共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
《Cell cycle (Georgetown, Tex.)》2013,12(5):417-418
Recently, we describe a biological role for endogenous CD45+ stem cells in maintaining muscle integrity by participating in regeneration. Our experiments further establish that Wnt-signaling is the mechanism by which resident CD45+ adult stem cells are induced to undergo myogenic specification during muscle regeneration. Importantly, our study suggests that targeting the Wnt-pathway represents a promising therapeutic approach for the treatment of neuromuscular degenerative diseases. 相似文献
3.
Notch信号及其对T细胞发育和分化的调节 总被引:1,自引:0,他引:1
哺乳动物Notch蛋白包括四种(Notchl~Notch4),其配体分为两个家族:Jagged家族(Jaggedl,Jagged2)和Delta样家族(DLL1,DLL3,DLL4).Notch信号途径涉及一些蛋白质裂解过程,随后反式作用因子RBP-J及协同激活因子MAML等参与,最终导致靶基因的转录.在早期T细胞发育过程中起关键作用,还调节外周T细胞的活化增殖以及诱导Th细胞亚群的分化.Notch信号途径对转录因子GATA-3激活而诱导的Th2细胞分化非常重要. 相似文献
4.
Przemysław Rafał Paździorek 《Bulletin of mathematical biology》2014,76(7):1642-1669
Differentiation and self-renewal of stem cells is an essential process for the maintenance of tissue composition. The promise of novel medical therapies combined with the complexity of this process encourage us to employ numerical and mathematical methods. This will allow us to understand better the mechanisms which regulate stem cell behaviour. Perturbations to the cellular environment may have an influence on the death rate, proliferation rate and on the fraction of self-renewal at every stage of differentiation. In this paper, we present mathematical study of the effect of stochastic noise on the process of tissue regeneration. Here, a system of Itô stochastic differential equations with linear diffusion coefficients that is based on a deterministic model of multistage cell lineages is investigated. Numerical simulations of the stochastic model are shown for a different number of stages of differentiation. Interactions between the noise, added to the different stages, are characterised using numerical simulations. The long-time behaviour of the two-dimensional version of the model is fully characterised; asymptotic stability of the related Markov semigroup is proved using the theory of the Markov semigroups and the method of the Khasminskií function. 相似文献
5.
Dell'Albani P 《Neurochemical research》2008,33(12):2407-2415
Gliomas are the most common tumours of the central nervous system (CNS) and a frequent cause of mental impairment and death.
Treatment of malignant gliomas is often palliative because of their infiltrating nature and high recurrence. Genetic events
that lead to brain tumours are mostly unknown. A growing body of evidence suggests that gliomas may rise from cancer stem
cells (CSC) sharing with neural stem cells (NSC) the capacity of cell renewal and multipotency. Accordingly, a population
of cells called “side population” (SP), which has been isolated from gliomas on the basis of their ability to extrude fluorescent
dyes, behaves as stem cells and is resistant to chemotherapeutic treatments. This review will focus on the expression of the
stem cell markers nestin and CD133 in glioma cancer stem cells. In addition, the possible role of Platelet Derived Growth
Factor receptor type α (PDGFR-α) and Notch signalling in normal development and tumourigenesis of gliomas are also discussed.
Future work elucidating the mechanisms that control normal development will help to identify new cancer stem cell-related
genes. The identification of important markers and the elucidation of signalling pathways involved in survival, proliferation
and differentiation of CSCs appear to be fundamental for developing an effective therapy of brain tumours.
Special issue article in honor of Dr. Anna Maria Giuffrida-Stella. 相似文献
6.
Successful maintenance of cellular lineages critically depends on the fate decision dynamics of stem cells (SCs) upon division. There are three possible strategies with respect to SC fate decision symmetry: (a) asymmetric mode, when each and every SC division produces one SC and one non-SC progeny; (b) symmetric mode, when 50% of all divisions produce two SCs and another 50%—two non-SC progeny; (c) mixed mode, when both the asymmetric and two types of symmetric SC divisions co-exist and are partitioned so that long-term net balance of the lineage output stays constant. Theoretically, either of these strategies can achieve lineage homeostasis. However, it remains unclear which strategy(s) are more advantageous and under what specific circumstances, and what minimal control mechanisms are required to operate them. Here we used stochastic modeling to analyze and quantify the ability of different types of divisions to maintain long-term lineage homeostasis, in the context of different control networks. Using the example of a two-component lineage, consisting of SCs and one type of non-SC progeny, we show that its tight homeostatic control is not necessarily associated with purely asymmetric divisions. Through stochastic analysis and simulations we show that asymmetric divisions can either stabilize or destabilize the lineage system, depending on the underlying control network. We further apply our computational model to biological observations in the context of a two-component lineage of mouse epidermis, where autonomous lineage control has been proposed and notable regional differences, in terms of symmetric division ratio, have been noted—higher in thickened epidermis of the paw skin as compared to ear and tail skin. By using our model we propose a possible explanation for the regional differences in epidermal lineage control strategies. We demonstrate how symmetric divisions can work to stabilize paw epidermis lineage, which experiences high level of micro-injuries and a lack of hair follicles as a back-up source of SCs. 相似文献
7.
Bo Qu Guo-Rong Xin Li-Xia Zhao Hui Xing Li-Ying Lian Hai-Yan Jiang Jia-Zhao Tong Bei-Bei Wang Shi-Zhu Jin 《PloS one》2014,9(10)
Background
The gastrointestinal (GI) mucosal cells turnover regularly under physiological conditions, which may be stimulated in various pathological situations including inflammation. Local epithelial stem cells appear to play a major role in such mucosal renewal or pathological regeneration. Less is clear about the involvement of multipotent stem cells from blood in GI repair. We attempted to explore a role of bone marrow mesenchymal stromal cells (BMMSCs) and soluble stem cell factor (SCF) in GI mucosa regeneration in a rat model of inflammatory bowel diseases (IBD).Methods
BMMSCs labelled with the fluorescent dye PKH26 from donor rats were transfused into rats suffering indomethacin-induced GI injury. Experimental effects by BMMSCs transplant and SCF were determined by morphometry of intestinal mucosa, double labeling of PKH26 positive BMMSCs with endogenous proliferative and intestinal cell markers, and western blot and PCR analyses of the above molecular markers in the recipient rats relative to controls.Results
PKH26 positive BMMSCs were found in the recipient mucosa, partially colocalizing with the proliferating cell nuclear antigen (PCNA), Lgr5, Musashi-1 and ephrin-B3. mRNA and protein levels of PCNA, Lgr5, Musashi-1 and ephrin-B3 were elevated in the intestine in BMMSCs-treated rats, most prominent in the BMMSCs-SCF co-treatment group. The mucosal layer and the crypt layer of the small intestine were thicker in BMMSCs-treated rats, more evident in the BMMSCs-SCF co-treatment group.Conclusion
BMMSCs and SCF participate in but may play a synergistic role in mucosal cell regeneration following experimentally induced intestinal injury. Bone marrow stem cell therapy and SCF administration may be of therapeutic value in IBD. 相似文献8.
9.
Yukiko M. Yamashita Hebao Yuan Jun Cheng Alan J. Hunt 《Cold Spring Harbor perspectives in biology》2010,2(1)
Many adult stem cells divide asymmetrically to balance self-renewal and differentiation, thereby maintaining tissue homeostasis. Asymmetric stem cell divisions depend on asymmetric cell architecture (i.e., cell polarity) within the cell and/or the cellular environment. In particular, as residents of the tissues they sustain, stem cells are inevitably placed in the context of the tissue architecture. Indeed, many stem cells are polarized within their microenvironment, or the stem cell niche, and their asymmetric division relies on their relationship with the microenvironment. Here, we review asymmetric stem cell divisions in the context of the stem cell niche with a focus on Drosophila germ line stem cells, where the nature of niche-dependent asymmetric stem cell division is well characterized.Asymmetric cell division allows stem cells to self-renew and produce another cell that undergoes differentiation, thus providing a simple method for tissue homeostasis. Stem cell self-renewal refers to the daughter(s) of stem cell division maintaining all stem cell characteristics, including proliferation capacity, maintenance of the undifferentiated state, and the capability to produce daughter cells that undergo differentiation. A failure to maintain the correct stem cell number has been speculated to lead to tumorigenesis/tissue hyperplasia via stem cell hyperproliferation or tissue degeneration/aging via a reduction in stem cell number or activity (Morrison and Kimble 2006; Rando 2006). This necessity changes during development. The stem cell pool requires expansion earlier in development, whereas maintenance is needed later to sustain tissue homeostasis.There are two major mechanisms to sustain a fixed number of adult stem cells: stem cell niche and asymmetric stem cell division, which are not mutually exclusive. Stem cell niche is a microenvironment in which stem cells reside, and provides essential signals required for stem cell identity (Fig. 1A). Physical limitation of niche “space” can therefore define stem cell number within a tissue. Within such a niche, many stem cells divide asymmetrically, giving rise to one stem cell and one differentiating cell, by placing one daughter inside and another outside of the niche, respectively (Fig. 1A). Nevertheless, some stem cells divide asymmetrically, apparently without the niche. For example, in Drosophila neuroblasts, cell-intrinsic fate determinants are polarized within a dividing cell, and subsequent partitioning of such fate determinants into daughter cells in an asymmetric manner results in asymmetric stem cell division (Fig. 1B) (see Fig. 3A and Prehoda 2009).Open in a separate windowFigure 1.Mechanisms of asymmetric stem cell division. (A) Asymmetric stem cell division by extrinsic fate determinants (i.e., the stem cell niche). The two daughters of stem cell division will be placed in distinct cellular environments either inside or outside the stem cell niche, leading to asymmetric fate choice. (B) Asymmetric stem cell division by intrinsic fate determinants. Fate determinants are polarized in the dividing stem cells, which are subsequently partitioned into two daughter cells unequally, thus making the division asymmetrical. Self-renewing (red line) and/or differentiation promoting (green line) factors may be involved.In this review, we focus primarily on asymmetric stem cell divisions in the Drosophila germ line as the most intensively studied examples of niche-dependent asymmetric stem cell division. We also discuss some examples of stem cell division outside Drosophila, where stem cells are known to divide asymmetrically or in a niche-dependent manner. 相似文献
10.
The Role of Notch Signaling in Adult Neurogenesis 总被引:1,自引:0,他引:1
Neurogenesis occurs throughout adulthood in the mammalian brain. Newly born neurons are incorporated into the functional networks
of both the olfactory bulb and the hippocampal dentate gyrus, and there is growing evidence that adult neurogenesis is important
for various brain functions. Continuous neurogenesis is achieved by the coordinated proliferation and differentiation of adult
neural stem cells. In this review, we discuss the recent findings concerning the roles of Notch signaling in adult neural
stem cells. 相似文献
11.
12.
Extrinsic mechanical signals have been implicated as key regulators of mesenchymal stem cell (MSC) differentiation. It has been possible to test different hypotheses for mechano-regulated MSC differentiation by attempting to simulate regenerative events such as bone fracture repair, where repeatable spatial and temporal patterns of tissue differentiation occur. More recently, in vitro studies have identified other environmental cues such as substrate stiffness and oxygen tension as key regulators of MSC differentiation; however it remains unclear if and how such cues determine stem cell fate in vivo. As part of this study, a computational model was developed to test the hypothesis that substrate stiffness and oxygen tension regulate stem cell differentiation during fracture healing. Rather than assuming mechanical signals act directly on stem cells to determine their differentiation pathway, it is postulated that they act indirectly to regulate angiogenesis and hence partially determine the local oxygen environment within a regenerating tissue. Chondrogenesis of MSCs was hypothesized to occur in low oxygen regions, while in well vascularised regions of the regenerating tissue a soft local substrate was hypothesised to facilitate adipogenesis while a stiff substrate facilitated osteogenesis. Predictions from the model were compared to both experimental data and to predictions of a well established computational mechanobiological model where tissue differentiation is assumed to be regulated directly by the local mechanical environment. The model predicted all the major events of fracture repair, including cartilaginous bridging, endosteal and periosteal bony bridging and bone remodelling. It therefore provides support for the hypothesis that substrate stiffness and oxygen play a key role in regulating MSC fate during regenerative events such as fracture healing. 相似文献
13.
Ontogeny of an Extracellular Matrix Component of Sea Urchins and its Role in Morphogenesis 总被引:1,自引:1,他引:0
A monoclonal antibody, Sp14, recognizes fibers that form a complex meshwork within the blastocoel of embryos of the sea urchin, Strongylocentrotus purpuratus . The fibers first appear as the blastocoel begins to form and increase in density throughout development. Ultrastructural localizations using the immunoperoxidase method show bundles of 20 nm fibers that are continuous with the basal lamina and have an indistinct axial periodicity. Embryos treated with tunicamycin, β-D-xylopyranoside, β-aminoproprionitrile, proline analogues, or deprived of sulfate all form immunoreactive fibers although in some treatments the pattern formed is abnormal. Immunoreactivity of extracted fibers is not affected by digestion with chondroitinase ABC, hyaluronidase, collagenase or heparinase. However, proteinase K readily destroys immunoreactivity. Fibers will form in cultures of micromeres or mesenchyme 24 to 48 hr after plating with or without horse serum. In embryos in which the blastocoelar matrix has been altered by injection with Sp14, there is inhibition of the release of secondary mesenchyme from the tip of the archenteron and in some embryos supernumerary skeletal elements are formed. It is proposed that Sp14 recognizes a component of the blastocoelar extracellular matrix that is required for the migration of mesenchyme. 相似文献
14.
《Cell cycle (Georgetown, Tex.)》2013,12(3):407-410
With age, there is a gradual decline in the regenerative properties of most tissues due to a combination of age-dependent changes in tissue-specific stem cells and in the environmental cues that promote those cells to participate in tissue maintenance and repair. In adult skeletal muscle, where the resident dedicated stem cells (“satellite cells”) are capable of rapid and highly effective regeneration in response to injury, there is just such a loss of regenerative potential with age. Satellite cell activation and cell fate determination are controlled by the Notch signaling pathway that is initiated by the rapid increase in expression of the Notch ligand, Delta, following injury. In old muscle, this upregulation of Delta is blunted and thus satellite cell activation is markedly diminished. However, by indirectly inducing Notch activity, the regenerative potential of aged satellite cells can be restored. Furthermore, exposure of aged satellite cells to serum from young mice, either in vivo by heterochronic parabiotic pairings or in vitro, rejuvenates the satellite cell response. This restorative potential suggests that tissue-specific stem cells do not lose their ability to participate in tissue maintenance and repair. Therefore, it may be that even very old stem cells may be capable of maintaining and repairing aged tissues if provided with optimal environmental cues. 相似文献
15.
《Cell cycle (Georgetown, Tex.)》2013,12(17):1913-1917
Nuclear receptors and Wnt signaling are both important regulators of developmental and physiological processes. Recent work linking these pathways in epithelial stem cell differentiation has come from studies analyzing the in vivo function of the nuclear receptor corepressor, Hairless (HR). The HR protein has long been suspected to regulate a stem cell-mediated process, hair cycling, as mutations in the Hr gene cause hair loss in both mice and men. The discovery that the HR protein is a nuclear receptor corepressor indicated that HR function in hair cycling is by regulating gene expression. A recent study revealed that HR represses expression of Wise, an inhibitor of Wnt signaling, leading to a model in which HR controls the timing of Wnt signaling required for hair cycling. Here we review these data, and provide new data showing that HR corepressor activity is essential for its in vivo function, and identify an additional putative Wnt inhibitor regulated by HR. This work complements previous studies demonstrating the role of Wnt signaling in epithelial stem cell differentiation. 相似文献
16.
17.
Notch信号是广泛存在于各种动物细胞中高度保守的信号途径,在干细胞生物学功能中发挥重要作用。心脏干细胞(cardiac stem cells,CSCs)是存在于心脏特殊微环境下的多潜能干细胞,其表面存在Notch受体,而与其相邻的细胞可表达Notch配体,提示心脏干细胞中的Notch信号在某些条件下可被活化。该文从Notch信号通路的组成和激活、CSCs的界定与来源、CSCs主要类型的一般生物学特征及Notch信号通路与CSCs形成、分化和增殖的关系等方面进行综述,并展望了基于CSCs在心肌再生相关转化医学研究中的前景。 相似文献
18.
Wenyuan Wang Ye-Fan Hu Meijun Pang Nannan Chang Chunxiao Yu Qi Li Jing-Wei Xiong Yuanyuan Peng Ruilin Zhang 《International journal of biological sciences》2021,17(9):2157
Adult mammalian hearts show limited capacity to proliferate after injury, while zebrafish are capable to completely regenerate injured hearts through the proliferation of spared cardiomyocytes. BMP and Notch signaling pathways have been implicated in cardiomyocyte proliferation during zebrafish heart regeneration. However, the molecular mechanism underneath this process as well as the interaction between these two pathways remains to be further explored. In this study we showed BMP signaling was activated after ventricle ablation and acted epistatic downstream of Notch signaling. Inhibition of both signaling pathways differentially influenced ventricle regeneration and cardiomyocyte proliferation, as revealed by time-lapse analysis using a cardiomyocyte-specific FUCCI (fluorescent ubiquitylation-based cell cycle indicator) system. Further experiments revealed that inhibition of BMP and Notch signaling led to cell-cycle arrest at different phases. Overall, our results shed light on the interaction between BMP and Notch signaling pathways and their functions in cardiomyocyte proliferation during cardiac regeneration. 相似文献
19.