首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two knockout mouse models for the autism candidate gene Neurobeachin (Nbea) have been generated independently. Although both models have similar phenotypes, one striking difference is the dwarf phenotype observed in the heterozygous configuration of the GH240B model that is generated by the serendipitous insertion of a promoterless human growth hormone (hGH) genomic fragment in the Nbea gene. In order to elucidate this discrepancy, the dwarfism present in this Nbea mouse model was investigated in detail. The growth deficiency in Nbea +/− mice coincided with an increased percentage of fat mass and a decrease in bone mineral density. Low but detectable levels of hGH were detected in the pituitary and hypothalamus of Nbea +/− mice but not in liver, hippocampus nor in serum. As a consequence, several members of the mouse growth hormone (mGH) signaling cascade showed altered mRNA levels, including a reduction in growth hormone-releasing hormone mRNA in the hypothalamus. Moreover, somatotrope cells were less numerous in the pituitary of Nbea +/− mice and both contained and secreted significantly less mGH resulting in reduced levels of circulating insulin-like growth factor 1. These findings demonstrate that the random integration of the hGH transgene in this mouse model has not only inactivated Nbea but has also resulted in the tissue-specific expression of hGH causing a negative feedback loop, mGH hyposecretion and dwarfism.  相似文献   

2.
A gene therapy clinical trial for treatment of growth hormone (GH) deficiency has not been reached yet, but several strategies using different gene transfer methodologies and animal models have been developed and showed successful results. We have set up an ex vivo gene therapy protocol using primary human keratinocytes transduced with an efficient retroviral vector (LXSN) encoding the human (hGH) or mouse GH (mGH) genes. These stably modified cells presented high in vitro expression levels of hGH (7 μg/106 cells/d) and mGH (11 μg/106 cells/d) after selection with geneticin. When the hGH-secreting keratinocytes were grafted onto immunodeficient dwarf mice (lit/scid), hGH levels in the circulation were about 0.2–0.3 ng/mL during a 12-d assay and these animals presented a significant body weight increase (p<0.01) compared to the control. Substitution of conventional grafting methodologies with organotypic raft cultures revealed a peak value of up to 20 ng mGH/mL in the circulation of grafted lit/scid mice at 1 h postimplantation, followed by a rapid decline to baseline (≈2 ng/mL) within 24 h. One week after grafting, however, the cultured excised implants still presented approx 45% of their original in vitro secretion efficiency. Further studies are being carrier out to identify the main factor(s) that still constitute one of the major impediments to the success of this promising model of cutaneous gene therapy.  相似文献   

3.
Expression of human growth hormone (hGH) was targeted to growth hormone-releasing (GRF) neurons in the hypothalamus of transgenic rats. This induced dominant dwarfism by local feedback inhibition of GRF. One line, bearing a single copy of a GRF-hGH transgene, has been characterized in detail, and has been termed Tgr (for Transgenic growth-retarded). hGH was detected by immunocytochemistry in the brain, restricted to the median eminence of the hypothalamus. Low levels were also detected in the anterior pituitary gland by radioimmunoassay. Transgene expression in these sites was confirmed by RT-PCR. Tgr rats had reduced hypothalamic GRF and mRNA, in contrast to the increased GRF expression which accompanies GH deficiency in other dwarf rats. Endogenous GH mRNA, GH content, pituitary size and somatotroph cell number were also reduced significantly in Tgr rats. Pituitary adrenocorticotrophic hormone (ACTH) and thyroid-stimulating hormone (TSH) levels were normal, but prolactin content, mRNA levels and lactotroph cell numbers were also slightly reduced, probably due to feedback inhibition of prolactin by the lactogenic properties of the hGH transgene. This is the first dominant dwarf rat strain to be reported and will provide a valuable model for evaluating the effects of transgene expression on endogenous GH secretion, as well as the use of GH secretagogues for the treatment of dwarfism.  相似文献   

4.
Nestin-Cre mice express Cre recombinase under control of the rat nestin promoter and central nervous system (CNS) enhancer. While endogenous Nestin is expressed in some other tissues including the pituitary gland, Nestin-Cre mice induce recombination predominantly in the CNS. For this reason, they have been widely used to explore gene function or cell fate in the latter. Pituitary hormonal deficiencies, or hypopituitarism, are associated with a wide range of symptoms and with a significant morbidity. These can have a neural and/or a pituitary origin as the gland''s secretions are controlled by the hypothalamus. We report here that Nestin-Cre mice themselves are affected by mild hypopituitarism. Hence, physiological consequences are expected, especially in combination with defects resulting from Cre mediated deletion of any gene under investigation. To further investigate the origin of this phenotype, we re-examined the activity of the transgene. We compared it with expression of Nestin itself in the context of the hypothalamo-pituitary axis, especially in the light of a recent report showing pituitary Nestin-Cre activity, which contrasts with previous data. Our results disagree with those of this recent study and do not support the claim that Nestin positive cells are present in the pituitary anlagen, the Rathke''s pouch (RP). Moreover we did not observe any significant activity in the post-natal pituitary, in agreement with the initial report.  相似文献   

5.
Insulin controls growth hormone (GH) production at multiple levels, including via a direct effect on pituitary somatotrophs. There are no data, however, on the regulation of the intact human (h) GH gene (hGH1) by insulin in non-tumor pituitary cells, but the proximal promoter region (nucleotides −496/+1) responds negatively to insulin in transfected pituitary tumor cells. A DNA-protein interaction was also induced by insulin at nucleotides −308/−235. Here, we confirmed the presence of a hypoxia-inducible factor 1 (HIF-1) binding site within these sequences (−264/−259) and investigated whether HIF-1 is associated with insulin regulation of “endogenous” hGH1. In the absence of primary human pituitary cells, transgenic mice expressing the intact hGH locus in a somatotroph-specific manner were generated. A significant and dose-dependent decrease in hGH and mouse GH RNA levels was detected in primary pituitary cell cultures from these mice with insulin treatment. Increasing HIF-1α availability with a hypoxia mimetic significantly decreased hGH RNA levels and was accompanied by recruitment of HIF-1α to the hGH1 promoter in situ as seen with insulin. Both inhibition of HIF-1 DNA binding by echinomycin and RNA interference of HIF-1α synthesis blunted the negative effect of insulin on hGH1 but not mGH. The insulin response is also sensitive to histone deacetylase inhibition/trichostatin A and associated with a decrease in H3/H4 hyperacetylation in the proximal hGH1 promoter region. These data are consistent with HIF-1-dependent down-regulation of hGH1 by insulin via chromatin remodeling specifically in the proximal promoter region.  相似文献   

6.
7.
8.
9.
10.
The growth and metabolic actions of growth hormone (GH) are believed to be mediated through the GH receptor (GHR) by JAK2 activation. The GHR exists as a constitutive homodimer, with signal transduction by ligand-induced realignment of receptor subunits. Based on the crystal structures, we identify a conformational change in the F'G' loop of the lower cytokine module, which results from binding of hGH but not G120R hGH antagonist. Mutations disabling this conformational change cause impairment of ERK but not JAK2 and STAT5 activation by the GHR in FDC-P1 cells. This results from the use of two associated tyrosine kinases by the GHR, with JAK2 activating STAT5, and Lyn activating ERK1/2. We provide evidence that Lyn signals through phospholipase C gamma, leading to activation of Ras. Accordingly, mice with mutations in the JAK2 association motif respond to GH with activation of hepatic Src and ERK1/2, but not JAK2/STAT5. We suggest that F'G' loop movement alters the signalling choice between JAK2 and a Src family kinase by regulating TMD realignment. Our findings could explain debilitated ERK but not STAT5 signalling in some GH-resistant dwarfs and suggest pathway-specific cytokine agonists.  相似文献   

11.
Suppressor of cytokine signaling (SOCS) 2 is a negative regulator of growth hormone (GH) signaling that regulates body growth postnatally and neuronal differentiation during development. SOCS2 binds to the GH receptor and inhibits GH signaling, including attenuation of STAT5 activation. Here we describe a new function and mechanism of action for SOCS2. Overexpression of SOCS2 in central nervous system neurons promoted neurite outgrowth, and in PC12 cells, neurite outgrowth was induced under nondifferentiating conditions, leading to inhibition of the neurite-inhibitory GTPase Rho and activation of the neurite-promoting GTPase Rac1. Addition of the epidermal growth factor receptor (EGFR) inhibitors PP3 or AG490 or the Src kinase inhibitor PP2 blocked the SOCS2-induced neurite outgrowth. The overexpressed SOCS2 bound to the EGFR, which was constitutively phosphorylated at Tyr845, the Src binding site. Overexpression of the phosphatase SHP-2 reduced the constitutive EGFR phosphorylation and subsequent neurite outgrowth. SOCS2 expression also resulted in a modest 30% decrease in phosphorylation of STAT5b at Tyr699, which is the primary site on STAT5 phosphorylated by GH; however, total tyrosine phosphorylation of STAT5 was decreased by 75-80% under basal and epidermal growth factor-stimulated conditions. Our findings suggest that SOCS2 regulates EGFR phosphorylation, leading to regulation of neurite outgrowth through a novel pathway that is distinct from GH.  相似文献   

12.
The spontaneous release of growth hormone (GH) during nocturnal sleep was studied at age 5-19 years in 44 male and 15 female patients with severe growth retardation (-2.1 to -6.5 SD) among whom 43 were prepubertal and 16 pubertal. Comparison with the results of classical stimulation tests with ornithine, arginine and/or insulin showed good agreement in cases of classical hypopituitarism (n = 14) as in patients who seemed to be endocrinologically normal (n = 27). In 18 patients (31%) there was a discrepancy between sleep release and responses of GH to stimulation test: treatment with hGH was available in only 4 of these children and enhanced sharply their growth rate. It is suggested that a large span of intermediary situations exists between normal GH secretion and complete GH deficiency, deserving a controlled therapeutic trial with hGH.  相似文献   

13.
Insulin is important for maintaining the responsiveness of the liver to growth hormone (GH). Insulin deficiency results in a decrease in liver GH receptor (GHR) expression, which can be reversed by insulin administration. In osteoblasts, continuous insulin treatment decreases the fraction of cellular GHR localized to the plasma membrane. Thus, it is not clear whether hyperinsulinemia results in an enhancement or inhibition of GH action. We asked whether continuous insulin stimulation, similar to what occurs in hyperinsulinemic states, results in GH resistance. Our present studies suggest that insulin treatment of hepatoma cells results in a time-dependent inhibition of acute GH-induced phosphorylation of STAT5B. Whereas total protein levels of JAK2 were not reduced after insulin pretreatment for 16 h, GH-induced JAK2 phosphorylation was inhibited. There was a concomitant decrease in GH binding and a reduction in immunoreactive GHR levels following pretreatment with insulin for 8-24 h. In summary, continuous insulin treatment in rat H4 hepatoma cells reduces GH binding, immunoreactive GHR, GH-induced phosphorylation of JAK2, and GH-induced tyrosine phosphorylation of STAT5B. These findings suggest that hepatic GH resistance may develop when a patient exhibits chronic hyperinsulinemia, a condition often observed in patients with obesity and in the early stage of Type 2 diabetes.  相似文献   

14.
Human growth hormone (hGH) plays critical roles in pubertal mammary gland growth, development, and sexual maturation. Accumulated studies have reported that autocrine/paracrine hGH is an orthotopically expressed oncoprotein that promotes normal mammary epithelial cell oncogenic transformation. Autocrine/paracrine hGH has also been reported to promote mammary epithelial cell epithelial-mesenchymal transition (EMT) and invasion. However, the underlying mechanism remains largely obscure. MicroRNAs (miRNAs) are reported to be involved in regulation of multiple cellular functions of cancer. To determine whether autocrine/paracrine hGH promotes EMT and invasion through modulation of miRNA expression, we performed microarray profiling using MCF-7 cells stably expressing wild type or a translation-deficient hGH gene and identified miR-96-182-183 as an autocrine/paracrine hGH-regulated miRNA cluster. Forced expression of miR-96-182-183 conferred on epithelioid MCF-7 cells a mesenchymal phenotype and promoted invasive behavior in vitro and dissemination in vivo. Moreover, we observed that miR-96-182-183 promoted EMT and invasion by directly and simultaneously suppressing BRMS1L (breast cancer metastasis suppressor 1-like) gene expression. miR-96 and miR-182 also targeted GHR, providing a potential negative feedback loop in the hGH-GHR signaling pathway. We further demonstrated that autocrine/paracrine hGH stimulated miR-96-182-183 expression and facilitated EMT and invasion via STAT3 and STAT5 signaling. Consistent with elevated expression of autocrine/paracrine hGH in metastatic breast cancer tissue, miR-96-182-183 expression was also remarkably enhanced. Hence, we delineate the roles of the miRNA-96-182-183 cluster and elucidate a novel hGH-GHR-STAT3/STAT5-miR-96-182-183-BRMS1L-ZEB1/E47-EMT/invasion axis, which provides further understanding of the mechanism of autocrine/paracrine hGH-stimulated EMT and invasion in breast cancer.  相似文献   

15.
Secretion of growth hormone (GH) in adult male rats is characterized by high peak and undetectable trough levels, both of which are required for male-specific pattern of liver gene expression and GH-induced phosphorylation of STAT5. The present study suggests that regulation of GH receptor (GHR) levels in rat hepatoma cells by repeated GH stimulation determines GH responsiveness via the JAK2/STAT5 pathway. A short exposure to GH rapidly reduced GHR levels which resulted in an equal desensitization of the JAK2/STAT5 pathway. Recovery of GH-induced STAT5 phosphorylation correlated with the time-dependent recovery of GHR levels during incubation in the absence of GH. Acute GH also induced phosphorylation of ERK1/2 and Akt, and this induction was also inhibited by prior exposure to GH. However, unlike the JAK2/STAT5 pathway, the effect of GH to activate the MEK/ERK and phosphatidylinositol 3-kinase/Akt pathways did not recover following prolonged incubation in the absence of GH. Thus, GH administration desensitizes the JAK2/STAT5 pathway, possibly because of down-regulation of GHR, whereas an additional post-receptor mechanism is required for the prolonged refractoriness of the MEK/ERK and phosphatidylinositol 3-kinase/Akt pathways toward a second GH stimulation. Our study suggests that both receptor and post-receptor mechanisms are important in GH-induced homologous desensitization.  相似文献   

16.
17.
Growth hormone (GH) is secreted in a pulsatile pattern to promote body growth and metabolism. GH exerts its function by activating several signaling pathways, including JAK2/STAT and MEK/ERK. ERK1/2 activation by GH plays important roles in gene expression, cell proliferation, and growth. We previously reported that in rat H4IIE hepatoma cells after an initial GH exposure, a second GH exposure induces STAT5 phosphorylation but not ERK1/2 phosphorylation (Ji, S., Frank, S. J., and Messina, J. L. (2002) J. Biol. Chem. 277, 28384-28393). In this study the mechanisms underlying GH-induced homologous desensitization were investigated. A second GH exposure activated the signaling intermediates upstream of MEK/ERK, including JAK2, Ras, and Raf-1. This correlated with recovery of GH receptor levels, but was insufficient for GH-induced phosphorylation of MEK1/2 and ERK1/2. Insulin restored the ability of a second GH exposure to induce phosphorylation of MEK1/2 and ERK1/2 without altering GH receptor levels or GH-induced phosphorylation/activation of JAK2 and Raf-1. GH and insulin synergized in promoting cell proliferation. Further investigation suggested that insulin increased the amount of MEK bound to KSR (kinase suppressor of Ras) and restored GH-induced tyrosine phosphorylation of KSR. Previous GH exposure also induced desensitization of STAT1 and STAT3 phosphorylation, but this desensitization was not reversed by insulin. Thus, insulin-regulated resensitization of GH signaling may be necessary to reset the complete response to GH after a normal, physiologic pulse of GH.  相似文献   

18.
19.
Insulin-like growth factor-1 (IGF-1) is responsible for many systemic growth hormone (GH) functions although it has an extensive number of inherent activities (anabolic, cytoprotective, and anti-inflammatory). The potential options for IGF-1 therapy arise as a promising strategy in a wide list of human diseases. However, deeper studies are needed from a suitable animal model. All human conditions of IGF-1 deficiency consist in partially decreased IGF-1 levels since total absence of this hormone is hardly compatible with life. The aim of this work was to confirm that heterozygous Igf-1 +/? mice (Hz) may be considered as an appropriate animal model to study conditions of IGF-1 deficiency, focusing on early ages. Heterozygous Igf-1 +/? mice were compared to homozygous Igf-1 +/+ by assessing gene expression by quantitative PCR, serum circulating levels by ELISA, and tissue staining. Compared to controls, Hz mice (25 days old) showed a partial but significant reduction of IGF-1 circulating levels, correlating with a reduced body weight and diminished serum IGFBP-3 levels. Hz mice presented a significant decrease of IGF-1 gene expression in related organs (liver, bone, testicles, and brain) while IGF-1 receptor showed a normal expression. However, gene expression of growth hormone receptor (GHR) was increased in the liver but reduced in the bone, testicles, and brain. In addition, a significant reduction of cortical bone thickness and histopathological alterations in the testicles were found in Hz mice when compared to controls. Finally, the lifelong evolution of IGF-1 serum levels showed significant differences throughout life until aging in mice. Results in this paper provide evidence for considering heterozygous mice as a suitable experimental model, from early stages, to get more insight into the mechanisms of the beneficial actions induced by IGF-1 replacement therapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号