores of tissue taken from multiple donor blocks into a single recipient block. Accordingly, the histology and pathology of several hundred tissues can be represented in one tissue microarray that, when stained by immunohistochemistry, provides comprehensive topographic information on protein expression. Used with complimentary techniques, such as complementary DNA microarray analysis, tissue microarrays are providing valuable data for the identification of new markers of disease and assisting in the discovery of therapeutic targets. They are also leading a revolution in cellular pathology as high-throughput technology is introduced to maximize the information provided.  相似文献   

9.
Formalin fixation, generally followed by paraffin embedding, is the standard and well-established processing method employed by pathologist. This treatment conserves and stabilizes biopsy samples for years. Analysis of FFPE tissues from biopsy libraries has been, so far, a challenge for proteomics biomarker studies. Herein, we present two methods for the direct analysis of formalin-fixed, paraffin-embedded (FFPE) tissues by MALDI-MS. The first is based on the use of a reactive matrix, 2,4-dinitrophenylhydrazine, useful for FFPE tissues stored less than 1 year. The second approach is applicable for all FFPE tissues regardless of conservation time. The strategy is based on in situ enzymatic digestion of the tissue section after paraffin removal. In situ digestion can be performed on a specific area of the tissue as well as on a very small area (microdigestion). Combining automated microdigestion of a predefined tissue array with either in situ extraction prior to classical nanoLC/MS-MS analysis or automated microspotting of MALDI matrix according to the same array allows the identification of both proteins by nanoLC-nanoESI and MALDI imaging. When adjacent tissue sections are used, it is, thus, possible to correlate protein identification and molecular imaging. These combined approaches, along with FFPE tissue analysis provide access to massive amounts of archived samples in the clinical pathology setting.  相似文献   

10.
Summary A considerable portion of polar lipids survives the routine dehydration procedure for paraffin embedding with ethanol, acetone and xylene and can be detected in dehydrated blocks of tissue. Sphingomyelin, cerebrosides, sulphatides and gangliosides can be demonstrated with appropriate histochemical methods and chromatographically even in ordinary paraffin sections especially when the amount of these lipids in tissues is sufficiently high, e.g. in lipidoses and in normal myelin. In blocks of tissue dehydrated with acetone and cleared with benzen a considerably higher amount of polar lipids is present. Factors governing the preservation of polar lipids in paraffin sections are discussed.  相似文献   

11.
Tissue microarrays are ordered arrays of hundreds to thousands of tissue cores in a single paraffin block. We invented a novel method to make a high-throughput microarray group. Conventional smaller tissue microarrays were made first and then sectioned. Separate paraffin films were arrayed orderly onto a regular-sized glass slide to form a larger microarray group. Sections were not floated in a water bath but, rather, were cut singly using conventional microtome, arrayed orderly onto the glass slide with forceps instead of using a tape-based tissue transfer system, and then unfolded with warm water (46° C) using a micropipette. This not only lowers the difficulty in sectioning but the overall tissue disks can be included in the same section. A microarray group of 2,534 small disks (theoretically, 2,560 disks can be made; 26 fell off during the procedure), the most up to now, was successfully made and may be used in immunohistochemistry, mRNA in situ hybridization, and flourescent in situ hybridization.  相似文献   

12.
Tissue microarrays have become an essential tool in translational pathology. They are used to confirm results from other experimental platforms, such as expression microarrays, as well as a primary tool to explore the expression profile of proteins by immunohistochemical analysis. Tissue microarrays are routinely used molecular epidemiology, drug development and determining the diagnostic, prognostic and predictive value of new biomarkers. By applying traditional protein based assays, as well as novel assays to the platform, tissue microarrays have gained a new utility as a proteomic tool for both basic science as well as clinical investigation. This article will explore the new approaches that are being applied to tissue microarrays to, characterize the human proteome, and new technologies that allow tissue microarrays to function as a protein array. The U.S. Government's right to retain a non-exclusive, royalty-free license in and to any copyright is acknowledged  相似文献   

13.
The extent of compression of microtome sections has been studied for blocks with tissue and also blocks of clear paraffin. Thick sections are commonly compressed 15% or more, while in sections below 5 or 10 μ, compression may exceed 50%. Compensatory thickening of sections occurs. The degree of compression for various paraffin samples and for various conditions of knife edge, temperature, etc., is compared. Microscopical work, particularly where quantitative data or reconstructions are involved, is often seriously unpaired by unrecognized artifacts of sectioning. The present work indicates the magnitude of such artifacts. Compensation for distortions of sections is not easy because tissues, particularly dense tissues, may compress less than the paraffin matrix. Section corrugation is due to this inequality in compression. Absorption of water in section flattening causes some tissue readjustment, but this varies with different tissues and different fixations.  相似文献   

14.
Since the emergence of proteomics methods, many proteins specific for renal cell carcinoma (RCC) have been identified. Despite their usefulness for the specific diagnosis of RCC, such proteins do not provide spatial information on the diseased tissue. Therefore, the identification of cancer-specific proteins that include information on their specific location is needed. Recently, matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS) based imaging mass spectrometry (IMS) has emerged as a new tool for the analysis of spatial distribution as well as identification of either proteins or small molecules in tissues. In this report, surgical tissue sections of papillary RCC were analyzed using MALDI-IMS. Statistical analysis revealed several discriminative cancer-specific m/z-species between normal and diseased tissues. Among these m/z-species, two particular proteins, S100A11 and ferritin light chain, which are specific for papillary RCC cancer regions, were successfully identified using LC-MS/MS following protein extraction from independent RCC samples. The expressions of S100A11 and ferritin light chain were further validated by immunohistochemistry of human tissues and tissue microarrays (TMAs) of RCC. In conclusion, MALDI-IMS followed by LC-MS/MS analysis in human tissue identified that S100A11 and ferritin light chain are differentially expressed proteins in papillary RCC cancer regions.  相似文献   

15.
In transmission electron microscopy (TEM), electrons are transmitted through a plastic-embedded specimen, and an image is formed. TEM enables the resolution and visualization of detail not apparent via light microscopy, even when combined with immunohistochemical analysis. Ultrastructural examination of tissues, cells and microorganisms plays a vital role in diagnostic pathology and biologic research. TEM is used to study the morphology of cells and their organelles, and in the identification and characterization of viruses, bacteria, protozoa and fungi. In this protocol, we present a TEM method for preparing specimens obtained in clinical or research settings, discussing the particular requirements for tissue and cell preparation and analysis, the need for rapid fixation and the possibility of analysis of tissue already fixed in formalin or processed into paraffin blocks. Details of fixation, embedding and how to prepare thin and semi-thin sections, which can be used for analysis complementary to that performed ultimately using TEM, are also described.  相似文献   

16.
The first multi-tissue bank was founded at Havana in 1958. At that time, freeze-drying was used at the bank as a method of preserving, as well as Cobalt 60 irradiation to sterilise bone tissue, heart valves and others. The impact of the IAEA program in tissue banking activities in Cuba can be summarised as follows: (a) Increase in the production of sterilised tissues using ionising radiation (bone, pig skin and amnion) for medical treatment in the tissue bank of the Hospital Frank Pais; (b) increase of the quality of the productions of bone tissues, pig skin and amnion; (c) reduction in the import of tissues by increasing the local production of tissues; (d) sustainability in the number of donors through the implementation of a public and professional awareness campaign; (e) training of six persons in the Regional Training Centre of Buenos Aires; (f) qualification of one person in the administration of a tissue bank and in the implementation of a Quality System. The amount of tissues produced and sterilised using the ionising radiation techniques in the established banks was 25,510 units. The amount of patients treated with sterilised tissues produced by the established banks was 2,448.  相似文献   

17.
A pilot Raman microspectroscopy study of formalin-fixed, paraffin-embedded, and deparaffinized sections from the same ovarian normal and malignant tissues was carried out. This approach was considered in order to evaluate the suitability of these ex vivo tissue handling procedures in discrimination as well as biochemical characterization. The spectra of formalin-fixed normal and malignant tissues exhibited no contamination due to formalin, which is indicated by the absence of strong formalin peaks; spectral features also show significant differences for normal and malignant tissues. The differences between spectral profiles of deparaffinized normal and malignant tissues are subtle and spectra show few residual sharp peaks of paraffin. Complete dominance of paraffin swamping signals from tissues was observed in the spectra of paraffin-embedded tissues. Principal components analysis (PCA), which was employed for discrimination of tissue type, provided good discrimination for formalin-fixed and paraffin-embedded tissue spectra. PCA of deparaffinized tissues resulted in a poor classification with significant overlap among the clusters. Thus, this study indicates that formalin fixation is the most suitable among the three procedures employed in the study. Significant differences between spectral profiles of normal and malignant formalin-fixed tissues can not only be exploited for discrimination but can also provide information on biochemical characteristics of the tissues. Deparaffinized tissues provide poor discrimination and information on tissue biochemistry is lost. Paraffin-embedded tissues may provide good discrimination, but predominance of paraffin in the spectra could jeopardize biochemical characterization. Prospectively, as a result of the better availability of paraffin-embedded tissues and problems associated with frozen sectioning of formalin-fixed tissues, the results of this study using paraffin-embedded tissues are very encouraging.  相似文献   

18.
19.
Performance of immunofluorescence staining on archival formalin-fixed paraffin-embedded human tissues is generally not considered to be feasible, primarily due to problems with tissue quality and autofluorescence. We report the development and application of procedures that allowed for the study of a unique archive of thymus tissues derived from autopsies of individuals exposed to atomic bomb radiation in Hiroshima, Japan in 1945. Multiple independent treatments were used to minimize autofluorescence and maximize fluorescent antibody signals. Treatments with NH3/EtOH and Sudan Black B were particularly useful in decreasing autofluorescent moieties present in the tissue. Deconvolution microscopy was used to further enhance the signal-to-noise ratios. Together, these techniques provide high-quality single- and dual-color fluorescent images with low background and high contrast from paraffin blocks of thymus tissue that were prepared up to 60 years ago. The resulting high-quality images allow the application of a variety of image analyses to thymus tissues that previously were not accessible. Whereas the procedures presented remain to be tested for other tissue types and archival conditions, the approach described may facilitate greater utilization of older paraffin block archives for modern immunofluorescence studies.  相似文献   

20.
Combination of conventional histology and the three-dimensional spatial view of tissue structures offers new prospects for understanding and diagnosing nature and development of human diseases. The essential technical problem related to three-dimensional reconstruction in histopathology is represented by the correct alignment of serial sections. During the past years several methods have been proposed but failed to become popular because of their limits in terms of time consume and restricted applicability. We aimed to overcome this problem by applying the technology of Tissue Array, thus by positioning adequate fiducial markers from specific "donor" blocks into the "recipient" paraffin block of interest. Digitized pictures of serially cut sections were aligned according to the tissue markers embedded by Tissue Array, and then processed with specific softwares for three-dimensional reconstruction. Thirteen models, including fetal hearts, breast and thyroid carcinomas, were elaborated. We found the procedure to be easy, fast and reproducible. Moreover, by selectively embedding the fiducial markers according to specific angles, the Tissue Arrays can be exploited in order to establish the distance between sections. This original methodology of incorporating Tissue Arrays into paraffin blocks as fiducial markers for three-dimensional reconstruction has a potential impact on histology for research purposes and diagnostic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号