首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The surface of aligned, electrospun poly-L-lactic acid (PLLA) fibers was chemically modified to determine if surface chemistry and hydrophilicity could improve neurite extension from chick dorsal root ganglia. Specifically, diethylenetriamine (DTA, for amine functionalization), 2-(2-aminoethoxy)ethanol (AEO, for alcohol functionalization), or GRGDS (cell adhesion peptide) were covalently attached to the surface of electrospun fibers. Water contact angle measurements revealed that surface modification of electrospun fibers significantly improved fiber hydrophilicity compared to unmodified fibers (p < 0.05). Scanning electron microscopy (SEM) of fibers revealed that surface modification changed fiber topography modestly, with DTA modified fibers displaying the roughest surface structure. Degradation of chemically modified fibers revealed no change in fiber diameter in any group over a period of seven days. Unexpectedly, neurites from chick DRG were longest on fibers without surface modification (1651 ± 488 μm) and fibers containing GRGDS (1560 ± 107 μm). Fibers modified with oxygen plasma (1240 ± 143 μm) or DTA (1118 ± 82 μm) produced shorter neurites than the GRGDS or unmodified fibers, but were not statistically shorter than unmodified and GRGDS modified fibers. Fibers modified with AEO (844 ± 151 μm) were significantly shorter than unmodified and GRGDS modified fibers (p<0.05). Based on these results, we conclude that fiber hydrophilic enhancement alone on electrospun PLLA fibers does not enhance neurite outgrowth. Further work must be conducted to better understand why neurite extension was not improved on more hydrophilic fibers, but the results presented here do not recommend hydrophilic surface modification for the purpose of improving neurite extension unless a bioactive ligand is used.  相似文献   

2.
Plasmodium falciparum malaria remains one of the most serious health problems globally and a protective malaria vaccine is desperately needed. Vaccination with attenuated parasites elicits multiple cellular effector mechanisms that lead to Plasmodium liver stage elimination. While granule-mediated cytotoxicity requires contact between CD8+ effector T cells and infected hepatocytes, cytokine secretion should allow parasite killing over longer distances. To better understand the mechanism of parasite elimination in vivo, we monitored the dynamics of CD8+ T cells in the livers of naïve, immunized and sporozoite-infected mice by intravital microscopy. We found that immunization of BALB/c mice with attenuated P. yoelii 17XNL sporozoites significantly increases the velocity of CD8+ T cells patrolling the hepatic microvasculature from 2.69±0.34 μm/min in naïve mice to 5.74±0.66 μm/min, 9.26±0.92 μm/min, and 7.11±0.73 μm/min in mice immunized with irradiated, early genetically attenuated (Pyuis4-deficient), and late genetically attenuated (Pyfabb/f-deficient) parasites, respectively. Sporozoite infection of immunized mice revealed a 97% and 63% reduction in liver stage density and volume, respectively, compared to naïve controls. To examine cellular mechanisms of immunity in situ, naïve mice were passively immunized with hepatic or splenic CD8+ T cells. Unexpectedly, adoptive transfer rendered the motile CD8+ T cells from immunized mice immotile in the liver of P. yoelii infected mice. Similarly, when mice were simultaneously inoculated with viable sporozoites and CD8+ T cells, velocities 18 h later were also significantly reduced to 0.68±0.10 μm/min, 1.53±0.22 μm/min, and 1.06±0.26 μm/min for CD8+ T cells from mice immunized with irradiated wild type sporozoites, Pyfabb/f-deficient parasites, and P. yoelii CS280–288 peptide, respectively. Because immobilized CD8+ T cells are unable to make contact with infected hepatocytes, soluble mediators could potentially play a key role in parasite elimination under these experimental conditions.  相似文献   

3.
Nanoparticle uptake and distribution to solid tumors are limited by reticuloendothelial system systemic filtering and transport limitations induced by irregular intra-tumoral vascularization. Although vascular enhanced permeability and retention can aid targeting, high interstitial fluid pressure and dense extracellular matrix may hinder local penetration. Extravascular diffusivity depends upon nanoparticle size, surface modifications, and tissue vascularization. Gold nanoparticles functionalized with biologically-compatible layers may achieve improved uptake and distribution while enabling cytotoxicity through synergistic combination of chemotherapy and thermal ablation. Evaluation of nanoparticle uptake in vivo remains difficult, as detection methods are limited. We employ hyperspectral imaging of histology sections to analyze uptake and distribution of phosphatidylcholine-coated citrate gold nanoparticles (CGN) and silica-gold nanoshells (SGN) after tail-vein injection in mice bearing orthotopic pancreatic adenocarcinoma. For CGN, the liver and tumor showed 26.5±8.2 and 23.3±4.1 particles/100μm2 within 10μm from the nearest source and few nanoparticles beyond 50μm, respectively. The spleen had 35.5±9.3 particles/100μm2 within 10μm with penetration also limited to 50μm. For SGN, the liver showed 31.1±4.1 particles/100μm2 within 10μm of the nearest source with penetration hindered beyond 30μm. The spleen and tumor showed uptake of 22.1±6.2 and 15.8±6.1 particles/100μm2 within 10μm, respectively, with penetration similarly hindered. CGH average concentration (nanoparticles/μm2) was 1.09±0.14 in the liver, 0.74±0.12 in the spleen, and 0.43±0.07 in the tumor. SGN average concentration (nanoparticles/μm2) was 0.43±0.07 in the liver, 0.30±0.06 in the spleen, and 0.20±0.04 in the tumor. Hyperspectral imaging of histology sections enables analysis of phosphatidylcholine-coated gold-based nanoparticles in pancreatic tumors with the goal to improve nanotherapeutic efficacy.  相似文献   

4.
The objective of this study was to investigate the effect of large granulated lactose carrier particle systems on aerosol performance of dry powder inhaler formulations. Granulated lactose carriers with average sizes ranging from 200 to 1,000 μm were prepared and subsequently fractionated into separate narrow size powders. The fractionated granulated lactose (GL) samples were characterized in terms of size, specific surface area, surface roughness, morphology, density, flowability, and solid-state. The in vitro aerosolization performance was performed on the different size fractions of GL samples from a commercial inhaler device (Aerolizer®) with a model formulation (2% w/w salbutamol sulfate). The cascade impaction parameters employed were 60 or 90 L/min with standard (aperture size, 0.6 mm) or modified piercing holes (aperture size, 1.2 mm) of the inhaler loaded capsules. It was shown that the largest size fraction formulation (850–1000 μm) had a slight improvement in the fine particle fraction (FPF) compared to immediately preceding size fractions, explained by a smaller adhesive force between drug and carrier. Compared to commercial piercing holes, enlarged piercing holes generated a slight decreasing trend of FPF as the lactose powder sizes increased from 200–250 μm to 600–850 μm, perhaps due to the reduced detachment force by flow forces. The size, surface roughness, density, and flowability of lactose carrier as well as device design all contributed to the aerosol dispersion performance of granulated lactose-based adhesive mixtures. It was concluded that poorer or enhanced redispersion performance is not an inherent property to the significantly large size of granulated lactose carriers as previously contended.KEY WORDS: adhesive force, carrier roughness, carrier size, DPI formulations, granulated lactose  相似文献   

5.
We investigated in vivo changes in Schlemm’s canal and the trabecular meshwork in eyes with primary open angle glaucoma (POAG). Relationships between Schlemm’s canal diameter, trabecular meshwork thickness, and intraocular pressure (IOP) were examined. Forty POAG patients and 40 normal individuals underwent 80-MHz Ultrasound Biomicroscopy examinations. The Schlemm’s canal and trabecular meshwork were imaged in superior, inferior, nasal and temporal regions. Normal individuals had an observable Schlemm’s canal in 80.3% of sections, a meridional canal diameter of 233.0±34.5 μm, a coronal diameter of 44.5±12.6 μm and a trabecular meshwork thickness of 103.9±11.1 μm, in POAG patients, Schlemm’s canal was observable in 53.1% of sections, a meridional canal diameter of 195.6±31.3 μm, a coronal diameter of 35.7±8.0 μm, and a trabecular meshwork thickness of 88.3±13.2 μm, which significantly differed from normal (both p <0.001). Coronal canal diameter (r = -0.623, p < 0.001) and trabecular meshwork thickness (r = -0.663, p < 0.001) were negatively correlated with IOP, but meridional canal diameter was not (r = -0.160, p = 0.156). Schlemm’s canal was observable in 50.5% and 56.6% of POAG patients with normal (<21 mmHg) and elevated (>21 mmHg) IOP, respectively (χ = 1.159, p = 0.282). Coronal canal diameter was significantly lower in the elevated IOP group (32.6±4.9 μm) than in the normal IOP group (35.7±8.0 μm, p < 0.001). This was also true of trabecular meshwork thickness (81.9±10.0 μm vs. 97.1±12.0 μm, p < 0.001). In conclusion, eyes with POAG had fewer sections with an observable Schlemm’s canal. Canal diameter and trabecular meshwork thickness were also lower than normal in POAG patients. Schlemm’s canal coronal diameter and trabecular meshwork thickness were negatively correlated with IOP.  相似文献   

6.
Cells are sophisticated integrators of mechanical stimuli that lead to physiological, biochemical, and genetic responses. The bioluminescence of dinoflagellates, alveolate protists that use light emission for predator defense, serves as a rapid noninvasive whole-cell reporter of mechanosensitivity. In this study, we used atomic force microscopy (AFM) to explore the relationship between cell mechanical properties and mechanosensitivity in live cells of the dinoflagellate Pyrocystis lunula. Cell stiffness was 0.56 MPa, consistent with cells possessing a cell wall. Cell response depended on both the magnitude and velocity of the applied force. At the maximum stimulation velocity of 390 μm s−1, the threshold response occurred at a force of 7.2 μN, resulting in a contact time of 6.1 ms and indentation of 2.1 μm. Cells did not respond to a low stimulation velocity of 20 μm s−1, indicating a velocity dependent response that, based on stress relaxation experiments, was explained by the cell viscoelastic properties. This study demonstrates the use of AFM to study mechanosensitivity in a cell system that responds at fast timescales, and provides insights into how viscoelastic properties affect mechanosensitivity. It also provides a comparison with previous studies using hydrodynamic stimulation, showing the discrepancy in cell response between direct compressive forces using AFM and those within flow fields based on average flow properties.  相似文献   

7.
Aerosols of microorganisms were tested for particle size by use of an Andersen sampler. Mycoplasma aerosols had an average count median diameter (CMD) of 2.1 ± 0.5 μ. Staphylococcus aureus L forms gave an average CMD of 4.6 ± 1.7 μ; the diphtheroid L form, a CMD of 3.4 ± 0.3 μ. Escherichia coli had a CMD of 5.4 ± 2.5 μ; Neisseria sicca, 3.3 ± 0.5 μ; N. meningitidis, 3.4 ± 0.2 μ. S. aureus ATCC 6538, the parent strain of the L form, yielded a CMD of 3.9 ± 1.2 μ. Candida albicans gave an average CMD of 5.9 ± 1.4 μ. All organisms tested survived aerosolizing and could be recovered in viable form for at least 1 hr. Ultraviolet radiation at 2,537 A destroyed the bacteria and mycoplasmas instantaneously, and destroyed 87% of the L forms of S. aureus, 69% of the diphtheroid L form, and 98% of the C. albicans cells. After irradiation, viable particles of the L form and C. albicans aerosols were consistently larger, indicating that clumping led to survival. Submicron size particles were found in aerosols of all species tested except C. albicans.  相似文献   

8.
This study is designed to evaluate the visual outcomes, accuracy, and predictability of corneal flaps with different thicknesses created by 60-kHz femtosecond laser according to different corneal thicknesses in the patients with low and moderate refractive error. A total of 182 eyes were divided according to the central corneal thickness (470μm–499 μm in Group A, 500μm–549 μm in Group B, and 550μm–599 μm in Group C) and underwent femtosecond laser-assisted LASIK for a target corneal flap thickness (100 μm for Group A, 110 μm for Group B, and 120 μm for Group C). Uncorrected distance visual acuity (UDVA), corrected distance visual acuity (CDVA), and refractive status were examined. The flap thickness of each eye was measured by anterior segment optical coherence tomography (AS-OCT) on 30 points at 1-month follow-up to assess the accuracy and predictability. Postoperatively, at least 75% of eyes had a UDVA of 20/16 or better, less than 2% of eyes lost one line, over 30% of eyes gained one or more lines in CDVA, at least 95% of eyes had astigmatism of less than 0.25 D, all eyes achieved a correction within ±1.00 D from the target spherical equivalent refraction. The visual and refractive outcomes did not differ significantly in all groups (P >0.05). The mean flap thickness was 100.36± 4.32 μm (range: 95–113 μm) in Group A, 111.64 ± 3.62 μm (range: 108–125 μm) in Group B, and 122.32 ± 2.88 μm (range: 112–128 μm) in Group C. The difference at each measured point among the three groups was significant (P < 0.05). The accuracy and predictability were satisfactory in all three groups. In conclusion, this customized treatment yielded satisfactory clinical outcomes with accurate and predictable flap thickness for patients with low and moderate refractive error.  相似文献   

9.

Background

Pulmonary surfactant reduces surface tension and is present at the air-liquid interface in the alveoli where inhaled nanoparticles preferentially deposit. We investigated the effect of titanium dioxide (TiO2) nanosized particles (NSP) and microsized particles (MSP) on biophysical surfactant function after direct particle contact and after surface area cycling in vitro. In addition, TiO2 effects on surfactant ultrastructure were visualized.

Methods

A natural porcine surfactant preparation was incubated with increasing concentrations (50-500 μg/ml) of TiO2 NSP or MSP, respectively. Biophysical surfactant function was measured in a pulsating bubble surfactometer before and after surface area cycling. Furthermore, surfactant ultrastructure was evaluated with a transmission electron microscope.

Results

TiO2 NSP, but not MSP, induced a surfactant dysfunction. For TiO2 NSP, adsorption surface tension (γads) increased in a dose-dependent manner from 28.2 ± 2.3 mN/m to 33.2 ± 2.3 mN/m (p < 0.01), and surface tension at minimum bubble size (γmin) slightly increased from 4.8 ± 0.5 mN/m up to 8.4 ± 1.3 mN/m (p < 0.01) at high TiO2 NSP concentrations. Presence of NSP during surface area cycling caused large and significant increases in both γads (63.6 ± 0.4 mN/m) and γmin (21.1 ± 0.4 mN/m). Interestingly, TiO2 NSP induced aberrations in the surfactant ultrastructure. Lamellar body like structures were deformed and decreased in size. In addition, unilamellar vesicles were formed. Particle aggregates were found between single lamellae.

Conclusion

TiO2 nanosized particles can alter the structure and function of pulmonary surfactant. Particle size and surface area respectively play a critical role for the biophysical surfactant response in the lung.  相似文献   

10.
Penetration of Rhizopus oligosporus into Soybeans in Tempeh   总被引:1,自引:0,他引:1       下载免费PDF全文
Histological observations were made on the penetration of hyphae of Rhizopus oligosporus into soybean cotyledons in tempeh, an Indonesian soybean food. Hyphal penetrations averaged one per 1,400 μm2 (±390 μm2) on the curved (outer) cotyledon surface and one per 1,010 μm2 (±340 μm2) on the flat (inner) one. Hyphae infiltrated to a depth of 742 μm, or about 25% of the average width of a soybean cotyledon. This previously unreported degree of penetration offers partial explanation for the rapid physical and chemical changes in soybeans during tempeh fermentation.  相似文献   

11.
Fallisia arabica n. sp. was described from peripheral blood smears of the Skink lizard, Scincus hemprichii from Jazan Province in the southwest of Saudi Arabia. Schizogony and gametogony take place within neutrophils in the peripheral blood of the host. Mature schizont is rosette shaped 17.5 ± 4.1 × 17.0 ± 3.9 μm, with a L/W ratio of 1.03(1.02–1.05) μm and produces 24(18–26) merozoites. Young gametocytes are ellipsoidal, 5.5 ± 0.8 × 3.6 ± 0.5 μm, with a L/W of 1.53(1.44–1.61) μm. Mature macrogametocytes are ellipsoidal, 9.7 ± 1.2 × 7.8 ± 1.0 μm, with a L/W of 1.24(1.21–1.34) μm and microgametocytes are ellipsoidal, 7.0 ± 1.1 × 6.8 ± 0.9 μm. with a L/W of 1.03(1.01–1.10) μm. In comparison to the described Fallisia species, this new taxon has rosette schizonts and is larger than F. dominicensis, in Hispaniola, F. bipocrati, F. poecilopi, in Panama, F. thecadactyli in Venezuela, and F. effusa, F. simplex, F. modesta, in Brazil. F. arabica has fewer merozoites than F. effusa, F. poecilopi, F. thecadactyli and F. siamense in Thailand. This new species has more merozoites than F. dominicensis and F. modesta. All of these species belong to diverse saurian families (Agamidae, Gekkonidae, Polychrotidae, Scincidae and Teiidae) parasitize only thrombocytes or lymphocytes and some species parasitize immature erythroid cells and leucocytes.  相似文献   

12.

Purpose

To investigate the characteristics of macular ganglion cell-inner plexiform layer (GCIPL) thickness profiles associated with ocular dominance.

Setting

Private practice, Seoul, Republic of Korea.

Design

Comparative case-control study.

Methods

Both eyes of 199 participants with no ophthalmic abnormalities were included. Participants were imaged by spectral-domain optical coherence tomography, and underwent dominant eye testing using a hole-in-a-card test (sighting dominance) at the same visit. Macular GCIPL, as well as circumpapillary retinal nerve fiber layer (RNFL) thickness were compared for individual patients, according to ocular dominance.

Results

Ocular dominance occurred predominantly in the right eye (right vs. left: 72.36 vs. 27.60%; P < 0.001). In the comparison of macular GCIPL thickness, the average (81.27±5.01 μm vs. 80.66±6.31 μm in dominant vs. non-dominant eyes), inferonasal (81.39±5.47μm vs. 80.33±6.82μm, and inferior sectors (77.95±6.05μm vs. 76.97±8.15μm) were significantly different between dominant and non-dominant eyes (P = 0.040, 0.005, and 0.032, respectively). Significant predictors of average GCIPL thickness were spherical equivalent (β = 1.37, P<0.001), astigmatic power (β = 1.44, P = 0.009), disc area (β = 3.90, P < 0.001), average RNFL thickness (β = 0.22, P<0.001), average cup-to-disc ratio (β = 5.74, P = 0.002), difference between the inferior and superior quadrant RNFL thicknesses (β = 0.08, P = 0.024), and ocular dominance (β = 2.10, P = 0.020). On multivariate regression analysis, ocular dominance was correlated with average GCIPL thickness after adjusting for potential confounders (β = 1.63, P = 0.048).

Conclusions

Dominant eyes accompanied significantly thicker average macular GCIPL. This information suggests that macular GCIPL thickness may provide an indicator of the relative dominance of an eye.  相似文献   

13.
Scanning confocal laser microscopy (SCLM) and fluorescent molecular probes were used to evaluate the effect of the fluoroquinolone fleroxacin on the architecture of established Pseudomonas fluorescens biofilms. Control P. fluorescens biofilms were heterogeneous, consisting of cell aggregates extending from the attachment surface to maximum measured depths of ~90 μm (mean biofilm depth at 72 h, 42 ± 28 μm) and penetrated by an array of channels. In contrast, fleroxacin-treated biofilms were less deep (mean biofilm depth at 72 h, 29 ± 8 μm), varied little in depth over large areas, and consisted of a homogeneous distribution of cells. Fleroxacin also caused cells to elongate, with cells located near the biofilm-liquid interface lengthening significantly more than cells located at the attachment surface. By using SCLM, acridine orange, and image analysis it was found that ~59% of cells within fleroxacin-treated biofilms emitted red fluorescence whereas >99% of cells from control biofilms emitted green fluorescence. The fleroxacin-treated cells which emitted red fluorescence were observed to be the population of cells which elongated.  相似文献   

14.
It has been shown that cellular migration, persistence, and associated cytoskeletal arrangement are highly dependent on substrate stiffness (modulus: N/m2 and independent of geometry), but little is known on how cells respond to subtle changes in local geometry and structural stiffness (N/m). Here, using fibers of varying diameter (400, 700, and 1200 nm) and length (1 and 2 mm) deposited over hollow substrates, we demonstrate that single mouse C2C12 cells attached to single suspended fibers form spindle morphologies that are sensitive to fiber mechanical properties. Over a wide range of increasing structural stiffness (2 to 100+ mN/m), cells exhibited decreases in migration speed and average nucleus shape index of ∼57% (from 58 to 25 μm/h) and ∼26% (from 0.78 to 0.58), respectively, whereas the average paxillin focal-adhesion-cluster (FAC, formed at poles) length increased by ∼38% (from 8 to 11 μm). Furthermore, the increase in structural stiffness directly correlates with cellular persistence, with 60% of cells moving in the direction of increasing structural stiffness. At similar average structural stiffness (25 ± 5 mN/m), cells put out longer FAC lengths on smaller diameters, suggesting a conservation of FAC area, and also exhibited higher nucleus shape index and migration speeds on larger-diameter fibers. Interestingly, cells were observed to deform fibers locally or globally through forces applied through the FAC sites and cells undergoing mitosis were found to be attached to the FAC sites by single filamentous tethers. These varied reactions have implications in developmental and disease biology models as they describe a strong dependence of cellular behavior on the cell’s immediate mechanistic environment arising from alignment and geometry of fibers.  相似文献   

15.
The effect of surface electrochemical polarization on the growth of cells of Pseudomonas fluorescens (ATCC 17552) on gold electrodes has been examined. Potentials positive or negative to the potential of zero charge (PZC) of gold were applied, and these resulted in changes in cell morphology, size at cell division, time to division, and biofilm structure. At −0.2 V (Ag/AgCl-3 M NaCl), cells elongated at a rate of up to 0.19 μm min−1, rendering daughter cells that reached up to 3.8 μm immediately after division. The doubling time for the entire population, estimated from the increment in the fraction of surface covered by bacteria, was 82 ± 7 min. Eight-hour-old biofilms at −0.2 V were composed of large cells distributed in expanded mushroom-like microcolonies that protruded several micrometers in the solution. A different behavior was observed under positive polarization. At an applied potential of 0.5 V, the doubling time of the population was 103 ± 8 min, cells elongated at a lower rate (up to 0.08 μm min−1), rendering shorter daughters (2.5 ± 0.5 μm) after division, although the duplication times were virtually the same at all potentials. Biofilms grown under this positive potential were composed of short cells distributed in a large number of compact microcolonies. These were flatter than those grown at −0.2 V or at the PZC and were pyramidal in shape. Polarization effects on cell growth and biofilm structure resembled those previously reported as produced by changes in the nutritional level of the culture medium.  相似文献   

16.

Purpose

To investigate the thickness of the retinal layers and to assess the prevalence of macular microcysts (MM) in the inner nuclear layer (INL) of patients with mitochondrial optic neuropathies (MON).

Methods

All patients with molecularly confirmed MON, i.e. Leber’s Hereditary Optic Neuropathy (LHON) and Dominant Optic Atrophy (DOA), referred between 2010 and 2012 were enrolled. Eight patients with MM were compared with two control groups: MON patients without MM matched by age, peripapillary retinal nerve fiber layer (RNFL) thickness, and visual acuity, as well as age-matched controls. Retinal segmentation was performed using specific Optical coherence tomography (OCT) software (Carl Zeiss Meditec). Macular segmentation thickness values of the three groups were compared by one-way analysis of variance with Bonferroni post hoc corrections.

Results

MM were identified in 5/90 (5.6%) patients with LHON and 3/58 (5.2%) with DOA. The INL was thicker in patients with MON compared to controls regardless of the presence of MM [133.1±7μm vs 122.3±9μm in MM patients (p<0.01) and 128.5±8μm vs. 122.3±9μm in no-MM patients (p<0.05)], however the outer nuclear layer (ONL) was thicker in patients with MM (101.4±1mμ) compared to patients without MM [77.5±8mμ (p<0.001)] and controls [78.4±7mμ (p<0.001)]. ONL thickness did not significantly differ between patients without MM and controls.

Conclusion

The prevalence of MM in MON is low (5-6%), but associated with ONL thickening. We speculate that in MON patients with MM, vitreo-retinal traction contributes to the thickening of ONL as well as to the production of cystic spaces.  相似文献   

17.
There is growing evidence that severe decline of skeletal muscle mass and function with age may be mitigated by exercise and dietary supplementation with protein and amino acid ingredient technologies. The purposes of this study were to examine the effects of the leucine catabolite, beta-hydroxy-beta-methylbutyrate (HMB), in C2C12 myoblasts and myotubes, and to investigate the effects of dietary supplementation with HMB, the amino acid β-alanine and the combination thereof, on muscle contractility in a preclinical model of pre-sarcopenia. In C2C12 myotubes, HMB enhanced sarcoplasmic reticulum (SR) calcium release beyond vehicle control in the presence of all SR agonists tested (KCl, P<0.01; caffeine, P = 0.03; ionomycin, P = 0.03). HMB also improved C2C12 myoblast viability (25 μM HMB, P = 0.03) and increased proliferation (25 μM HMB, P = 0.04; 125 μM HMB, P<0.01). Furthermore, an ex vivo muscle contractility study was performed on EDL and soleus muscle from 19 month old, male C57BL/6nTac mice. For 8 weeks, mice were fed control AIN-93M diet, diet with HMB, diet with β-alanine, or diet with HMB and β-alanine. In β-alanine fed mice, EDL muscle showed a 7% increase in maximum absolute force compared to the control diet (202 ± 3vs. 188± 5 mN, P = 0.02). At submaximal frequency of stimulation (20 Hz), EDL from mice fed HMB plus β-alanine showed an 11% increase in absolute force (88.6 ± 2.2 vs. 79.8 ± 2.4 mN, P = 0.025) and a 13% increase in specific force (12.2 ± 0.4 vs. 10.8 ± 0.4 N/cm2, P = 0.021). Also in EDL muscle, β-alanine increased the rate of force development at all frequencies tested (P<0.025), while HMB reduced the time to reach peak contractile force (TTP), with a significant effect at 80 Hz (P = 0.0156). In soleus muscle, all experimental diets were associated with a decrease in TTP, compared to control diet. Our findings highlight beneficial effects of HMB and β-alanine supplementation on skeletal muscle function in aging mice.  相似文献   

18.
1. The rate and stability to aging of the metabolism of propionate by sheep-liver slices and sucrose homogenates were examined. Aging for up to 20min. at 37° in the absence of added substrate had little effect with slices, whole homogenates or homogenates without the nuclear fraction. 2. Metabolism of propionate by sucrose homogenates was confined to the mitochondrial fraction, but the mitochondrial supernatant (microsomes plus cell sap) stimulated propionate removal. 3. The rate of propionate metabolism by liver slices was higher in a high potassium phosphate–bicarbonate medium [0·88(±s.e.m. 0·16)μmole/mg. of N/hr.] than in Krebs–Ringer bicarbonate medium [0·44(±s.e.m. 0·13)μmole/mg. of N/hr.]. 4. Metabolism of propionate by sucrose homogenates freed from nuclei was dependent on the presence of oxygen, carbon dioxide and ATP. Propionate removal was stimulated 250% by Mg2+ ions and 670% by cytochrome c. 5. In the complete medium 2·39(±s.e.m. 0·15)μmoles of propionate were consumed/mg. of N/hr. 6. The ratio of oxygen consumption to propionate utilization was sufficient to account for the complete oxidation of half the propionate consumed. 7. The only products detected under these conditions were succinate, fumarate and malate. Propionate had no effect on the production of lactate from endogenous sources and did not itself give rise to lactate. 8. Methylmalonate did not accumulate when propionate was metabolized and was not oxidized. It was detected as an intermediate in the conversion of propionyl-CoA into succinate. The rate of this reaction sequence was adequate to account for the rate of propionate metabolism by sucrose homogenates or slices, provided that the rate of formation of propionyl-CoA was not limiting. 9. The methylmalonate pathway was predominantly a mitochondrial function. 10. The metabolism of propionate appeared to be dependent on active oxidative phosphorylation.  相似文献   

19.
20.
1. The rate of metabolism of propionate by aged sheep-liver mitochondria in the presence of oxygen + carbon dioxide (95:5) was 5·0 (± s.e.m. 0·8) μmoles/mg. of mitochondrial N/hr. 2. When aged in the presence of the mitochondrial supernatant the rate was increased. Mitochondria from 0·33g. of liver, when combined with the corresponding mitochondrial supernatant from 0·08g. of liver, metabolized propionate at a rate of 11·4 (± s.e.m. 1·2) μmoles/mg. of mitochondrial N/hr. This rate is comparable with rates previously obtained with aged nuclear-free homogenates. 3. Two factors in the mitochondrial supernatant were detected, which when combined reproduced the effect of the fresh supernatant and prevented loss of activity on aging. One of these was non-diffusible and was recovered by fractionation of the dialysed mitochondrial supernatant with ammonium sulphate. The second factor was present in an ultrafiltrate of fresh mitochondrial supernatant and in boiled mitochondrial supernatant; it was isolated and identified as l(+)-glutamate. 4. The effect of the non-diffusible factor was due to protection of the mitochondria from the aging process, whereas glutamate served both in this capacity and as a direct stimulant of propionate metabolism at low concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号