首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Tau is a microtubule-stabilizing protein that is functionally modulated by alterations in its phosphorylation state. Because phosphorylation regulates both normal and pathological tau functioning, it is of importance to identify the signaling pathways that regulate tau phosphorylation in vivo. The present study examined changes in tau phosphorylation and function in response to modulation of cellular thiol content. Treatment of cells with phenylarsine oxide, which reacts with vicinal thiols, selectively increased tau phosphorylation within its microtubule-binding domain, at the non-Ser/Thr-Pro sites Ser262/356, while decreasing tau phosphorylation at Ser/ Thr-Pro sites outside this region. This increase in tau phosphorylation correlated with a decrease in the amount of tau associated with the cytoskeleton and decreased microtubule stability. Phenylarsine oxide-induced tau phosphorylation was inhibited by oxidants and by the protein kinase inhibitor staurosporine. Although staurosporine completely eliminated the increase in tau phosphorylation at Ser262/356, as detected by immunostaining with 12E8, it had a comparatively minor effect on the changes in tau localization induced by phenylarsine oxide. The results suggest that regulation of cellular thiols is important for modulating tau phosphorylation and function in situ. Additionally, although phosphorylation of Ser262/356 decreases tau's interaction with the cytoskeleton, phosphorylation of these residues alone is not sufficient for the phenylarsine oxide-induced changes in tau localization.  相似文献   

2.
Paired two-component regulatory systems consisting of a sensor kinase and a response regulator are the major means by which bacteria sense and respond to different stimuli. The role of essential response regulator, MtrA, in Mycobacterium tuberculosis proliferation is unknown. We showed that elevating the intracellular levels of MtrA prevented M. tuberculosis from multiplying in macrophages, mice lungs and spleens, but did not affect its growth in broth. Intracellular trafficking analysis revealed that a vast majority of MtrA overproducing merodiploids were associated with lysosomal associated membrane protein (LAMP-1) positive vacuoles, indicating that intracellular growth attenuation is, in part, due to an impaired ability to block phagosome-lysosome fusion. A merodiploid strain producing elevated levels of phosphorylation-defective MtrA (MtrA(D53N)) was partially replicative in macrophages, but was attenuated in mice. Quantitative real-time PCR analyses revealed that expression of dnaA, an essential replication gene, was sharply upregulated during intramacrophage growth in the MtrA overproducer in a phosphorylation-dependent manner. Chromatin immunoprecipitation using anti-MtrA antibodies provided direct evidence that MtrA regulator binds to dnaA promoter in vivo indicating that dnaA promoter is a MtrA target. Simultaneous overexpression of mtrA regulator and its cognate mtrB kinase neither inhibited growth nor sharply increased the expression levels of dnaA in macrophages. We propose that proliferation of M. tuberculosis in vivo depends, in part, on the optimal ratio of phosphorylated to non-phosphorylated MtrA response regulator.  相似文献   

3.
4.
In Mycobacterium tuberculosis the sulfate activating complex provides a key branching point in sulfate assimilation. The complex consists of two polypeptide chains, CysD and CysN. CysD is an ATP sulfurylase that, with the energy provided by the GTPase activity of CysN, forms adenosine-5’-phosphosulfate (APS) which can then enter the reductive branch of sulfate assimilation leading to the biosynthesis of cysteine. The CysN polypeptide chain also contains an APS kinase domain (CysC) that phosphorylates APS leading to 3’-phosphoadenosine-5’-phosphosulfate, the sulfate donor in the synthesis of sulfolipids. We have determined the crystal structures of CysC from M. tuberculosis as a binary complex with ADP, and as ternary complexes with ADP and APS and the ATP mimic AMP-PNP and APS, respectively, to resolutions of 1.5 Å, 2.1 Å and 1.7 Å, respectively. CysC shows the typical APS kinase fold, and the structures provide comprehensive views of the catalytic machinery, conserved in this enzyme family. Comparison to the structure of the human homolog show highly conserved APS and ATP binding sites, questioning the feasibility of the design of specific inhibitors of mycobacterial CysC. Residue Cys556 is part of the flexible lid region that closes off the active site upon substrate binding. Mutational analysis revealed this residue as one of the determinants controlling lid closure and hence binding of the nucleotide substrate.  相似文献   

5.
A prokaryotic non-homologous end-joining (NHEJ) system for the repair of DNA double-strand breaks (DSBs), composed of a Ku homodimer (Mt-Ku) and a multidomain multifunctional ATP-dependent DNA ligase (Mt-Lig), has been described recently in Mycobacterium tuberculosis. Mt-Lig exhibits polymerase and nuclease activity in addition to DNA ligation activity. These functions were ascribed to putative polymerase, nuclease and ligase domains that together constitute a monomeric protein. Here, the separate polymerase, nuclease and ligase domains of Mt-Lig were cloned individually, over-expressed and the soluble proteins purified to homogeneity. The polymerase domain demonstrated DNA-dependent RNA primase activity, catalysing the synthesis of unprimed oligoribonucleotides on single-stranded DNA templates. The polymerase domain can also extend DNA in a template-dependent manner. This activity was eliminated when the catalytic aspartate residues were replaced with alanine. The ligase domain catalysed the sealing of nicked double-stranded DNA designed to mimic a DSB, consistent with the role of Mt-Lig in NHEJ. Deletion of the active-site lysine residue prevented the formation of an adenylated ligase complex and consequently thwarted ligation. The nuclease domain did not function independently as a 3'-5' exonuclease. DNA-binding assays revealed that both the polymerase and ligase domains bind DNA in vitro, the latter with considerably higher affinity. Mt-Ku directly stimulated the polymerase and nuclease activities of Mt-Lig. The polymerase domain bound Mt-Ku in vitro, suggesting it may recruit Mt-Lig to Ku-bound DNA in vivo. Consistent with these data, Mt-Ku stimulated the primer extension activity of the polymerase domain, suggestive of a functional interaction relevant to NHEJ-mediated DSB repair processes.  相似文献   

6.
Small heat shock proteins (sHsps) usually exist as dynamic oligomers and oligomeric dissociation was believed to be a prerequisite for their chaperone activities. The truth of this hypothesis was verified in our present study on Hsp16.3, one member of sHsps from Mycobacterium tuberculosis, mainly by utilizing chemical cross-linking. Analysis using size exclusion chromatography demonstrated that the heat-induced oligomeric dissociation of Hsp16.3 was severely blocked due to highly efficient inter-subunit cross-linkages generated by chemical cross-linking, as well as its chaperone activity being reduced. Further analysis by non-denaturing pore gradient polyacrylamide gel electrophoresis and fluorescence spectrometry revealed that the dynamic oligomeric dissociation/reassociation process of Hsp16.3 at room temperature was suppressed by inter-subunit cross-linkages, accompanied by significantly decreased exposure of hydrophobic surfaces that are usually hidden in oligomers. These findings supported the hypothesis that substrate-binding sites of sHsps are exposed presumably by dissociation of larger oligomers into smaller active oligomers, and therefore such a dissociation process could be adjusted to modulate chaperone activities.  相似文献   

7.
目的:制备抗结核分枝杆菌Rpf B结构域单克隆抗体。方法:将p PRO-EXHT-Rpf B domain原核表达载体接种于大肠杆菌DH5中,用IPTG诱导表达Rpf B结构域蛋白,以纯化的Rpf B结构域蛋白作为免疫原,皮下包埋免疫小鼠3次,每次间隔2周;分离小鼠的脾细胞,与Sp2/0细胞融合,克隆化制备抗Rpf B结构域单抗,ELISA检测其效价,鉴定其特异性和相对亲和力,观察制备的抗Rpf B结构域单抗对Rpf家族其他蛋白的识别能力及其对结核分枝杆菌和藤黄微球菌的生长抑制作用。结果:制备了3株抗Rpf B结构域单抗,特异性高,亲和力较强,均能特异性识别Rpf B结构域。经小鼠腹腔注射制备腹水并纯化,获得了较高纯度的单抗,所制备的抗Rpf B结构域多肽的单克隆抗体可以识别多种Rpf样蛋白及其结构域蛋白。在抗体滴度为1∶1000时可有效抑制Rpf B结构域对结核分枝杆菌H37Ra和藤黄微球菌的生长促进作用,提示抗Rpf B结构域单抗可能会抑制进入机体内生长停滞或潜伏感染的结核分枝杆菌的再次激活,可能具有预防隐性感染复发的作用。结论:抗Rpf B结构域单抗的制备为进一步研究Rpf B结构域的生物学和免疫特性提供了实验工具。  相似文献   

8.
9.
10.
Mycobacterium tuberculosis ESAT-6 (MtbESAT-6) reportedly shows membrane/cell-lysis activity, and recently its biological roles in pathogenesis have been implicated in rupture of the phagosomes for bacterial cytosolic translocation. However, molecular mechanism of MtbESAT-6-mediated membrane interaction, particularly in relation with its biological functions in pathogenesis, is poorly understood. In this study, we investigated the pH-dependent membrane interaction of MtbESAT-6, MtbCFP-10, and the MtbESAT-6/CFP-10 heterodimer, by using liposomal model membranes that mimic phagosomal compartments. MtbESAT-6, but neither MtbCFP-10 nor the heterodimer, interacted with the liposomal membranes at acidic conditions, which was evidenced by release of K+ ions from the liposomes. Most importantly, the orthologous ESAT-6 from non-pathogenic Mycobacterium smegmatis (MsESAT-6) was essentially inactive in release of K+. The differential membrane interactions between MtbESAT-6 and MsESAT-6 were further confirmed in an independent membrane leakage assay using the dye/quencher pair, 8-aminonapthalene-1,3,6 trisulfonic acid (ANTS)/p-xylene-bis-pyridinium bromide (DPX). Finally, using intrinsic and extrinsic fluorescence approaches, we probed the pH-dependent conformational changes of MtbESAT-6 and MsESAT-6. At acidic pH conditions, MtbESAT-6 underwent a significant conformational change, which was featured by an increased solvent-exposed hydrophobicity, while MsESAT-6 showed little conformational change in response to acidification. In conclusion, we have demonstrated that MtbESAT-6 possesses a unique membrane-interacting activity that is not found in MsESAT-6 and established the utility of rigorous biochemical approaches in dissecting the virulence of M. tuberculosis.  相似文献   

11.
12.
Mycobacterium tuberculosis is an acid-fast pathogen of humans and the etiological agent of tuberculosis (TB). It is estimated that one-third of the world''s population is latently (persistently) infected with M. tuberculosis. M. tuberculosis persistence is regulated, in part, by the MprAB two-component signal transduction system, which is activated by and mediates resistance to cell envelope stress. Here we identify MprAB as part of an evolutionarily conserved cell envelope stress response network and demonstrate that MprAB-mediated signal transduction is negatively regulated by the MprB extracytoplasmic domain (ECD). In particular, we report that deregulated production of the MprB sensor kinase, or of derivatives of this protein, negatively impacts M. tuberculosis growth. The observed growth attenuation is dependent on MprAB-mediated signal transduction and is exacerbated in strains of M. tuberculosis producing an MprB variant lacking its ECD. Interestingly, full-length MprB, and the ECD of MprB specifically, immunoprecipitates the Hsp70 chaperone DnaK in vivo, while overexpression of dnaK inhibits MprAB-mediated signal transduction in M. tuberculosis grown in the absence or presence of cell envelope stress. We propose that under nonstress conditions, or under conditions in which proteins present in the extracytoplasmic space are properly folded, signaling through the MprAB system is inhibited by the MprB ECD. Following exposure to cell envelope stress, proteins present in the extracytoplasmic space become unfolded or misfolded, leading to removal of the ECD-mediated negative regulation of MprB and subsequent activation of MprAB.  相似文献   

13.
Streptomycin Uptake by Mycobacterium tuberculosis   总被引:2,自引:0,他引:2       下载免费PDF全文
Data are presented indicating that (14)C-streptomycin uptake by tubercle bacilli increases as a function of exposure time, is directly and proportionately related to concentration, and involves at least two phases.  相似文献   

14.
15.
16.
Iron is an essential nutrient not freely available to microorganisms infecting mammals. To overcome iron deficiency, bacteria have evolved various strategies including the synthesis and secretion of high-affinity iron chelators known as siderophores. The siderophores produced and secreted by Mycobacterium tuberculosis, exomycobactins, compete for iron with host iron-binding proteins and, together with the iron-regulated ABC transporter IrtAB, are required for the survival of M. tuberculosis in iron deficient conditions and for normal replication in macrophages and in mice. This study further characterizes the role of IrtAB in M. tuberculosis iron acquisition. Our results demonstrate a role for IrtAB in iron import and show that the amino terminus domain of IrtA is a flavin-adenine dinucleotide-binding domain essential for iron acquisition. These results suggest a model in which the amino terminus of IrtA functions to couple iron transport and assimilation.′Mycobacterium tuberculosis, the causative agent of human tuberculosis, like most organisms, requires iron to sustain essential cellular functions. Due to the poor aqueous solubility of the ferric ion (Fe3+) in aerobic and neutral pH conditions, free ferric iron is not found in the mammalian host but is bound to iron-binding proteins such as transferrin, lactoferrin, and ferritin (30). A common mechanism by which bacteria acquire iron is the synthesis and secretion of siderophores (high-affinity iron chelators) that can solubilize iron in the environment or remove it from iron-binding proteins of the mammalian host. Fe3+-siderophore complexes are recognized by specific surface receptors and translocated through the plasma membrane by ABC-type transporters, using the energy generated by ATP hydrolysis (13). Dissociation of iron from the incorporated siderophore complex can occur via cleavage of the siderophore or by the action of a ferric reductase (13). Reduction of Fe3+ results in a weaker binding of Fe2+ to the siderophore, allowing release of iron that can then be utilized (21).To overcome iron limitation, M. tuberculosis synthesizes siderophores named mycobactin and exomycobactin. Mycobactin is very hydrophobic and remains cell associated, whereas exomycobactin (ExMB, also known as carboxymycobactin) is more hydrophilic and is secreted to the medium (8, 16). Fe3+-ExMB complexes can deliver iron to the cell by transfer of iron to mycobactin (7) or by a pathway that is mycobactin independent (17). Previously, we showed that inactivation of M. tuberculosis irtA (Rv1348) or irtB (Rv1349) genes, which encode membrane proteins of the ABC transporter family (2), results in decreased ability of M. tuberculosis to replicate in low-iron medium and to utilize Fe3+-ExMb as the sole iron source. Because IrtA and IrtB each encode a membrane protein with one permease domain fused to an ATPase domain, and irtA and irtB are organized in an operon, we postulated that these two proteins associate to form one ABC transporter necessary for iron acquisition in vitro and also for normal replication of M. tuberculosis in human macrophages and in infected mice lungs (18). We provide here evidence that supports a role for IrtAB as an iron importer and unveils essential properties of the amino-terminal domain (NTD) of IrtA. We propose a model by which IrtA-NTD couples iron transport to assimilation.  相似文献   

17.
18.
目的:构建结核分枝杆菌eis基因的穿梭表达载体,鉴定其在重组耻垢分枝杆菌中的生物活性。方法:采用PCR技术克隆结核分枝杆菌eis基因,构建大肠杆菌-分枝杆菌穿梭表达载体pMV-eis,经酶切和测序鉴定其正确性,用电穿孔法将重组质粒转化至耻垢分枝杆菌mc2155中,采用SDS-PAGE和Western blot检测eis基因在耻垢分枝杆菌中的表达。结果:成功构建结核杆菌eis基因穿梭表达载体pMV-eis;生长曲线说明重组质粒不会影响耻垢分枝杆菌的体外生长;SDS-PAGE 和Western blot检测证实eis在耻垢分枝杆菌中可表达出相对分子量约42kDa的Eis蛋白。结论:成功构建了eis基因穿梭表达质粒pMV-eis,且该重组质粒在耻垢分枝杆菌中具有生物活性,为下一步研究表达产物Eis的功能奠定了一定基础。  相似文献   

19.
20.
The structure of MtrA, an essential gene product for the human pathogen Mycobacterium tuberculosis, has been solved to a resolution of 2.1 A. MtrA is a member of the OmpR/PhoB family of response regulators and represents the fourth family member for which a structure of the protein in its inactive state has been determined. As is true for all OmpR/PhoB family members, MtrA possesses an N-terminal regulatory domain and a C-terminal winged helix-turn-helix DNA-binding domain, with phosphorylation of the regulatory domain modulating the activity of the protein. In the inactive form of MtrA, these two domains form an extensive interface that is composed of the alpha4-beta5-alpha5 face of the regulatory domain and the C-terminal end of the positioning helix, the trans-activation loop, and the recognition helix of the DNA-binding domain. This domain orientation suggests a mechanism of mutual inhibition by the two domains. Activation of MtrA would require a disruption of this interface to allow the alpha4-beta5-alpha5 face of the regulatory domain to form the intermolecule interactions that are associated with the active state and to allow the recognition helix to interact with DNA. Furthermore, the interface appears to stabilize the inactive conformation of MtrA, potentially reducing the rate of phosphorylation of the N-terminal domain. This combination of effects may form a switch, regulating the activity of MtrA. The domain orientation exhibited by MtrA also provides a rationale for the variation in linker length that is observed within the OmpR/PhoB family of response regulators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号