首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The distal portion of rotavirus (RV) VP4 spike protein (VP8*) is implicated in binding to cellular receptors, thereby facilitating viral attachment and entry. While VP8* of some animal RVs engage sialic acid, human RVs often attach to and enter cells in a sialic acid-independent manner. A recent study demonstrated that the major human RVs (P[4], P[6], and P[8]) recognize human histo-blood group antigens (HBGAs). In this study, we performed a phylogenetic analysis of RVs and showed further variations of RV interaction with HBGAs. On the basis of the VP8* sequences, RVs are grouped into five P genogroups (P[I] to P[V]), of which P[I], P[IV], and P[V] mainly infect animals, P[II] infects humans, and P[III] infects both animals and humans. The sialic acid-dependent RVs (P[1], P[2], P[3], and P[7]) form a subcluster within P[I], while all three major P genotypes of human RVs (P[4], P[6], and P[8]) are clustered in P[II]. We then characterized three human RVs (P[9], P[14], and P[25]) in P[III] and observed a new pattern of binding to the type A antigen which is distinct from that of the P[II] RVs. The binding was demonstrated by hemagglutination and saliva binding assay using recombinant VP8* and native RVs. Homology modeling and mutagenesis study showed that the locations of the carbohydrate binding interfaces are shared with the sialic acid-dependent RVs, although different amino acids are involved. The P[III] VP8* proteins also bind the A antigens of the porcine and bovine mucins, suggesting the A antigen as a possible factor for cross-species transmission of RVs. Our study suggests that HBGAs play an important role in RV infection and evolution.  相似文献   

2.
Huang P  Xia M  Tan M  Zhong W  Wei C  Wang L  Morrow A  Jiang X 《Journal of virology》2012,86(9):4833-4843
Rotaviruses (RVs), an important cause of severe diarrhea in children, have been found to recognize sialic acid as receptors for host cell attachment. While a few animal RVs (of P[1], P[2], P[3], and P[7]) are sialidase sensitive, human RVs and the majority of animal RVs are sialidase insensitive. In this study, we demonstrated that the surface spike protein VP8* of the major P genotypes of human RVs interacts with the secretor histo-blood group antigens (HBGAs). Strains of the P[4] and P[8] genotypes shared reactivity with the common antigens of Lewis b (Le(b)) and H type 1, while strains of the P[6] genotype bound the H type 1 antigen only. The bindings between recombinant VP8* and human saliva, milk, or synthetic HBGA oligosaccharides were demonstrated, which was confirmed by blockade of the bindings by monoclonal antibodies (MAbs) specific to Le(b) and/or H type 1. In addition, specific binding activities were observed when triple-layered particles of a P[8] (Wa) RV were tested. Our results suggest that the spike protein VP8* of RVs is involved in the recognition of human HBGAs that may function as ligands or receptors for RV attachment to host cells.  相似文献   

3.
Rotavirus(RV)causes acute gastroenteritis in infants and children worldwide.Recent studies showed that glycans such as histo-blood group antigens(HBGAs)function as cell attachment factors affecting RV host susceptibility and prevalence.P[8]is the predominant RV genotype in humans,but the structural basis of how P[8]RVs interact with glycan ligands remains elusive.In this study,we characterized the interactions between P[8]VP8~*s and glycans which showed that VP8~*,the RV glycan binding domain,recognized both mucin core 2 and H type 1 antigens according to the ELISA-based oligosaccharide binding assays.Importantly,we determined the structural basis of P[8]RV-glycans interaction from the crystal structures of a Rotateq P[8]VP8~*in complex with core 2 and H type 1 glycans at 1.82.3 ?,respectively,revealing a common binding pocket and similar binding mode.Structural and sequence analysis demonstrated that the glycan binding site is conserved among RVs in the P[Ⅱ]genogroup,while genotype-specific amino acid variations determined different glycan binding preference.Our data elucidated the detailed structural basis of the interactions between human P[8]RVs and different host glycan factors,shedding light on RV infection,epidemiology,and development of anti-viral agents.  相似文献   

4.
Rotavirus (RV) P[11] is an unique genotype that infects neonates. The mechanism of such age-specific host restriction remains unknown. In this study, we explored host mucosal glycans as a potential age-specific factor for attachment of P[11] RVs. Using in vitro binding assays, we demonstrated that VP8* of a P[11] RV (N155) could bind saliva of infants (60.3%, N = 151) but not of adults (0%, N = 48), with a significantly negative correlation between binding of VP8* and ages of infants (P<0.01). Recognition to the infant saliva did not correlate with the ABO, secretor and Lewis histo-blood group antigens (HBGAs) but with the binding of the lectin Lycopersicon esculentum (LEA) that is known to recognize the oligomers of N-acetyllactosamine (LacNAc), a precursor of human HBGAs. Direct evidence of LacNAc involvement in P[11] binding was obtained from specific binding of VP8* with homopolymers of LacNAc in variable lengths through a glycan array analysis of 611 glycans. These results were confirmed by strong binding of VP8* to the Lec2 cell line that expresses LacNAc oligomers but not to the Lec8 cell line lacking the LacNAc. In addition, N155 VP8* and authentic P[11] RVs (human 116E and bovine B223) hemagglutinated human red blood cells that are known to express poly-LacNAc. The potential role of poly-LacNAc in host attachment and infection of RVs has been obtained by abrogation of 116E replication by the PAA-conjugated poly-LacNAc, human milk, and LEA positive infant saliva. Overall, our results suggested that the poly-LacNAc could serve as an age-specific receptor for P[11] RVs and well explained the epidemiology that P[11] RVs mainly infect neonates and young children.  相似文献   

5.
Naturally occurring bovine-human reassortant rotaviruses with a P[11] VP4 genotype exhibit a tropism for neonates. Interaction of the VP8* domain of the spike protein VP4 with sialic acid was thought to be the key mediator for rotavirus infectivity. However, recent studies have indicated a role for nonsialylated glycoconjugates, including histo-blood group antigens (HBGAs), in the infectivity of human rotaviruses. We sought to determine if the bovine rotavirus-derived VP8* of a reassortant neonatal G10P[11] virus interacts with hitherto uncharacterized glycans. In an array screen of >600 glycans, VP8* P[11] showed specific binding to glycans with the Galβ1-4GlcNAc motif, which forms the core structure of type II glycans and is the precursor of H type II HBGA. The specificity of glycan binding was confirmed through hemagglutination assays; GST-VP8* P[11] hemagglutinates type O, A, and B red blood cells as well as pooled umbilical cord blood erythrocytes. Further, G10P[11] infectivity was significantly enhanced by the expression of H type II HBGA in CHO cells. The bovine-origin VP4 was confirmed to be essential for this increased infectivity, using laboratory-derived reassortant viruses generated from sialic acid binding rotavirus SA11-4F and a bovine G10P[11] rotavirus, B223. The binding to a core glycan unit has not been reported for any rotavirus VP4. Core glycan synthesis is constitutive in most cell types, and modification of these glycans is thought to be developmentally regulated. These studies provide the first molecular basis for understanding neonatal rotavirus infections, indicating that glycan modification during neonatal development may mediate the age-restricted infectivity of neonatal viruses.  相似文献   

6.
Noroviruses (NoVs) bind to histo-blood group antigens, namely, ABH antigens and Lewis antigens. We previously showed the NoVs GI/2, GI/3, GI/4, and GI/8 were able to strongly bind to Lewis a (Lea) antigen, which is expressed by individuals who are nonsecretors. In this study, to investigate how Lewis antigens interact with GI NoV virion protein 1 (VP1), we determined the crystal structures of the P domain of the VP1 protein from the Funabashi 258 (FUV258) strain (GI/2) in complexes with Lea, Leb, H type 1, or A type 1 antigens. The structures were compared with those of the NV/68 strain (GI/1), which does not bind to the Lea antigen. The four loop structures, loop P, loop S, loop A, and loop B, continuously deviated by more than 2 Å in length between the Cα atoms of the corresponding residues of the FUV258 and NV/68 P domains. The most pronounced differences between the two VP1 proteins were observed in the structures of loop P. In the FUV258 P domain, loop P protruded toward the next protomer, forming a Lea antigen-binding site. The Gln389 residue make a significant contribution to the binding of the Lea antigen through the stabilization of loop P as well as through direct interactions with the α4-fucosyl residue (α4Fuc) of the Lea antigen. Mutation of the Gln389 residue dramatically affected the degree of binding of the Lewis antigens. Collectively, these results suggest that loop P and the amino acid residue at position 389 affect Lewis antigen binding.  相似文献   

7.
Li  Dandi  Wang  Mengxuan  Mao  Tongyao  Wang  Mingwen  Zhang  Qing  Wang  Hong  Pang  Lili  Sun  Xiaoman  Duan  Zhaojun 《中国病毒学》2021,36(5):1187-1196
Virologica Sinica - P[3] rotavirus (RV) has been identified in many species, including human, simian, dog, and bat. Several glycans, including sialic acid, histo-blood group antigens (HBGAs) are...  相似文献   

8.
Human noroviruses (NoVs) are a major cause of non-bacterial gastroenteritis. Although histo-blood group antigens (HBGAs) have been implicated in the initial binding of NoV, the mechanism of that binding before internalization is not clear. To determine the involvement of NoVs and HBGAs in cell binding, we examined the localization of NoV virus-like particles (VLPs) and HBGAs in a human intestinal cell line and the human ileum biopsy specimens by immunofluorescence microscopy. The localizations of Ueno 7k VLPs (genogroup II.6) and each HBGA (type H1-, H2- and Leb-HBGAs) on the human intestinal cell line, Caco-2, were examined by confocal laser-scanning microscopy. To explore any interactions of NoVs and HBGAs in vivo, fresh biopsy specimens from human ileum were directly incubated with NoV VLPs and examined by immunofluorescence microscopy. We found that VLP binding depended on the state of cell differentiation, but not on the presence of HBGAs. In differentiated Caco-2 cells, we detected no type H1 HBGAs, but VLPs bound to the cells anyway. We incubated fresh biopsies of human ileum directly with VLPs, a model that better replicates the in vivo environment. VLPs mainly bound epithelial cells and goblet cells. Although the incubations were performed at 4°C to hinder internalization, VLPs were still detected inside cells. Our results suggest that VLPs utilize molecule(s) other than HBGAs during binding and internalization into cells.  相似文献   

9.
Noroviruses (NoVs) cause epidemic acute gastroenteritis, in which histo-blood group antigens (HBGAs) may play an important role in the host susceptibility. To further explore this issue, two outbreaks of acute gastroenteritis caused by a GII.4 and a GII.3 NoV, respectively, in China in 2009 were studied. Stool and saliva samples from symptomatic patients and water samples from the outbreak facilities were collected. RT-PCR showed that 23 out of 33 (GII.4 outbreak) and 12 out of 13 (GII.3outbreak) stool samples were NoV positive. For the GII.4 outbreak the NoV sequences of stool and water samples were from an identical GII.4 strain, while the same GII.3 NoV sequences were found in five stool samples from the GII.3 outbreak. The HBGA phenotypes (A, B, Lea, Leb, Lex, and Ley) of all saliva samples were determined, which revealed both secretors and nonsecretors in the symptomatic groups of the two outbreaks. In the GII.3 outbreak, type O individuals appeared less susceptible, while the type A may be more at risk of infection. However, No preference of HBGAs was observed in the GII.4 outbreak. The observation that nonsecretors were infected in both outbreaks differed from the previous results that nonsecretors are resistant to these two GII NoVs.  相似文献   

10.
11.
The emergence and rapid spread of novel DS-1-like G1P[8] human rotaviruses in Japan were recently reported. More recently, such intergenogroup reassortant strains were identified in Thailand, implying the ongoing spread of unusual rotavirus strains in Asia. During rotavirus surveillance in Thailand, three DS-1-like intergenogroup reassortant strains having G3P[8] (RVA/Human-wt/THA/SKT-281/2013/G3P[8] and RVA/Human-wt/THA/SKT-289/2013/G3P[8]) and G2P[8] (RVA/Human-wt/THA/LS-04/2013/G2P[8]) genotypes were identified in fecal samples from hospitalized children with acute gastroenteritis. In this study, we sequenced and characterized the complete genomes of strains SKT-281, SKT-289, and LS-04. On whole genomic analysis, all three strains exhibited unique genotype constellations including both genogroup 1 and 2 genes: G3-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2 for strains SKT-281 and SKT-289, and G2-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2 for strain LS-04. Except for the G genotype, the unique genotype constellation of the three strains (P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2) is commonly shared with DS-1-like G1P[8] strains. On phylogenetic analysis, nine of the 11 genes of strains SKT-281 and SKT-289 (VP4, VP6, VP1-3, NSP1-3, and NSP5) appeared to have originated from DS-1-like G1P[8] strains, while the remaining VP7 and NSP4 genes appeared to be of equine and bovine origin, respectively. Thus, strains SKT-281 and SKT-289 appeared to be reassortant strains as to DS-1-like G1P[8], animal-derived human, and/or animal rotaviruses. On the other hand, seven of the 11 genes of strain LS-04 (VP7, VP6, VP1, VP3, and NSP3-5) appeared to have originated from locally circulating DS-1-like G2P[4] human rotaviruses, while three genes (VP4, VP2, and NSP1) were assumed to be derived from DS-1-like G1P[8] strains. Notably, the remaining NSP2 gene of strain LS-04 appeared to be of bovine origin. Thus, strain LS-04 was assumed to be a multiple reassortment strain as to DS-1-like G1P[8], locally circulating DS-1-like G2P[4], bovine-like human, and/or bovine rotaviruses. Overall, the great genomic diversity among the DS-1-like G1P[8] strains seemed to have been generated through reassortment involving human and animal strains. To our knowledge, this is the first report on whole genome-based characterization of DS-1-like intergenogroup reassortant strains having G3P[8] and G2P[8] genotypes that have emerged in Thailand. Our observations will provide important insights into the evolutionary dynamics of emerging DS-1-like G1P[8] strains and related reassortant ones.  相似文献   

12.
A comparative study of fine carbohydrate specificity of the lectin from the bark of laburnum Laburnum anagyroides (LABA) and the fucolectin from asparagus pea Tetragonolobus purpureus (TPA) was performed using inhibition of agglutination of the complex formed by H-active neoglycoprotein and nanoparticles of colloidal gold. Both lectins bound most strongly the H type 2 oligosaccharides comprising O-glycans; however, LABA was almost unable to discriminate between them. LABA bound more weakly the H type 6 trisaccharide (Fuc1-2Gal1-4Glc) and difucosyllactose (Fuc1-2Gal1-4[Fuc1-3]Glc), a glucoanalogue of the Ley antigen, and, even more weakly, the Lea pentasaccharide lacto-N-fucopentaose II (Gall-3[Fucl-4]GlcNAcl-3Gall-4Glc). However, LABA did not bind the antigens Leb, Lec, and Led, very poorly interacted with the terminal Lex, and somewhat more strongly bound the internal Lex. The lectin also had a hydrophobic binding site. Both lectins exhibited a cluster effect with polymeric ligands (neoglycoproteins).  相似文献   

13.
Norovirus (NoV) causes epidemic acute gastroenteritis in humans, whereby histo-blood group antigens (HBGAs) play an important role in host susceptibility. Each of the two major genogroups (GI and GII) of human NoVs recognizes a unique set of HBGAs through a distinct binding interface that is conserved within a genogroup, indicating a distinct evolutionary path for each genogroup. Here, we characterize a Lewis a (Lea) antigen binding strain (OIF virus) in the GII.21 genotype that does not share the conserved GII binding interface, revealing a new evolution lineage with a distinct HBGA binding interface. Sequence alignment showed that the major residues contributing to the new HBGA binding interface are conserved among most members of the GII.21, as well as a closely related GII.13 genotype. In addition, we found that glycerol inhibits OIF binding to HBGAs, potentially allowing production of cheap antivirals against human NoVs. Taken together, our results reveal a new evolutionary lineage of NoVs selected by HBGAs, a finding that is important for understanding the diversity and widespread nature of NoVs.  相似文献   

14.
P[8]b基因亚型是国内外新近发现的A组人轮状病毒(HRV)VP4基因的一种新亚型,本研究旨在建立有效鉴别HRV P[8]a和P[8]b基因亚型及P[4]和P[6]基因型的VP4基因打点杂交分型方法,并运用此方法对2009~2010年首都儿科研究所附属儿童医院门诊及住院腹泻患儿中P[8]b基因亚型HRV的流行情况及其G/P基因组合情况进行研究。通过对GenBank序列数据库可检索到的国内外HRV各种P基因型及亚型的VP4基因序列应用相关软件进行基因分析,在不同基因型别间核苷酸变异密集而相同P基因型内核苷酸高度保守的的位置设计各型别探针,并分别以本实验室上传GenBank的北京HRV地方株P[4]和P[6]基因型及P[8]a和P[8]b亚型的VP4基因作为相应型别探针的合成引物的设计模板及探针经PCR合成的合成模板,合成地高辛素标记的DNA探针。经测序验证所建立的VP4基因杂交分型方法结果可靠。对门诊88例(55%,88/160)及住院79例(70.5%,79/112)HRV腹泻患儿的P分型结果显示P[8]a亚型仍为主要型别,前者为96.6%(85/88),而后者为62.0%(49/79);P[8]b亚型在住院HRV感染腹泻患儿中占较高比例(27.9%,22/79),虽然其在门诊HRV感染患儿中也存在,但仅占2.3%(2/88);另外单纯P[4]基因型HRV感染仅在住院腹泻患儿中检测到1例(1.3%,1/79),而P[6]基因型在门诊及住院HRV感染腹泻患儿中均未检测到;本组标本中HRV P[8]b亚型主要与G9基因型组合。本研究表明G9P[8]b型HRV在北京腹泻儿童中有流行。  相似文献   

15.
Four different H-type 1 (LedH) blood-group-active glycosphingolipids (LedH-I–IV) have been isolated from the plasma of blood-group O Le(a?b?) secretors. The agglutination of O Le(a?b?) erythrocytes from secretors by 50 μl of 4 hemagglutinating units of caprine anti-LedH (anti-H-type 1) serum was inhibited by 0.02 μg of each of all four glycolipids. No Lea or Leb activities or reaction against Ulex europaeus lectin could be found. LedH-I, -II, -III, and -IV at 0.05, 0.01, 0.01, and 0.02 μg each are sufficient for incubation in order to convert 9 × 107 O Le(a?b?) erythrocytes from nonsecretors into H-type 1 (LedH)-positive cells. Structural analysis of the H-type 1 glycolipids was performed in comparison to that of Lea- and Leb-blood-group-active glycolipids from human plasma isolated previously: Gas chromatography of peracetylated alditols revealed sugar composition. Combined gas chromatography-mass spectrometry established the glycosidic linkages. Together with the results obtained by direct inlet mass spectrometry of permethylated glycosphingolipids and by 360-MHz 1H nuclear magnetic resonance spectroscopy (Egge, H., and Hanfland, P., 1981, Arch. Biochem. Biophys., 210, 396–404; Dabrowski, J., Hanfland, P., Egge, H., and Dabrowski, U., 1981, Arch. Biochem. Biophys., 210, 405–411) the complete structures of the oligosaccharide chains of the Lea-, Leb-, and H-type 1-active glycolipids were established: Galβ1 → 3GlcNAc(4 ← 1αFuc)β1 → 3Galβ1 → 4Glcβ1 → 1 Cer for the Lea antigens; Fucα1 → 2Galβ1 → 3GlcNAc(4 ← 1αFuc)β1 → 3Galβ1 → 4Glcβ1 → 1 Cer for the Leb antigens; and Fucα1 → 2Galβ1 → 3GlcNAcβ1 → 3Galβ1 → 4Glcβ1 → 1 Cer for the H-type 1 (LedH) glycolipids. The diverse antigens of the same blood-group specificity obviously differ from one another in their lipid residue. In addition, plasmatic neolactotetraosylceramide could be identified, differing from that of human erythrocytes by a slower migration behavior in thin-layer chromatography.  相似文献   

16.
Group A human rotaviruses (RVs) are a major cause of severe gastroenteritis in infants and young children. Yet, aside from the genes encoding serotype antigens (VP7; G-type and VP4; P-type), little is known about the genetic make-up of emerging and endemic human RV strains. To gain insight into the diversity and evolution of RVs circulating at a single location over a period of time, we sequenced the eleven-segmented, double-stranded RNA genomes of fifty-one G3P[8] strains collected from 1974 to 1991 at Children''s Hospital National Medical Center, Washington, D. C. During this period, G1P[8] strains typically dominated, comprising on average 56% of RV infections each year in hospitalized children. A notable exception was in the 1976 and 1991 winter seasons when the incidence of G1P[8] infections decreased dramatically, a trend that correlated with a significant increase in G3P[8] infections. Our sequence analysis indicates that the 1976 season was characterized by the presence of several genetically distinct, co-circulating clades of G3P[8] viruses, which contained minor but significant differences in their encoded proteins. These 1976 lineages did not readily exchange gene segments with each other, but instead remained stable over the course of the season. In contrast, the 1991 season contained a single major clade, whose genome constellation was similar to one of the 1976 clades. The 1991 clade may have gained a fitness advantage after reassorting with as of yet unidentified RV strain(s). This study reveals for the first time that genetically distinct RV clades of the same G/P-type can co-circulate and cause disease. The findings from this study also suggest that, although gene segment exchange occurs, most reassortant strains are replaced over time by lineages with preferred genome constellations. Elucidation of the selective pressures that favor maintenance of RVs with certain sets of genes may be necessary to anticipate future vaccine needs.  相似文献   

17.
Group A rotaviruses (RVs) are 11-segmented, double-stranded RNA viruses and are primary causes of gastroenteritis in young children. Despite their medical relevance, the genetic diversity of modern human RVs is poorly understood, and the impact of vaccine use on circulating strains remains unknown. In this study, we report the complete genome sequence analysis of 58 RVs isolated from children with severe diarrhea and/or vomiting at Vanderbilt University Medical Center (VUMC) in Nashville, TN, during the years spanning community vaccine implementation (2005 to 2009). The RVs analyzed include 36 G1P[8], 18 G3P[8], and 4 G12P[8] Wa-like genogroup 1 strains with VP6-VP1-VP2-VP3-NSP1-NSP2-NSP3-NSP4-NSP5/6 genotype constellations of I1-R1-C1-M1-A1-N1-T1-E1-H1. By constructing phylogenetic trees, we identified 2 to 5 subgenotype alleles for each gene. The results show evidence of intragenogroup gene reassortment among the cocirculating strains. However, several isolates from different seasons maintained identical allele constellations, consistent with the notion that certain RV clades persisted in the community. By comparing the genes of VUMC RVs to those of other archival and contemporary RV strains for which sequences are available, we defined phylogenetic lineages and verified that the diversity of the strains analyzed in this study reflects that seen in other regions of the world. Importantly, the VP4 and VP7 proteins encoded by VUMC RVs and other contemporary strains show amino acid changes in or near neutralization domains, which might reflect antigenic drift of the virus. Thus, this large-scale, comparative genomic study of modern human RVs provides significant insight into how this pathogen evolves during its spread in the community.  相似文献   

18.
A study on the prevalence of rotavirus G and P genotypes was carried out based on 253 stool specimens obtained from children living in the Colombia northern coast region who were less than 3-years-old and who suffered from acute diarrhea. A previous study had detected the presence of rotavirus A in 90 (36.5%) of the 246 samples tested by enzyme immunoassay (EIA), and these strains were investigated in the present study. Of these, 50 strains yielded an RNA electropherotype, most of which (80.0%) had long profiles and 20.0% of which had short profiles. Genotyping of 84 positive samples indicated that 67.9% of the strains could be typed. G1 (57.9%), was the most predominant VP7 genotype, followed by G3 (21.1%), G9 (15.8%) and G2 (5.3%). Among the VP4 genotypes, P[4] (49.1%) was the most prevalent, followed by P[6] 36.4% and P[8] (14.5%). Neither G4 nor G8 nor P[9] types were detected. The most common G-P combinations were G3 P[4] (8.8%) and G9 P[6] (7.0%), followed by G1 P[4] and G1 P[8] (5.3% each). All G1 P[8] strains showed long RNA profiles, whereas G3 P[4] and G9 P[6] displayed both long and short patterns. Mixed infections involved 21.0% of strains. There was a marked diversity among strains collected, and novel strains, including G9, as well as other atypical combinations of G and P genotypes, such as G9 P[6] and G3 P[4], were found.  相似文献   

19.
轮状病毒(RVs)是引起婴幼儿及动物非细菌性胃肠炎的重要病原体.研究发现,人类组织血型抗原(HBGAs)可能是RVs的结合受体.HBGAs具有丰富的多态性,包含ABO、分泌型及Lewis抗原.研究表明,不同P型的RVs与HBGAs的结合具有型特异性,而且不同人群对各型RVs易感性存在差异.因此,研究RVs与HBGAs的相互作用对于阐明RV感染的致病机理及RV疫苗的设计具有重要意义.  相似文献   

20.
The presence of rotavirus strains in sewage samples from Cairo, Egypt (November 1998 to October 1999), and Barcelona, Spain (November 1998 to December 2002), was investigated by using a generic molecular detection method based on amplification of a VP6 gene fragment. Overall, 85.7 and 66.9% of the sewage samples from Cairo and Barcelona, respectively, were positive. Positive samples were characterized further, and VP7 and VP4 genotypes were determined. Although 30% of the positive samples from Cairo were G untypeable, the distribution of G types in the positive samples was 69.6% G1, 13% G3, 8.7% G4, and 8.7% G9. The percentage of untypeable samples was much higher for the Barcelona samples (56.5%), and the distribution in the positive samples was 56.4% G1, 31.5% G3, 6% G9, 4% G2, and 2% G5. When the P types were examined, 26.7% of the positive samples from Cairo were untypeable, and the distribution of types in the positive samples was 53.3% P[8], 30% P[6], and 16.6% P[4]. In Barcelona, 27.2% of the samples were P untypeable, and the frequencies of the types detected were 49.7% P[8], 37.2% P[4], 8.8% P[6], and 4.2% P[9]. The distribution for strains from Cairo was 38.5% P[8]G1, 27% P[6]G1, 11.5% P[4]G1, 11.5% P[8]G3, 7.7% P[6]G4, and 3.8% P[8]G9. Strikingly, equivalent frequencies of common and uncommon strains were observed for Barcelona samples, and the distribution was 38.8% P[8]G1, 30.6% P[4]G1, 11.6% P[8]G3, 6.6% P[4]G3, 5.8% P[6]G1, 1.6% P[6]G3, 1.6% P[9]G1, 0.8% P[4]G2, 0.8% P[6]G9, 0.8% P[8]G9, and 0.8% P[8]G5. Additionally, two P[−]G5 strains were isolated in Barcelona, and the porcine or human origin of these strains was unclear. Rotavirus variability exhibited not only a geographic pattern but also a temporal pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号