首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanisms by which nitric oxide (NO) relaxes smooth muscles are unclear. The NO donor sodium nitroprusside (SNP) has been reported to increase the Ca2+ release frequency (Ca2+ sparks) through ryanodine receptors (RyRs) and activate spontaneous transient outward currents (STOCs), resulting in smooth muscle relaxation. Our findings that caffeine relaxes and hyperpolarizes murine gastric fundus smooth muscles and increases phospholamban (PLB) phosphorylation by Ca2+/calmodulin (CaM)-dependent protein kinase II (CaM kinase II) suggest that PLB phosphorylation by CaM kinase II participates in smooth muscle relaxation by increasing sarcoplasmic reticulum (SR) Ca2+ uptake and the frequencies of SR Ca2+ release events and STOCs. Thus, in the present study, we investigated the roles of CaM kinase II and PLB in SNP-induced relaxation of murine gastric fundus smooth muscles. SNP hyperpolarized and relaxed gastric fundus circular smooth muscles and activated CaM kinase II. SNP-induced CaM kinase II activation was prevented by KN-93. Ryanodine, tetracaine, 2-aminoethoxydiphenylborate, and cyclopiazonic acid inhibited SNP-induced fundus smooth muscle relaxation and CaM kinase II activation. The Ca2+-activated K+ channel blockers iberiotoxin and apamin inhibited SNP-induced hyperpolarization and relaxation. The soluble guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo-[4,3-]quinoxalin-1-one inhibited SNP-induced relaxation and CaM kinase II activation. The membrane-permeable cGMP analog 8-bromo-cGMP relaxed gastric fundus smooth muscles and activated CaM kinase II. SNP increased phosphorylation of PLB at Ser16 and Thr17. Thr17 phosphorylation of PLB was inhibited by cyclopiazonic acid and KN-93. Ser16 and Thr17 phosphorylation of PLB was sensitive to 1H-[1,2,4]oxadiazolo-[4,3-]quinoxalin-1-one. These results demonstrate a novel pathway linking the NO-soluble guanylyl cyclase-cGMP pathway, SR Ca2+ release, PLB, and CaM kinase II to relaxation in gastric fundus smooth muscles. calcium signaling; nitric oxide; sodium nitroprusside; calmodulin  相似文献   

2.
Small pulmonary arteries (SPA), <500 microm diameter of the cat, constrict when exposed to hypoxia, whereas larger arteries (large pulmonary arteries; LPA), >800 microm diameter, show little or no response. It is unknown why different contractile responses occur within the same vascular bed, but activator or repressor proteins within the smooth muscle cell (SMC) can modify myosin phosphatase and myosin light chain kinase (MLCK), thereby influencing the phosphorylation state of myosin light chain (MLC) and ultimately, contraction. Telokin, a protein with a sequence identical to the COOH-terminal domain of MLCK, is expressed in smooth muscle where in its phosphorylated state it inhibits myosin phosphatase, binds to unphosphorylated myosin, and helps maintain smooth muscle relaxation. We measured telokin mRNA and telokin protein in smooth muscle from different diameter feline pulmonary arteries and sought to determine whether changes in the phosphorylation status of telokin and MLC occurred during hypoxia. In pulmonary arteries, telokin expression varied inversely with artery diameter, but cerebral arteries showed neither telokin protein nor telokin mRNA. Although telokin and MLC were distributed uniformly throughout the SPA muscle cell cytoplasm, they were not colocalized. During hypoxia, telokin dephosphorylated, and MLC became increasingly phosphorylated in SPA SMC, whereas in LPA SMC there was no change in either telokin or MLC phosphorylation. When LPA SMC were exposed to phenylephrine, MLC phosphorylation increased with no change in telokin phosphorylation. These results suggest that in SPA, phosphorylated telokin may help maintain relaxation under unstimulated conditions, whereas in LPA, telokin's function remains undetermined.  相似文献   

3.
Elevations in the intracellular Ca(2+) concentration activate the serine/threonine protein kinase Ca(2+)/calmodulin-dependent protein kinase II (CaM kinase II). We tested the hypothesis that increased sarco(endo)plasmic reticulum Ca(2+)-ATPase activity by phospholamban (PLB) phosphorylation contributes to smooth muscle relaxation by elevating the sarcoplasmic reticulum (SR) Ca(2+) load and increasing the frequency of Ca(2+) release events from the SR. We have previously shown that caffeine or sodium nitroprusside (SNP) relaxes murine gastric fundus smooth muscles and increases PLB phosphorylation by CaM kinase II. These findings suggest that an increased SR Ca(2+) load increases the frequency of Ca(2+) transients from the SR and results in PLB phosphorylation by CaM kinase II, contributing to caffeine- or SNP-induced relaxation. The aim of the present study was to investigate the effects of SNP on CaM kinase II and PLB phosphorylation in gastric antrum smooth muscles. SNP or 8-bromo-cGMP decreased the basal tone and amplitudes of spontaneous phasic contractions and activated CaM kinase II. SNP-induced relaxation and CaM kinase II activation were blocked by [1,2,4]oxadizolo-[4,3alpha]quinoxaline-1-one (ODQ) and inhibited by cyclopiazonic acid (CPA) or KN-93. SNP also increased PLBSer(16) and PLBThr(17) phosphorylation. Both PLBSer(16) and Thr(17) phosphorylation were ODQ sensitive. However, only PLBThr(17) phosphorylation was inhibited by CPA or KN-93. These results suggest that CaM kinase II activation and PLB phosphorylation participate in the relaxant effect of SNP on murine gastric antrum smooth muscles through a nitric oxide/guanylyl cyclase/cGMP pathway.  相似文献   

4.
Ca(2+)/calmodulin (CaM)-dependent phosphorylation of myosin regulatory light chain (RLC) in smooth muscle by myosin light chain kinase (MLCK) and dephosphorylation by myosin light chain phosphatase (MLCP) are subject to modulatory cascades that influence the sensitivity of RLC phosphorylation and hence contraction to intracellular Ca(2+) concentration ([Ca(2+)](i)). We designed a CaM-sensor MLCK containing smooth muscle MLCK fused to two fluorescent proteins linked by the MLCK CaM-binding sequence to measure kinase activation in vivo and expressed it specifically in mouse smooth muscle. In phasic bladder muscle, there was greater RLC phosphorylation and force relative to MLCK activation and [Ca(2+)](i) with carbachol (CCh) compared with KCl treatment, consistent with agonist-dependent inhibition of MLCP. The dependence of force on MLCK activity was nonlinear such that at higher concentrations of CCh, force increased with no change in the net 20% activation of MLCK. A significant but smaller amount of MLCK activation was found during the sustained contractile phase. MLCP inhibition may occur through RhoA/Rho-kinase and/or PKC with phosphorylation of myosin phosphatase targeting subunit-1 (MYPT1) and PKC-potentiated phosphatase inhibitor (CPI-17), respectively. CCh treatment, but not KCl, resulted in MYPT1 and CPI-17 phosphorylation. Both Y27632 (Rho-kinase inhibitor) and calphostin C (PKC inhibitor) reduced CCh-dependent force, RLC phosphorylation, and phosphorylation of MYPT1 (Thr694) without changing MLCK activation. Calphostin C, but not Y27632, also reduced CCh-induced phosphorylation of CPI-17. CCh concentration responses showed that phosphorylation of CPI-17 was more sensitive than MYPT1. Thus the onset of agonist-induced contraction in phasic smooth muscle results from the rapid and coordinated activation of MLCK with hierarchical inhibition of MLCP by CPI-17 and MYPT1 phosphorylation.  相似文献   

5.
Caffeine has been shown to increase the Ca2+ release frequency (Ca2+ sparks) from the sarcoplasmic reticulum (SR) through ryanodine-sensitive stores and relax gastric fundus smooth muscle. Increased Ca2+ store refilling increases the frequency of Ca2+ release events and store refilling is enhanced by CaM kinase II (CaMKII) phosphorylation of phospholamban (PLB). These findings suggest that transient, localized Ca2+ release events from the SR may activate CaMKII and contribute to relaxation by enhancing store refilling due to PLB Thr17 phosphorylation. To investigate this possibility, we examined the effects of caffeine on CaMKII, muscle tone, and PLB phosphorylation in murine gastric fundus smooth muscle. Caffeine (1 mM) hyperpolarized and relaxed murine gastric fundus smooth muscle and activated CaMKII. Ryanodine, tetracaine, or cyclopiazonic acid each prevented CaMKII activation and significantly inhibited caffeine-induced relaxation. The large-conductance Ca2+-activated K+ channel blocker iberiotoxin, but not apamin, partially inhibited caffeine-induced relaxation. Caffeine-induced CaMKII activation increased PLB Thr17, but not PLB Ser16 phosphorylation. 3-Isobutyl-1-methylxanthine increased PLB Ser16 phosphorylation, but not PLB Thr17 phosphorylation. The CaMKII inhibitor KN-93 inhibited caffeine-induced relaxation and PLB Thr17 phosphorylation. These results show that caffeine-induced CaMKII activation and PLB phosphorylation play a role in the relaxation of gastric fundus smooth muscles. Ca2+/CaM-dependent protein kinase II  相似文献   

6.
CPI-17 is a unique phosphoprotein that specifically inhibits myosin light chain phosphatase in smooth muscle and plays an essential role in agonist-induced contraction. To elucidate the in situ mechanism for G protein-mediated Ca2+-sensitization of CPI-17 phosphorylation, α-toxin-permeabilized arterial smooth muscle strips were used to monitor both force development and CPI-17 phosphorylation in response to GTPγS with varying Ca2+ concentrations. CPI-17 phosphorylation increased at unphysiologically high Ca2+ levels of pCa ? 6. GTPγS markedly enhanced the Ca2+ sensitivity of CPI-17 steady-state phosphorylation but had no enhancing effect under Ca2+-free conditions, while the potent PKC activator PDBu increased CPI-17 phosphorylation regardless of Ca2+ concentration. CPI-17 phosphorylation induced by pCa 4.5 alone was markedly inhibited by the presence of PKC inhibitor but not ROCK inhibitor. In the presence of calyculin A, a potent PP1/PP2A phosphatase inhibitor, CPI-17 phosphorylation increased with time even under Ca2+-free conditions. Furthermore, as Ca2+ concentration increased, so did CPI-17 phosphorylation rate. GTPγS markedly enhanced the rate of phosphorylation of CPI-17 at a given Ca2+. In the absence of calyculin A, either steady-state phosphorylation of CPI-17 under Ca2+-free conditions in the presence of GTPγS or at pCa 6.7 in the absence of GTPγS was negligible, suggesting a high intrinsic CPI-17 phosphatase activity. In conclusion, cooperative increases in Ca2+ and G protein activation are required for a significant activation of total kinases that phosphorylate CPI-17, which together overcome CPI-17 phosphatase activity and effectively increase the Ca2+ sensitivity of CPI-17 phosphorylation and smooth muscle contraction.  相似文献   

7.
Myosin light chain phosphatase with its regulatory subunit, myosin phosphatase target subunit 1 (MYPT1) modulates Ca2+-dependent phosphorylation of myosin light chain by myosin light chain kinase, which is essential for smooth muscle contraction. The role of MYPT1 in vascular smooth muscle was investigated in adult MYPT1 smooth muscle specific knock-out mice. MYPT1 deletion enhanced phosphorylation of myosin regulatory light chain and contractile force in isolated mesenteric arteries treated with KCl and various vascular agonists. The contractile responses of arteries from knock-out mice to norepinephrine were inhibited by Rho-associated kinase (ROCK) and protein kinase C inhibitors and were associated with inhibition of phosphorylation of the myosin light chain phosphatase inhibitor CPI-17. Additionally, stimulation of the NO/cGMP/protein kinase G (PKG) signaling pathway still resulted in relaxation of MYPT1-deficient mesenteric arteries, indicating phosphorylation of MYPT1 by PKG is not a major contributor to the relaxation response. Thus, MYPT1 enhances myosin light chain phosphatase activity sufficient for blood pressure maintenance. Rho-associated kinase phosphorylation of CPI-17 plays a significant role in enhancing vascular contractile responses, whereas phosphorylation of MYPT1 in the NO/cGMP/PKG signaling module is not necessary for relaxation.  相似文献   

8.
The role of RhoA in myosin light-chain (MLC)(20) dephosphorylation and smooth muscle relaxation by PKA and PKG was examined in freshly dispersed and cultured smooth muscle cells expressing wild-type RhoA, constitutively active Rho(V14), and phosphorylation site-deficient Rho(A188). Activators of PKA (5,6-dichloro-1-beta-ribofuranosyl benzimidazole 3',5'-cyclic monophosphothionate, Sp-isomer; cBIMPS) or PKG [8-(4-chlorophenylthio)guanosine 3',5'-cyclic monophosphate (8-pCPT-cGMP), sodium nitroprusside (SNP)] or both PKA and PKG (VIP) induced phosphorylation of constitutively active Rho(V14) and agonist (ACh)- or GTPgammaS-stimulated wild-type RhoA but not Rho(A188). Phosphorylation was accompanied by translocation of membrane-bound wild-type RhoA and Rho(V14) to the cytosol and complete inhibition of ACh-stimulated Rho kinase and phospholipase D activities, RhoA/Rho kinase association, MLC(20) phosphorylation, and sustained muscle contraction. Each of these events was blocked depending on the agent used, by the PKG inhibitor KT5823 or the PKA inhibitor myristoylated PKI. Inhibitors were used at a concentration (1 microM) previously shown by direct measurement of kinase activity to selectively inhibit the corresponding kinase. In muscle cells overexpressing the active phosphorylation site-deficient mutant Rho(A188), MLC(20) phosphorylation was partly inhibited by SNP, VIP, cBIMPS, and 8-pCPT-cGMP, suggesting the existence of an independent inhibitory mechanism downstream of RhoA. Results demonstrate that dephosphorylation of MLC(20) and smooth muscle relaxation are preferentially mediated by PKG- and PKA-dependent phosphorylation and inactivation of RhoA.  相似文献   

9.
Ca2+/calmodulin-dependent myosin light chain kinase (MLCK) phosphorylates smooth muscle myosin regulatory light chain (RLC) to initiate contraction. We used a tamoxifen-activated, smooth muscle-specific inactivation of MLCK expression in adult mice to determine whether MLCK was differentially limiting in distinct smooth muscles. A 50% decrease in MLCK in urinary bladder smooth muscle had no effect on RLC phosphorylation or on contractile responses, whereas an 80% decrease resulted in only a 20% decrease in RLC phosphorylation and contractile responses to the muscarinic agonist carbachol. Phosphorylation of the myosin light chain phosphatase regulatory subunit MYPT1 at Thr-696 and Thr-853 and the inhibitor protein CPI-17 were also stimulated with carbachol. These results are consistent with the previous findings that activation of a small fraction of MLCK by limiting amounts of free Ca2+/calmodulin combined with myosin light chain phosphatase inhibition is sufficient for robust RLC phosphorylation and contractile responses in bladder smooth muscle. In contrast, a 50% decrease in MLCK in aortic smooth muscle resulted in 40% inhibition of RLC phosphorylation and aorta contractile responses, whereas a 90% decrease profoundly inhibited both responses. Thus, MLCK content is limiting for contraction in aortic smooth muscle. Phosphorylation of CPI-17 and MYPT1 at Thr-696 and Thr-853 were also stimulated with phenylephrine but significantly less than in bladder tissue. These results indicate differential contributions of MLCK to signaling. Limiting MLCK activity combined with modest Ca2+ sensitization responses provide insights into how haploinsufficiency of MLCK may result in contractile dysfunction in vivo, leading to dissections of human thoracic aorta.  相似文献   

10.
Diabetes mellitus compromises nitric oxide (NO)-mediated endothelium-dependent relaxation of blood vessels, which has been linked to the excessive generation of reactive oxygen species. There are also deleterious effect on nitrergic innervation, contributing to autonomic neuropathy symptoms such as impotence and gastroporesis. Poly(ADP-ribose) polymerase (PARP) is a nuclear protein stimulated by DNA damage, caused, for example, by oxidative stress. Activation has been linked to impaired endothelial nitric oxide synthase (eNOS)-mediated vasodilation in experimental diabetes. There is no information on the potential role of PARP in nitrergic nerve dysfunction, therefore, the aim was to examine the effects of PARP inhibition, using 3-aminobenzamide (3-AB) on neurally mediated gastric fundus relaxation in streptozotocin-induced diabetic rats. Eight weeks of diabetes caused a 42.5% deficit in maximum relaxation of in vitro gastric fundus strips to electrical stimulation of the non-adrenergic non-cholinergic innervation. This was largely prevented or corrected (4 weeks of treatment following 4 weeks of untreated diabetes) by 3-AB. Diabetes also markedly attenuated the maintenance of relaxation responses to prolonged stimulation, and this was partially corrected by 3-AB treatment. Experiments in the presence of the NOS inhibitor, N(G)-nitro-L-arginine, and/or blockade of the co-transmitter, vasoactive intestinal polypeptide, by alpha-chymotrypsin, showed that the beneficial effects of 3-AB were primarily due to improved nitrergic neurotransmission. Thus, PARP plays an important role in defective nitrergic neurotransmission in experimental diabetes, which may have therapeutic implications for treatment of aspects of diabetic autonomic neuropathy.  相似文献   

11.
Translocation of telokin by cGMP signaling in smooth muscle cells   总被引:3,自引:0,他引:3  
Telokin is an acidic protein with asequence identical to the COOH-terminal domain of myosin light chainkinase (MLCK) produced by an alternate promoter of the MLCK gene.Although it is abundantly expressed in smooth muscle, its physiologicalfunction is not understood. In the present study, we attempted toclarify the function of telokin by analyzing its spatial and temporallocalization in living single smooth muscle cells. Primary culturedsmooth muscle cells were transfected with green fluorescent protein(GFP)-tagged telokin. The telokin-GFP localized mostly diffusely incytosol. Stimulation with both sodium nitroprusside (SNP) and8-bromo-cyclic GMP induced translocation of GFP-tagged telokin to nearplasma membrane in living single smooth muscle cells. The translocation was slow, and it took more than 10 min at room temperature. Mutation ofthe phosphorylation sites of telokin (S13A, S19A, and S13A/S19A) significantly attenuated SNP-induced translocation. Both KT-5823 (cGMP-dependent protein kinase inhibitor) and PD-98059(mitogen-activated protein kinase inhibitor) diminished the telokin-GFPtranslocation. These results suggest that telokin changes itsintracellular localization because of phosphorylation at Ser13 and/orSer19 via the cGMP-signaling pathway.

  相似文献   

12.
The study was undertaken on the basis of several reports in the literature that relaxation of vascular smooth muscles is a good treatment strategy in hypertension, angina and other cardiovascular disorders. Oxadiazoles have been reported to have effect on vascular smooth muscles and calcium influx. The goals of our current in vitro study were to investigate the effect of a 1,3,4-oxadiazole derivative on vascular smooth muscles in rat aorta, and to elucidate the associated signaling pathway. NOX-1 induced a relaxation of vascular smooth muscles in both endothelium intact and denuded rat aortic rings precontracted with norepinephrine or phenylephrine or KCl. NOX-1 also significantly antagonized cumulative dose-response effect of norepinephrine, phenylephrine, KCl or calcium with reduction in submaximal contractions. Verapamil, an L-type of calcium channel blocker, effectively attenuated phenylephrine and calcium induced contractions in aortic rings. Incubation with NOX-1 and verapamil did not significantly alter the dose-response curve of phenylephrine or calcium compared to verapamil treatment alone indicating L-type Ca2+ channel blockage leads to loss of NOX-1 activity. Hence it can be concluded NOX-1 exhibited vasorelaxant action by inhibiting calcium influx from extracellular space to intracellular space through L-type of calcium channels.  相似文献   

13.
The Ca(2+)-independent acceleration of dephosphorylation of the regulatory light chain of smooth muscle myosin and relaxation of smooth muscle by telokin are enhanced by cyclic nucleotide-activated protein kinase(s) [Wu et al. (1998) J. Biol. Chem. 273, 11362-113691. The purpose of this study was to determine the in vivo site(s) and in vitro rates of telokin phosphorylation and to evaluate the possible effects of sequential phosphorylation by different kinases. The in vivo site(s) of phosphorylation of telokin were determined in rabbit smooth muscles of longitudinal ileum and portal vein. Following stimulation of ileum with forskolin (20 microM) the serine at position 13 was the only amino acid to exhibit increased phosphorylation. Rabbit portal vein telokin was phosphorylated on both Ser-13 and -19 as a result of forskolin and GTPgammaS stimulation in vivo. Point mutation of Ser-13 (to Ala or Asp) abolished in vitro phosphorylation by cyclic nucleotide-dependent protein kinases.  相似文献   

14.
Ureteric peristalsis, which occurs via alternating contraction and relaxation of ureteric smooth muscle, ensures the unidirectional flow of urine from the kidney to the bladder. Understanding of the molecular mechanisms underlying ureteric excitation–contraction coupling, however, is limited. To address these knowledge deficits, and in particular to test the hypothesis that Ca2+ sensitization via activation of the RhoA/Rho-associated kinase (ROK) pathway plays an important role in ureteric smooth muscle contraction, we carried out a thorough characterization of the electrical activity, Ca2+ signaling, MYPT1 (myosin targeting subunit of myosin light chain phosphatase, MLCP) and myosin regulatory light chain (LC20) phosphorylation, and force responses to membrane depolarization induced by KCl (electromechanical coupling) and carbachol (CCh) (pharmacomechanical coupling). The effects of ROK inhibition on these parameters were investigated. We conclude that the tonic, but not the phasic component of KCl- or CCh-induced ureteric smooth muscle contraction is highly dependent on ROK-catalyzed phosphorylation of MYPT1 at T855, leading to inhibition of MLCP and increased LC20 phosphorylation.  相似文献   

15.
The internal anal sphincter (IAS) tone is important for the rectoanal continence. The RhoA/Rho kinase (ROK) pathway has been associated with the agonist-induced sustained contraction of the smooth muscle, but its role in the spontaneously tonic smooth muscle is not known. Present studies compared expression of different components of the RhoA/ROK pathway between the IAS (a truly tonic SM), the rectal smooth muscle (RSM) (a mixture of phasic and tonic), and anococcygeus smooth muscle (ASM) (a purely phasic SM) of rat. RT-PCR and Western blot analyses were performed to determine RhoA, ROCK-II, CPI-17, MYPT1, and myosin light-chain 20 (MLC20). Phosphorylated CPI-17 at threonine-38 residue (p(Thr38)-CPI-17), MYPT1 at threonine-696 residue (p(Thr696)-MYPT1), and MLC20 at threonine-18/serine-19 residues (p(Thr18/Ser19)-MLC20) were also determined in the basal state and after pretreatment with the ROK inhibitor Y 27632. In addition, we compared the effect of Y 27632 on the basal isometric tension and ROK activity in the IAS vs. the RSM. Our data show the highest levels of RhoA, ROCK-II, CPI-17, MLC20, and of phospho-MYPT1, -CPI-17, and -MLC20 in the IAS followed by in the RSM and ASM. Conversely, MYPT1 levels were lowest in the IAS and highest in the ASM. In the IAS, Y 27632 caused a concentration-dependent decrease in the basal tone, levels of phospho-MYPT1, -CPI-17, and -MLC20, and ROK activity. We conclude that RhoA/ROK plays a critical role in the basal tone in the IAS by the inhibition of MLC phosphatase via the phosphorylation of MYPT1 and CPI-17.  相似文献   

16.
A translocation of protein kinase C (PKC) from cytosol to plasma membrane has been reported as an association with agonist-induced Ca2+ sensitization in smooth muscle contraction. Therefore, it is possible that a downstream target of PKC, CPI-17 [PKC-potentiated inhibitory protein for heterotrimeric myosin light chain (MLC) phosphatase of 17 kDa], might also be translocated to membrane when activated. To confirm this hypothesis, cytosolic and membrane CPI-17 was measured in acetylcholine (ACh)- and high-K+ depolarization-stimulated bronchial smooth muscle of rats. An active form of CPI-17, i.e., Thr38-phosphorylated CPI-17, was also measured in cytosolic and membrane fractions. Immunoblot analyses demonstrated a translocation of CPI-17 from cytosolic to membrane fraction by ACh, but not high-K+ depolarization, stimulation in time- and concentration-dependent manners. Interestingly, phosphorylated CPI-17 was detected only in membrane fractions in the ACh-stimulated tissues. However, in the high-K+ depolarization-stimulated tissues, phosphorylated CPI-17 was not detected both in membrane and cytosolic fraction. To estimate downstream of activated CPI-17, immunoblotting for phosphorylated MLC was performed in ACh- or high-K+ depolarization-stimulated tissues. ACh- and high-K+ depolarization-induced phosphorylation of MLC was observed in its contraction-dependent manner. In conclusion, we, for the first time, suggested that CPI-17 is translocated and phosphorylated by ACh, but not high-K+ depolarization, in rat bronchial smooth muscle. ACh-induced translocation and phosphorylation of CPI-17 might be caused via the activation of muscarinic receptor.  相似文献   

17.
The signaling cascades initiated by motilin receptors in gastric and intestinal smooth muscle cells were characterized. Motilin bound with high affinity (IC(50) 0.7 +/- 0.2 nM) to receptors on smooth muscle cells; the receptors were rapidly internalized via G protein-coupled receptor kinase 2 (GRK2). Motilin selectively activated G(q) and G(13), stimulated G alpha(q)-dependent phosphoinositide (PI) hydrolysis and 1,4,5-trisphosphate (IP(3))-dependent Ca(2+) release, and increased cytosolic free Ca(2+). PI hydrolysis was blocked by expression of G alpha(q) minigene and augmented by overexpression of dominant negative RGS4(N88S) or GRK2(K220R). Motilin induced a biphasic, concentration-dependent contraction (EC(50) = 1.0 +/- 0.2 nM), consisting of an initial peak followed by a sustained contraction. The initial Ca(2+)-dependent contraction and myosin light-chain (MLC)(20) phosphorylation were inhibited by the PLC inhibitor U-73122 and the MLC kinase inhibitor ML-9 but were not affected by the Rho kinase inhibitor Y27632 or the PKC inhibitor bisindolylmaleimide. Sustained contraction and MLC(20) phosphorylation were RhoA dependent and mediated by two downstream messengers: PKC and Rho kinase. The latter was partly inhibited by expression of G alpha(q) or G alpha(13) minigene and abolished by coexpression of both minigenes. Sustained contraction and MLC(20) phosphorylation were partly inhibited by Y27632 and bisindolylmaleimide and abolished by a combination of both inhibitors. The inhibition reflected phosphorylation of two MLC phosphatase inhibitors: CPI-17 via PKC and MYPT1 via Rho kinase. We conclude that motilin initiates a G alpha(q)-mediated cascade involving Ca(2+)/calmodulin activation of MLC kinase and transient MLC(20) phosphorylation and contraction as well as a sustained G alpha(q)- and G alpha(13)-mediated, RhoA-dependent cascade involving phosphorylation of CPI-17 by PKC and MYPT1 by Rho kinase, leading to inhibition of MLC phosphatase and sustained MLC(20) phosphorylation and contraction.  相似文献   

18.
Nitrergic neurotransmission at the smooth muscle neuromuscular junctions requires nitric oxide (NO) release that is dependent on the transport and docking of neuronal NO synthase (nNOS) α to the membrane of nerve terminals. However, the mechanism of translocation of nNOSα in actin-rich varicosities is unknown. We report here that the processive motor protein myosin Va is necessary for nitrergic neurotransmission. In wild-type mice, nNOSα-stained enteric varicosities colocalized with myosin Va and its tail constituent light chain 8 (LC8). In situ proximity ligation assay showed close association among nNOSα, myosin Va, and LC8. nNOSα was associated with varicosity membrane. Varicosities showed nitric oxide production upon stimulation with KCl. Intracellular microelectrode studies showed nitrergic IJP and smooth muscle hyperpolarizing responses to NO donor diethylenetriamine-NO (DNO). In contrast, enteric varicosities from myosin Va-deficient DBA (for dilute, brown, non-agouti) mice showed near absence of myosin Va but normal nNOSα and LC8. Membrane-bound nNOSα was not detectable, and the varicosities showed reduced NO production. Intracellular recordings in DBA mice showed reduced nitrergic IJPs but normal hyperpolarizing response to DNO. The nitrergic slow IJP was 9.1 ± 0.7 mV in the wild-type controls and 3.4 ± 0.3 mV in the DBA mice (P < 0.0001). Deficiency of myosin Va resulted in loss of nitrergic neuromuscular neurotransmission despite normal presence of nNOSα in the varicosities. These studies reveal the critical importance of myosin Va in nitrergic neurotransmission by facilitating transport of nNOSα to the varicosity membrane.  相似文献   

19.
Phospho-telokin is a target of elevated cyclic nucleotide concentrations that lead to relaxation of gastrointestinal and some vascular smooth muscles (SM). Here, we demonstrate that in telokin-null SM, both Ca(2+)-activated contraction and Ca(2+) sensitization of force induced by a GST-MYPT1(654-880) fragment inhibiting myosin light chain phosphatase were antagonized by the addition of recombinant S13D telokin, without changing the inhibitory phosphorylation status of endogenous MYPT1 (the regulatory subunit of myosin light chain phosphatase) at Thr-696/Thr-853 or activity of Rho kinase. Cyclic nucleotide-induced relaxation of force in telokin-null ileum muscle was reduced but not correlated with a change in MYPT1 phosphorylation. The 40% inhibited activity of phosphorylated MYPT1 in telokin-null ileum homogenates was restored to nonphosphorylated MYPT1 levels by addition of S13D telokin. Using the GST-MYPT1 fragment as a ligand and SM homogenates from WT and telokin KO mice as a source of endogenous proteins, we found that only in the presence of endogenous telokin, thiophospho-GST-MYPT1 co-precipitated with phospho-20-kDa myosin regulatory light chain 20 and PP1. Surface plasmon resonance studies showed that S13D telokin bound to full-length phospho-MYPT1. Results of a protein ligation assay also supported interaction of endogenous phosphorylated MYPT1 with telokin in SM cells. We conclude that the mechanism of action of phospho-telokin is not through modulation of the MYPT1 phosphorylation status but rather it contributes to cyclic nucleotide-induced relaxation of SM by interacting with and activating the inhibited full-length phospho-MYPT1/PP1 through facilitating its binding to phosphomyosin and thus accelerating 20-kDa myosin regulatory light chain dephosphorylation.  相似文献   

20.
In this study effects of Rho kinase inhibitors have been examined on the mouse gastric fundal smooth muscle reactivity and neurotransmitter (acetylcholine) release. Two Rho-kinase inhibitors, Y-27632 and fasudil (HA-1077), conspicuously suppressed the contractile responses to carbachol (CCh) and KCl as well as electrical field stimulation (EFS, 40 V, 0.5 ms, and 20 s). pEC(50) value for CCh and EC(50) value for KCl were 6.68+/-0.15 M and 10.4+/-2.8 mM, respectively. EFS induced reproducible contraction (38.3+/-4.75 mN/g tissue) which was almost abolished and potentiated in the presence of atropine (10(-6)M) and eserine (10(-6)M), respectively. The Rho-kinase inhibitors relaxed the fundic strips preconstricted by submaximal concentration of CCh or KCl in a concentration dependent manner. With CCh-elicited contraction, the pEC(50) values of Y-27632 and fasudil were 5.45+/-0.14 and 5.11+/-0.14 M, respectively (p>0.05). However, the pEC(50) values for Y-27632 and fasudil on KCl-induced tone were 6.09+/-0.1 and 5.35+/-0.06 M (p<0.001), respectively. Moreover, [3H]acetylcholine ([3H]ACh) release upon EFS from the gastric fundus was measured and it was found that Y-27632 (10(-4)M) significantly impaired the release. At 3 Hz the radioactivity ratio obtained after and before EFS (S(2)/S(1) ratio) was 0.88+/-0.03 in control but 0.63+/-0.08 in the presence of 10(-4)M Y-27632 (p<0.05). These results suggest that Rho kinase inhibitors can not only relax the gastric fundus but also modulate CCh, cholinergic nerve stimulation, and KCl-induced contraction. Furthermore, Rho/Rho kinase signalling may play a role in the neurotransmitter (ACh) release in the mouse gastric fundus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号