首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Population bottlenecks followed by re-expansions have been common throughout history of many populations. The response of alleles under selection to such demographic perturbations has been a subject of great interest in population genetics. On the basis of theoretical analysis and computer simulations, we suggest that this response qualitatively depends on dominance. The number of dominant or additive deleterious alleles per haploid genome is expected to be slightly increased following the bottleneck and re-expansion. In contrast, the number of completely or partially recessive alleles should be sharply reduced. Changes of population size expose differences between recessive and additive selection, potentially providing insight into the prevalence of dominance in natural populations. Specifically, we use a simple statistic, BRxipop1/xjpop2, where x i represents the derived allele frequency, to compare the number of mutations in different populations, and detail its functional dependence on the strength of selection and the intensity of the population bottleneck. We also provide empirical evidence showing that gene sets associated with autosomal recessive disease in humans may have a B R indicative of recessive selection. Together, these theoretical predictions and empirical observations show that complex demographic history may facilitate rather than impede inference of parameters of natural selection.  相似文献   

3.
The second-order nonlinear polarization properties of fibrillar collagen in various rat tissues (vertebrae, tibia, tail tendon, dermis, and cornea) are investigated with polarization-dependent second-harmonic generation (P-SHG) microscopy. Three parameters are extracted: the second-order susceptibility ratio, R = χZZZ(2)/χZXX(2); a measure of the fibril distribution asymmetry, |A|; and the weighted-average fibril orientation, 〈δ〉. A hierarchical organizational model of fibrillar collagen is developed to interpret the second-harmonic generation polarization properties. Highlights of the model include: collagen type (e.g., type-I, type-II), fibril internal structure (e.g., straight, constant-tilt), and fibril architecture (e.g., parallel fibers, intertwined, lamellae). Quantifiable differences in internal structure and architecture of the fibrils are observed. Occurrence histograms of R and |A| distinguished parallel from nonparallel fibril distributions. Parallel distributions possessed low parameter values and variability, whereas nonparallel distributions displayed an increase in values and variability. From the P-SHG parameters of vertebrae tissue, a three-dimensional reconstruction of lamellae of intervertebral disk is presented.  相似文献   

4.

Background

In recent theoretical developments, the information available (e.g. genotypes) divides the original population into two groups: animals with this information (selected animals) and animals without this information (excluded animals). These developments require inversion of the part of the pedigree-based numerator relationship matrix that describes the genetic covariance between selected animals (A22). Our main objective was to propose and evaluate methodology that takes advantage of any potential sparsity in the inverse of A22 in order to reduce the computing time required for its inversion. This potential sparsity is brought out by searching the pedigree for dependencies between the selected animals. Jointly, we expected distant ancestors to provide relationship ties that increase the density of matrix A22 but that their effect on A22-1 might be minor. This hypothesis was also tested.

Methods

The inverse of A22 can be computed from the inverse of the triangular factor (T-1) obtained by Cholesky root-free decomposition of A22. We propose an algorithm that sets up the sparsity pattern of T-1 using pedigree information. This algorithm provides positions of the elements of T-1 worth to be computed (i.e. different from zero). A recursive computation of A22-1 is then achieved with or without information on the sparsity pattern and time required for each computation was recorded. For three numbers of selected animals (4000; 8000 and 12 000), A22 was computed using different pedigree extractions and the closeness of the resulting A22-1 to the inverse computed using the fully extracted pedigree was measured by an appropriate norm.

Results

The use of prior information on the sparsity of T-1 decreased the computing time for inversion by a factor of 1.73 on average. Computational issues and practical uses of the different algorithms were discussed. Cases involving more than 12 000 selected animals were considered. Inclusion of 10 generations was determined to be sufficient when computing A22.

Conclusions

Depending on the size and structure of the selected sub-population, gains in time to compute A22-1 are possible and these gains may increase as the number of selected animals increases. Given the sequential nature of most computational steps, the proposed algorithm can benefit from optimization and may be convenient for genomic evaluations.  相似文献   

5.
Xenografts -as simplified animal models of cancer- differ substantially in vasculature and stromal architecture when compared to clinical tumours. This makes mathematical model-based predictions of clinical outcome challenging. Our objective is to further understand differences in tumour progression and physiology between animal models and the clinic.To achieve that, we propose a mathematical model based upon tumour pathophysiology, where oxygen -as a surrogate for endocrine delivery- is our main focus. The Oxygen-Driven Model (ODM), using oxygen diffusion equations, describes tumour growth, hypoxia and necrosis. The ODM describes two key physiological parameters. Apparent oxygen uptake rate (kR) represents the amount of oxygen cells seem to need to proliferate. The more oxygen they appear to need, the more the oxygen transport. kR gathers variability from the vasculature, stroma and tumour morphology. Proliferating rate (k p) deals with cell line specific factors to promote growth. The K H,K N describe the switch of hypoxia and necrosis. Retrospectively, using archived data, we looked at longitudinal tumour volume datasets for 38 xenografted cell lines and 5 patient-derived xenograft-like models.Exploration of the parameter space allows us to distinguish 2 groups of parameters. Group 1 of cell lines shows a spread in values of kR and lower k p, indicating that tumours are poorly perfused and slow growing. Group 2 share the value of the oxygen uptake rate (kR) and vary greatly in k p, which we interpret as having similar oxygen transport, but more tumour intrinsic variability in growth.However, the ODM has some limitations when tested in explant-like animal models, whose complex tumour-stromal morphology may not be captured in the current version of the model. Incorporation of stroma in the ODM will help explain these discrepancies. We have provided an example. The ODM is a very simple -and versatile- model suitable for the design of preclinical experiments, which can be modified and enhanced whilst maintaining confidence in its predictions.  相似文献   

6.
Methylenetetrahydrofolate dehydrogenase/cyclohydrolase (MTHFD2) is a new drug target that is expressed in cancer cells but not in normal adult cells, which provides an Achilles heel to selectively kill cancer cells. Despite the availability of crystal structures of MTHFD2 in the inhibitor- and cofactor-bound forms, key information is missing due to technical limitations, including (a) the location of absolutely required Mg2+ ion, and (b) the substrate-bound form of MTHFD2. Using computational modeling and simulations, we propose that two magnesium ions are present at the active site whereby (i) Arg233, Asp225, and two water molecules coordinate MgA2+, while MgA2+ together with Arg233 stabilize the inorganic phosphate (Pi); (ii) Asp168 and three water molecules coordinate MgB2+, and MgB2+ further stabilizes Pi by forming a hydrogen bond with two oxygens of Pi; (iii) Arg201 directly coordinates the Pi; and (iv) through three water-mediated interactions, Asp168 contributes to the positioning and stabilization of MgA2+, MgB2+ and Pi. Our computational study at the empirical valence bond level allowed us also to elucidate the detailed reaction mechanisms. We found that the dehydrogenase activity features a proton-coupled electron transfer with charge redistribution connected to the reorganization of the surrounding water molecules which further facilitates the subsequent cyclohydrolase activity. The cyclohydrolase activity then drives the hydration of the imidazoline ring and the ring opening in a concerted way. Furthermore, we have uncovered that two key residues, Ser197/Arg233, are important factors in determining the cofactor (NADP+/NAD+) preference of the dehydrogenase activity. Our work sheds new light on the structural and kinetic framework of MTHFD2, which will be helpful to design small molecule inhibitors that can be used for cancer treatment.  相似文献   

7.
Vascular volume is of fundamental significance to the function of the cardiovascular system. An accurate prediction of blood volume in patients is physiologically and clinically significant. This study proposes what we believe is a novel volume scaling relation of the form: Vc=KvDs2/3Lc, where Vc and Lc are cumulative vessel volume and length, respectively, in the tree, and Ds is the diameter of the vessel segment. The scaling relation is validated in vascular trees of various organs including the heart, lung, mesentery, muscle, and eye of different species. Based on the minimum energy hypothesis and volume scaling relation, four structure-function scaling relations are predicted, including the diameter-length, volume-length, flow-diameter, and volume-diameter relations, with exponent values of 3/7, 127, 2⅓, and 3, respectively. These four relations are validated in the various vascular trees, which further confirm the volume scaling relation. This scaling relation may serve as a control reference to estimate the blood volume in various organs and species. The deviation from the scaling relation may indicate hypovolemia or hypervolemia and aid diagnosis.  相似文献   

8.
Sclerone, mp 138~140°C, C10H10O3 was isolated from the culture filtrate of Sclerotinia sclerotiorum. This is optically active, [α]D20?30°, and gave 1,5-naphthalenediol on pyrolysis. Oxidation with MnO2 yielded juglone. From the chemical and physical evidences, the structure was determined to be 4,5-dihydroxy-(4S)-3,4-dihydro-1(2H)-naphthalenone.  相似文献   

9.
10.
The voltage dependence of charges in voltage-sensitive proteins, typically displayed as charge versus voltage (Q-V) curves, is often quantified by fitting it to a simple two-state Boltzmann function. This procedure overlooks the fact that the fitted parameters, including the total charge, may be incorrect if the charge is moving in multiple steps. We present here the derivation of a general formulation for Q-V curves from multistate sequential models, including the case of infinite number of states. We demonstrate that the commonly used method to estimate the charge per molecule using a simple Boltzmann fit is not only inadequate, but in most cases, it underestimates the moving charge times the fraction of the field.Many ion channels, transporters, enzymes, receptors, and pumps are voltage dependent. This voltage dependence is the result of voltage-induced translocation of intrinsic charges that, in some way, affects the conformation of the molecule. The movement of such charges is manifested as a current that can be recorded under voltage clamp. The best-known examples of these currents are “gating” currents in voltage-gated channels and “sensing” currents in voltage-sensitive phosphatases. The time integral of the gating or sensing current as a function of voltage (V) is the displaced charge Q(V), normally called the Q-V curve.It is important to estimate how much is the total amount of net charge per molecule (Qmax) that relocates within the electric field because it determines whether a small or a large change in voltage is necessary to affect the function of the protein. Most importantly, knowing Qmax is critical if one wishes to correlate charge movement with structural changes in the protein. The charge is the time integral of the current, and it corresponds to the product of the actual moving charge times the fraction of the field it traverses. Therefore, correlating charge movement with structure requires knowledge of where the charged groups are located and the electric field profile. In recent papers by Chowdhury and Chanda (2012) and Sigg (2013), it was demonstrated that the total energy of activating the voltage sensor is equal to Qmax VM, where VM is the median voltage of charge transfer, a value that is only equal to the half-point of activation V1/2 for symmetrical Q-V curves. VM is easily estimated from the Q-V curve, but Qmax must be obtained with other methods because, as we will show here, it is not directly derived from the Q-V curve in the general case.The typical methods used to estimate charge per molecule Qmax include measurements of limiting slope (Almers, 1978) and the ratio of total charge divided by the number of molecules (Schoppa et al., 1992). The discussion on implementation, accuracy, and reliability of these methodologies has been addressed many times in the literature, and it will not be discussed here (see Sigg and Bezanilla, 1997). However, it is worth mentioning that these approaches tend to be technically demanding, thus driving researchers to seek alternative avenues toward estimating the total charge per molecule. Particularly, we will discuss here the use of a two-state Boltzmann distribution for this purpose. Our intention is to demonstrate that this commonly used method to estimate the charge per molecule is generally incorrect and likely to give a lower bound of the moving charge times the fraction of the field.The two-state Boltzmann distribution describes a charged particle that can only be in one of two positions or states that we could call S1 and S2. When the particle with charge Qmax (in units of electronic charge) moves from S1 to S2, or vice versa, it does it in a single step. The average charge found in position S2, Q(V), will depend on the energy difference between S1 and S2, and the charge of the particle. The equation that describes Q(V) is:Q(V)=Qmax1+exp[Qmax(VV1/2)kT],(1)where V1/2 is the potential at which the charge is equally distributed between S1 and S2, and k and T are the Boltzmann constant and absolute temperature, respectively. The Q(V) is typically normalized by dividing Eq. 1 by the total charge Qmax. The resulting function is frequently called a “single Boltzmann” in the literature and is used to fit normalized, experimentally obtained Q-V curves. The fit yields an apparent V1/2 (V1/2) and an apparent QMAX (Qmax), and this last value is then attributed to be the total charge moving Qmax. Indeed, this is correct but only for the case of a charge moving between two positions in a single step. However, the value of Qmax thus obtained does not represent the charge per molecule for the more general (and frequent) case when the charge moves in more than one step.To demonstrate the above statement and also estimate the possible error in using the fitted Qmax from Eq. 1, let us consider the case when the gating charge moves in a series of n steps between n + 1 states, each step with a fractional charge zi (in units of electronic charge e0) that will add up to the total charge Qmax.S1μ1S2μ2SiμiSi+1SnμnSn+1The probability of being in each of the states Si is labeled as Pi, and the equilibrium constant of each step is given byμi=exp[zi(VVi)kT],i=1n,where zi is the charge (in units of e0) of step i, and Vi is the membrane potential that makes the equilibrium constant equal 1. In steady state, the solution of Pi can be obtained by combiningPi+1Pi=μi,i=1nandi=1i=n+1Pi=1,givingPi+1=m=1iμm1+j=1nk=1jμk,i=1nandP1=11+j=1nk=1jμk.We define the reaction coordinate along the moved charged q asqi=j=1izj,i=1n.The Q-V curve is defined asQ(V)=i=1nqiPi+1.Then, replacing Pi yieldsQ(V)=i=1n[j=1izj][m=1iμm]1+j=1nk=1jμk,or written explicitly as a function of V:Q(V)=i=1n[j=1izj][m=1iexp[zm(VVm)kT]]1+j=1nk=1jexp[zk(VVk)kT].(2)Eq. 2 is a general solution of a sequential model with n + 1 states with arbitrary valences and Vi’s for each transition. We can easily see that Eq. 2 has a very different form than Eq. 1, except when there is only a single transition (n = 1). In this latter case, Eq. 2 reduces to Eq. 1 because z1 and V1 are equal to Qmax and V1/2, respectively. For the more general situation where n > 1, if one fits the Q(V) relation obeying Eq. 2 with Eq. 1, the fitted Qmax value will not correspond to the sum of the zi values (see examples below and Fig. 1). A simple way to visualize the discrepancy between the predicted value of Eqs. 1 and 2 is to compute the maximum slope of the Q-V curve. This can be done analytically assuming that Vi = Vo for all transitions and that the total charge Qmax is evenly divided among those transitions. The limit of the first derivative of the Q(V) with respect to V evaluated at V = Vo is given by this equation:dQ(V)dV|V=V0=Qmax(n+2)12nkT.(3)From Eq. 3, it can be seen that the slope of the Q-V curve decreases with the number of transitions being maximum and equal to Qmax /(4kT) when n = 1 (two states) and a minimum equal to Qmax /(12kT) when n goes to infinity, which is the continuous case (see next paragraph).Open in a separate windowFigure 1.Examples of normalized Q-V curves for a Qmax = 4 computed with Eq. 2 for the cases of one, two, three, four, and six transitions and the continuous case using Eq. 5 (squares). All the Q-V curves were fitted with Eq. 1 (lines). The insets show the fitted valence (Qmax) and half-point (V1/2).

Infinite number of steps

Eq. 2 can be generalized to the case where the charge moves continuously, corresponding to an infinite number of steps. If we makeziQmax/n, ?i = 1…n, ??ViVo, ?i = 1…n, then all µi = µ, and we can write Eq. 2 as the normalized Q(V) in the limit when n goes to infinity:Qnor(V)=limni=1n[j=1iQmaxn]m=1iexp[Qmax(VVo)nkT]Qmax[1+i=1nj=1iexp[Qmax(VVo)nkT]]=[Qmax(VVo)kT]exp[Qmax(VVo)kT]+kTQmax(VVo)[exp[Qmax(VVo)kT]1].(4)Eq. 4 can also be written asQnor(V)=12[1+coth[Qmax(VVo)2kT]2kTQmax(VV0)],(5)which is of the same form of the classical equation of paramagnetism (see Kittel, 2005).

Examples

We will illustrate now that data generated by Eq. 2 can be fitted quite well by Eq. 1, thus leading to an incorrect estimate of the total charge moved. Typically, the experimental value of the charge plotted is normalized to its maximum because there is no knowledge of the absolute amount of charge per molecule and the number of molecules. The normalized Q-V curve, Qnor, is obtained by dividing Q(V) by the sum of all the partial charges.Fig. 1 shows Qnor computed using Eq. 2 for one, two, three, four, and six transitions and for the continuous case using Eq. 5 (squares) with superimposed fits to a two-state Boltzmann distribution (Eq. 1, lines). The computations were done with equal charge in each step (for a total charge Qmax = 4e0) and also the same Vi = −25 mV value for all the steps. It is clear that fits are quite acceptable for cases up to four transitions, but the fit significantly deviates in the continuous case.Considering that experimental data normally have significant scatter, it is then quite likely that the experimenter will accept the single-transition fit even for cases where there are six or more transitions (see Fig. 1). In general, the case up to four transitions will look as a very good fit, and the fitted Qmax value may be inaccurately taken and the total charge transported might be underestimated. To illustrate how bad the estimate can be for these cases, we have included as insets the fitted value of Qmax for the cases presented in Fig. 1. It is clear that the estimated value can be as low as a fourth of the real total charge. The estimated value of V1/2 is very close to the correct value for all cases, but we have only considered cases in which all Vi’s are the same.It should be noted that if µi of the rightmost transition is heavily biased to the last state (Vi is very negative), then the Qmax estimated by fitting a two-state model is much closer to the total gating charge. In a three-state model, it can be shown that the fitted value is exact when V1→∞ and V2→−∞ because in that case, it converts into a two-state model. Although these values of V are unrealistic, the fitted value of Qmax can be very close to the total charge when V2 is much more negative than V1 (that is, V1 >> V2). On the other hand, If V1 << V2, the Q-V curve will exhibit a plateau region and, as the difference between V1 and V2 decreases, the plateau becomes less obvious and the curve looks monotonic. These cases have been discussed in detail for the two-transition model in Lacroix et al. (2012).We conclude that it is not possible to estimate unequivocally the gating charge per sensor from a “single-Boltzmann” fit to a Q-V curve of a charge moving in multiple transitions. The estimated Qmax value will be a low estimate of the gating charge Qmax, except in the case of the two-state model or the case of a heavily biased late step, which are rare occurrences. It is then safer to call “apparent gating charge” the fitted Qmax value of the single-Boltzmann fit.

Addendum

The most general case in which transitions between states include loops, branches, and steps can be derived directly from the partition function and follows the general thermodynamic treatment by Sigg and Bezanilla (1997), Chowdhury and Chanda (2012), and Sigg (2013). The reaction coordinate is the charge moving in the general case where it evolves from q = 0 to q = Qmax by means of steps, loops, or branches. In that case, the partition function is given byZ=iexp(qi(VVi)kT).(6)We can compute the mean gating charge, also called the Q-V curve, asQ(V)=q=kTZZ=kTdlnZdV=iqiexp(qi(VVi)kT)iexp(qi(VVi)kT).(7)The slope of the Q-V is obtained by taking the derivative of 〈q〉 with respect to V:dQ(V)dV=(kT)2d2lnZdV2.(8)Let us now consider the gating charge fluctuation. The charge fluctuation will depend on the number of possible conformations of the charge and is expected to be a maximum when there are only two possible charged states to dwell. As the number of intermediate states increases, the charge fluctuation decreases. Now, a measure of the charge fluctuation is given by the variance of the gating charge, which can be computed from the partition function as:Δq2=q2q2=(kT)2(ZZ(ZZ)2)=(kT)2d2lnZdV2.(9)But the variance (Eq. 9) is identical to the slope of Q(V) (Eq. 8). This implies that the slope of the Q-V is maximum when there are only two states.  相似文献   

11.
In their Commentary paper, Villaverde and Massonis (On testing structural identifiability by a simple scaling method: relying on scaling symmetries can be misleading) have commented on our paper in which we proposed a simple scaling method to test structural identifiability. Our scaling invariance method (SIM) tests for scaling symmetries only, and Villaverde and Massonis correctly show the SIM may fail to detect identifiability problems when a model has other types of symmetries. We agree with the limitations raised by these authors but, also, we emphasize that the method is still valuable for its applicability to a wide variety of models, its simplicity, and even as a tool to introduce the problem of identifiability to investigators with little training in mathematics.

In their Commentary paper, Villaverde and Massonis (On testing structural identifiability by a simple scaling method: relying on scaling symmetries can be misleading [1]) have commented on our paper in which we proposed a simple scaling method to test structural identifiability [2]. Our scaling invariance method (SIM) tests for scaling symmetries only, and Villaverde and Massonis correctly show the SIM may fail to detect identifiability problems when a model has other types of symmetries (we indeed indicated but not investigated the importance of generalizing the method to other symmetries). Thus, we agree that our simple method provides a necessary but not sufficient condition for identifiability, and we appreciate their careful analysis and constructive criticism.We nevertheless think that the simple method remains useful because it is so simple. Even for investigators with little training in mathematics, the method provides a necessary condition for structural identifiability that can be derived in a few minutes with pen and paper. Similarly, we have found its pedagogic strength by teaching the method to our own graduate students and colleagues. More advanced methods (such as STRIKE-GOLDD [3,4], COMBOS [5], or SIAN [6]) are typically intimidating for researchers with a background in Biology or Bioinformatics. This simple method can help those practitioners to familiarize themselves with the identifiability problem and better understand their models.Finally, it is worth noting that if scaling invariance is the only symmetry (as it was in all the cases we analyzed), our SIM remains valuable (albeit uncontrolled), and surprisingly effective for a wide variety of problems (as the extensive list collected in the Supplementary Material our paper [2]). We guess that the SIM especially fails when applied to linear models (as more potential rotations of the variables leave the system invariant), and in non-linear scenarios where some parameters are identical. For instance, the FitzHugh-Nagumo model raised by Villaverde and Massonis, x˙1(t)=c(x1(t)x13(t)3x2(t)+d),x˙2(t)=1c(x1(t)+ab·x2(t)),y(t)=x1(t), could have been written as x˙1(t)=λ1x1(t)λ2x13(t)3λ3x2(t)+d,x˙2(t)=λ4x1(t)+ab·x2(t),y(t)=x1(t) where λ1 = λ2 = λ3 = 1/λ4 = c. One of the reasons why our method fails, in this case, might be these additional symmetries introduced in this more elaborate notation of the model.Hence, it is worth understanding generic conditions under which the SIM method is expected to be fragile, possibly using STRIKE-GOLDD to test large families of nonlinear models.As a final remark, we appreciate that Villaverde and Massonis have shared their source code, so researchers might have a gold standard to test identifiability.  相似文献   

12.
13.
14.
15.
A new sulfur-containing imidazole compound, m.p. 218~223°C (decomp.), [α]D24+7.4° in water), C11H19N3O3S was isolated from sclerotia of Sclerotinia libertiana and named sclerothionine. The chemical structure of sclerothionine was identified with 2-hydroxyethyl-ergothioneine which was synthesized from ethylene chlorhydrine and ergothioneine.  相似文献   

16.
17.
18.
19.
Bulge loops are common features of RNA structures that are involved in the formation of RNA tertiary structures and are often sites for interactions with proteins and ions. Minimal thermodynamic data currently exist on the bulge size and sequence effects. Using thermal denaturation methods, thermodynamic properties of 1- to 5-nt adenine and guanine bulge loop constructs were examined in 10 mM MgCl2 or 1 M KCl. The ΔG37 loop parameters for 1- to 5-nt purine bulge loops in RNA constructs were between 3.07 and 5.31 kcal/mol in 1 M KCl buffer. In 10 mM magnesium ions, the ΔΔG° values relative to 1 M KCl were 0.47–2.06 kcal/mol more favorable for the RNA bulge loops. The ΔG37 loop parameters for 1- to 5-nt purine bulge loops in DNA constructs were between 4.54 and 5.89 kcal/mol. Only 4- and 5-nt guanine constructs showed significant change in stability for the DNA constructs in magnesium ions. A linear correlation is seen between the size of the bulge loop and its stability. New prediction models are proposed for 1- to 5-nt purine bulge loops in RNA and DNA in 1 M KCl. We show that a significant stabilization is seen for small bulge loops in RNA in the presence of magnesium ions. A prediction model is also proposed for 1- to 5-nt purine bulge loop RNA constructs in 10 mM magnesium chloride.  相似文献   

20.
《Inorganica chimica acta》2006,359(10):3191-3196
The reaction of (trimethylsilyl)methyl phosphines R2PCH2SiMe3 with chlorophosphines ClPR2 provides ready access to a range of symmetrical or non-symmetrical diphosphinomethanes R2PCH2PR2. The products are obtained cleanly and can be used directly in the synthesis of transition metal complexes. This is illustrated by the preparation and structural characterization of the corresponding NiCl2(P–P) derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号