首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Occupational hearing loss is an increasingly prevalent occupational condition worldwide, and has been reported to occur in a wide range of workplaces; however, its prevalence among workers from municipal solid waste landfills (MSWLs) remains less clear. This study aimed to investigate the occupational hearing loss among Chinese MSWL workers.

Methods

A cross-sectional study of 247 workers from 4 Chinese MSWLs was conducted. Noise and total volatile organic compounds (TVOCs) levels at worksites were determined. We conducted hearing examinations to determine hearing thresholds. A worker was identified as having hearing loss if the mean threshold at 2000, 3000 and 4000 Hz in either ear was equal to or greater than 25 dB. Prevalence of occupational hearing loss was then evaluated. Using unconditional Logistic regression models, we estimated the odds ratios (ORs) of MSWL work associated with hearing loss.

Results

According to the job title for each worker, the study subjects were divided into 3 groups, including group 1 of 63 workers without MSWL occupational hazards exposure (control group), group 2 of 84 workers with a few or short-period MSWL occupational hazards exposure, and group 3 of 100 workers with continuous MSWL occupational hazards exposure. Both noise and TVOCs levels were significantly higher at worksites for group 3. Significantly poorer hearing thresholds at frequencies of 2000, 3000 and 4000 Hz were found in group 3, compared with that in group 1 and group 2. The overall prevalence rate of hearing loss was 23. 5%, with the highest in group 3 (36.0%). The OR of MSWL work associated with hearing loss was 3.39 (95% confidence interval [CI]: 1.28-8.96).

Conclusion

The results of this study suggest significantly higher prevalence of hearing loss among MSWL workers. Further studies are needed to explore possible exposure-response relationship between MSWL occupational hazards exposure and hearing loss.  相似文献   

2.
The most common mechanism for human exposure to hantaviruses throughout North America is inhalation of virally contaminated particulates. However, risk factors associated with exposure to particulates potentially contaminated with hantaviruses are generally not well understood. In North America, Sin Nombre virus (SNV) is the most common hantavirus that infects humans, causing hantavirus pulmonary syndrome, which has a significant mortality rate (approximately 35%). We investigated human exposure to particulate matter and evaluated the effects of season, location (sylvan and peridomestic environment), and activity (walking and sweeping) on generation of particulates at the breathing zone (1.5 m above the ground). We found greater volumes of small inhalable particulates during the spring and summer compared to the fall and winter seasons and greater volumes of small inhalable particulates produced in peridomestic, compared to sylvan, environments. Also, greater volumes of particulates were generated at the breathing zone while walking compared to sweeping. Results suggest that more aerosolized particles were generated during the spring and summer months. Our findings suggest that simply moving around in buildings is a significant source of human exposure to particulates, potentially contaminated with SNV, during spring and summer seasons. These findings could be advanced by investigation of what particle sizes SNV is most likely to attach to, and where in the respiratory tract humans become infected.  相似文献   

3.
Lung diseases, including asthma, COPD, and other autoimmune lung pathologies are aggravated by exposure to particulate matter (PM) found in air pollution. IL-17 has been shown to exacerbate airway disease in animal models. As PM is known to contain aryl hydrocarbon receptor (AHR) ligands and the AHR has recently been shown to play a role in differentiation of Th17 T cells, the aim of this study was to determine whether exposure to PM could impact Th17 polarization in an AHR-dependent manner. This study used both cell culture techniques and in vivo exposure in mice to examine the response of T cells to PM. Initially experiments were conducted with urban dust particles from a standard reference material, and ultimately repeated with freshly collected samples of diesel exhaust and cigarette smoke. The readout for the assays was increased T cell differentiation as indicated by increased generation of IL-17A in culture, and increased populations of IL-17 producing cells by intracellular flow cytometry. The data illustrate that Th17 polarization was significantly enhanced by addition of urban dust in a dose dependent fashion in cultures of wild-type but not AHR-/- mice. The data further suggest that polycyclic aromatic hydrocarbons played a primary role in this enhancement. There was both an increase of Th17 cell differentiation, and also an increase in the amount of IL-17 secreted by the cells. In summary, this paper identifies a novel mechanism whereby PM can directly act on the AHR in T cells, leading to enhanced Th17 differentiation. Further understanding of the molecular mechanisms responsible for pathologic Th17 differentiation and autoimmunity seen after exposure to pollution will allow direct targeting of proteins involved in AHR activation and function for treatment of PM exposures.  相似文献   

4.
5.

Objective

To test the hypothesis that exposure to fine particulate air pollution (PM2.5) is associated with stillbirth.

Study Design

Geo-spatial population-based cohort study using Ohio birth records (2006-2010) and local measures of PM2.5, recorded by the EPA (2005-2010) via 57 monitoring stations across Ohio. Geographic coordinates of the mother’s residence for each birth were linked to the nearest PM2.5 monitoring station and monthly exposure averages calculated. The association between stillbirth and increased PM2.5 levels was estimated, with adjustment for maternal age, race, education level, quantity of prenatal care, smoking, and season of conception.

Results

There were 349,188 live births and 1,848 stillbirths of non-anomalous singletons (20-42 weeks) with residence ≤10 km of a monitor station in Ohio during the study period. The mean PM2.5 level in Ohio was 13.3 μg/m3 [±1.8 SD, IQR(Q1: 12.1, Q3: 14.4, IQR: 2.3)], higher than the current EPA standard of 12 μg/m3. High average PM2.5 exposure through pregnancy was not associated with a significant increase in stillbirth risk, adjOR 1.21(95% CI 0.96,1.53), nor was it increased with high exposure in the 1st or 2nd trimester. However, exposure to high levels of PM2.5 in the third trimester of pregnancy was associated with 42% increased stillbirth risk, adjOR 1.42(1.06,1.91).

Conclusions

Exposure to high levels of fine particulate air pollution in the third trimester of pregnancy is associated with increased stillbirth risk. Although the risk increase associated with high PM2.5 levels is modest, the potential impact on overall stillbirth rates could be robust as all pregnant women are potentially at risk.  相似文献   

6.
As part of environmental management policies in Europe, separate collection of organic household waste and nonorganic household waste has become increasingly common. As waste is often stored indoors, this policy might increase microbial exposure in the home environment. In this study we evaluated the association between indoor storage of organic waste and levels of microbial agents in house dust. The levels of bacterial endotoxins, mold β(1→3)-glucans, and fungal extracullar polysaccharides (EPS) of Aspergillus and Penicillium species were determined in house dust extracts as markers of microbial exposure. House dust samples were collected in 99 homes in The Netherlands selected on the basis of whether separated organic waste was present in the house. In homes in which separated organic waste was stored indoors for 1 week or more the levels of endotoxin, EPS, and glucan were 3.2-, 7.6-, and 4.6-fold higher, respectively (all P < 0.05), on both living room and kitchen floors than the levels in homes in which only nonorganic residual waste was stored indoors. Increased levels of endotoxin and EPS were observed, 2.6- and 2.1-fold (P < 0.1), respectively, when separated organic waste was stored indoors for 1 week or less, whereas storage of nonseparated waste indoors had no effect on microbial agent levels (P > 0.2). The presence of textile floor covering was another major determinant of microbial levels (P < 0.05). Our results indicate that increased microbial contaminant levels in homes are associated with indoor storage of separated organic waste. These increased levels might increase the risk of bioaerosol-related respiratory symptoms in susceptible people.  相似文献   

7.
8.
This study quantified the levels of airborne microorganisms in six swine farms with more than 10,000 pigs in subtropical Taiwan. We evaluated breeding, growing, and finishing stalls, which were primarily open-air buildings, as well as partially enclosed farrowing and nursery piggeries. Airborne culturable bacteria, gram-negative bacteria, and fungi were placed on appropriate media by using an all-glass impinger or single-stage Andersen microbial sampler. Results showed that mean concentrations of culturable bacteria and gram-negative bacteria were 3.3 × 105 and 143.7 CFU/m3, respectively. The concentration of airborne culturable fungi was about 103 CFU/m3, with Cladosporium the predominant genus. The highest airborne levels of culturable bacteria and gram-negative bacteria were identified in the finishing units. The air of the nursery stalls was the least contaminated with culturable and gram-negative bacteria. Irregular and infrequent cleaning, high pig density, no separation of wastes from pen floors, and accumulation of water as a result of the processes for cleaning and reducing pig temperature possibly compromise the benefits of the open characteristic of the finishing units with respect to airborne bacterial concentration.  相似文献   

9.

Background

Diesel exhaust (DE) exposures are very common, yet exposure-related symptoms haven’t been rigorously examined.

Objective

Describe symptomatic responses to freshly generated and diluted DE and filtered air (FA) in a controlled human exposure setting; assess whether such responses are altered by perception of exposure.

Methods

43 subjects participated within three double-blind crossover experiments to order-randomized DE exposure levels (FA and DE calibrated at 100 and/or 200 micrograms/m3 particulate matter of diameter less than 2.5 microns), and completed questionnaires regarding symptoms and dose perception.

Results

For a given symptom cluster, the majority of those exposed to moderate concentrations of diesel exhaust do not report such symptoms. The most commonly reported symptom cluster was of the nose (29%). Blinding to exposure is generally effective. Perceived exposure, rather than true exposure, is the dominant modifier of symptom reporting.

Conclusion

Controlled human exposure to moderate-dose diesel exhaust is associated with a range of mild symptoms, though the majority of individuals will not experience any given symptom. Blinding to DE exposure is generally effective. Perceived DE exposure, rather than true DE exposure, is the dominant modifier of symptom reporting.  相似文献   

10.

Background

Exposure to particulate matter (PM) has been associated with an increase in many inflammatory markers, including interleukin 6 (IL6). Air pollution exposure has also been suggested to induce an imbalance in the autonomic nervous system (ANS), such as a decrease in heart rate variability (HRV). In this study we aimed to investigate the modifying effect of polymorphisms in a major proinflammatory marker gene, interleukin 6 (IL6), on the relationship between long-term exposure to traffic-related PM10 (TPM10) and HRV.

Methods

For this cross-sectional study we analysed 1552 participants of the SAPALDIA cohort aged 50 years and older. Included were persons with valid genotype data, who underwent ambulatory 24-hr electrocardiogram monitoring, and reported on medical history and lifestyle. Main effects of annual average TPM10 and IL6 gene variants (rs1800795; rs2069827; rs2069840; rs10242595) on HRV indices and their interaction with average annual exposure to TPM10 were tested, applying a multivariable mixed linear model.

Results

No overall association of TPM10 on HRV was found. Carriers of two proinflammatory G-alleles of the functional IL6 -174 G/C (rs1800795) polymorphism exhibited lower HRV. An inverse association between a 1 µg/m3 increment in yearly averaged TPM10 and HRV was restricted to GG genotypes at this locus with a standard deviation of normal-to-normal intervals (SDNN) (GG-carriers: −1.8%; 95% confidence interval −3.5 to 0.01; pinteraction(additive) = 0.028); and low frequency power (LF) (GG-carriers: −5.7%; 95%CI: −10.4 to −0.8; pinteraction(dominant) = 0.049).

Conclusions

Our results are consistent with the hypothesis that traffic-related air pollution decreases heart rate variability through inflammatory mechanisms.  相似文献   

11.
Air pollution causes serious problems in spring in northern China; therefore, studying the ability of different plants to accumulate particulate matter (PM) at the beginning of the growing season may benefit urban planners in their attempts to control air pollution. This study evaluated deposits of PM on the leaves and in the wax layer of 35 species (11 shrubs, 24 trees) in Beijing, China. Differences in the accumulation of PM were observed between species. Cephalotaxus sinensis, Euonymus japonicus, Broussonetia papyriferar, Koelreuteria paniculata and Quercus variabilis were all efficient in capturing small particles. The plants exhibiting high amounts of total PM accumulation (on leaf surfaces and/or in the wax layer), also showed comparatively high levels of PM accumulation across all particle sizes. A comparison of shrubs and trees did not reveal obvious differences in their ability to accumulate particles based on growth form; a combination of plantings with different growth forms can efficiently reduce airborne PM concentrations near the ground. To test the relationships between leaf traits and PM accumulation, leaf samples of selected species were observed using a scanning electron microscope. Growth forms with greater amounts of pubescence and increased roughness supported PM accumulation; the adaxial leaf surfaces collected more particles than the abaxial surfaces. The results of this study may inform the selection of species for urban green areas where the goal is to capture air pollutants and mitigate the adverse effects of air pollution on human health.  相似文献   

12.

Objectives

Studies have shown that chronic exposure to ambient fine particulate matter (less than 2.5 µm in aerodynamic diameter, PM2.5) pollution induces insulin resistance through alterations in inflammatory pathways. It is critical to study how the immune system responds to this stimulant, which has been linked to cardiovascular and autoimmune diseases, but few studies have been focused on such involvement of both neutrophils and monocytes in a timely manner. We hypothesized that the neutrophil was involved in the inflammatory response to air pollution.

Methods and Results

C57BL/6 mice were exposed to PM2.5 or filtered air (6 hours/day, 5 days/week) for 5, 14, and 21 days, respectively, in Columbus, OH. At the end of each of the exposure periods, we investigated the inflammatory response through flow cytometry, histology, intravital microscopy, and real-time PCR. PM2.5-exposed mice demonstrated a significant inflammatory response after 5 days of exposure. In the lung tissue and bronchoalveolar lavage fluid, monocytes/macrophages showed a transient response, while neutrophils showed a cumulative response. In addition, exposure to PM2.5 resulted in elevation of the monocyte chemoattractant protein 1 (MCP-1) cytokine, a monocyte/macrophage attractant in blood, at an early stage of exposure.

Conclusions

These findings suggest that PM2.5 exposure induces the inflammatory responses from both macrophages and neutrophils involvement.  相似文献   

13.
14.
Sources of regional particulate matter (PM), particularly agricultural operations, must be understood in order to manage the air quality in irrigated dry climates. Direct monitoring measurements alone are useful, but not sufficient, to estimate regional PM source concentrations. This paper combines modeling with ground (point) and airplane (spatial) measurement methods to estimate regional PM10 (PM diameter≤10 μm) contributions from agricultural operations. Hourly data from three air quality monitoring stations positioned at a 2-m height located on the west and east mesas of New Mexico’s Mesilla Valley and in the valley at Anthony, NM were acquired from the New Mexico Air Quality Bureau. The study spanned the agricultural tilling season, March 1 to April 30, for the years 2008 to 2012. One- second spatial PM10 concentrations at 200 m above the valley floor were measured during a two-hour controlled field tilling operation on April 1, 2008. The HYSPLIT 4.0 (Hybrid Single-Particle Lagrangian Integrated Trajectory version 4) model was run at the corresponding times and heights, outputting PM10 concentrations from all potential agricultural tilling operations. The calculated percentage contribution (modeled PM10 concentration/measured PM10 concentration) indicated that the near-surface (2-m height) proportion from the agricultural operations for five seasonal averages ranged from 0.7% to 1.5% on the west and east mesas and 1.3% for the valley site at Anthony. There were 71 hourly high values of contribution ratios ranging from 30 to 100% at the three sites, depending on the wind speed and direction.  相似文献   

15.
Reconstituted parenteral solutions of three surface-active anti-infective small-molecule drugs and solutions of sodium dodecyl sulfate (SDS, a model surfactant) were studied to quantify the impact of sample preparation and handling on particle counts. Turbidimetry and light obscuration profiles were recorded as a function of agitation and shearing with and without the introduction of foam into the solutions. SDS solutions at concentrations above the critical micelle concentration (CMC) show significantly greater sensitivity to shear and foam presence than SDS solution below the CMC: Values of >10 μm particles increased 8 fold over control (an unsheared sample) in the micellar solution vs. 4 fold particle count increase over control at a sub-micellar concentration. An even more significant increase in the ratio of particle count in sheared/unsheared solution is seen for >25 μm unit counts, due to the increased interference of foam with the measurement. Two commercial products, injection formulations of teicoplanin and cefotaxime sodium, as well as an investigational compound 1, showed an increase in scattering as a function of foam production. The impact of foaming was significant, resulting in an increase of turbidity and light obscuration measurements in all solutions. The results illustrate some of the challenges that are inherent to optically clear, homogeneous pharmaceutical injections containing compounds which have a tendency toward self-association and surfactant-like behavior.  相似文献   

16.
This study examines the effects of nano-size particulate matter (nPM) exposure in the setting of murine reperfused stroke. Particulate matter is a potent source of inflammation and oxidative stress. These processes are known to influence stroke progression through recruitment of marginally viable penumbral tissue into the ischemic core. nPM was collected in an urban area in central Los Angeles, impacted primarily by traffic emissions. Re-aerosolized nPM or filtered air was then administered to mice through whole body exposure chambers for forty-five cumulative hours. Exposed mice then underwent middle cerebral artery occlusion/ reperfusion. Following cerebral ischemia/ reperfusion, mice exposed to nPM exhibited significantly larger infarct volumes and less favorable neurological deficit scores when compared to mice exposed to filtered air. Mice exposed to nPM also demonstrated increases in markers of inflammation and oxidative stress in the region of the ischemic core. The findings suggest a detrimental effect of urban airborne particulate matter exposure in the setting of acute ischemic stroke.  相似文献   

17.
Severe polymetallic contamination is frequently observed in the mining communities of Bolivian Altiplano. We evaluated hair trace elements concentrations at the population level to characterise exposure profile in different contexts of contact with mining and metallurgical pollution. We sampled 242 children aged 7 to 12 years in schools from five Oruro districts located in different contexts of potential contamination. Hair trace elements concentrations were measured using ICP-MS (Pb, As, Hg, Cd, Sb, Sn, Bi, Ag, Ni, Se, Cu, Cr, Mn, Co and Zn). We compared concentration according to school areas and gender. Concentrations were markedly different depending on school areas. Children from schools near industrial areas were far more exposed to non essential elements than children from downtown and suburban schools, as well as the rural school. The most concentrated non-essential element was Pb (geometric means (SD): 1.6 (1.3) μg/g in rural school; 2.0 (2.3) μg/g in suburban school; 2.3 (3.0) μg/g in downtown school; 14.1 (2.7) μg/g in the mine school and 21.2 (3.3) μg/g in the smelter school). Boys showed higher levels for all non-essential elements while girls had higher levels of Zn. Hair trace elements concentrations highlighted the heterogeneity of exposure profiles, identifying the most contaminated districts.  相似文献   

18.
We compared workplace injuries between young (16 to 19 years of age) and adult workers using West Virginia Workers' Compensation database. All workers injured between January 1 and December 31, 1995 were included in the analysis. The industry-specific injury incidence rates between young and adults workers were significantly different with lower rates of injury in young workers in all sectors except service sector. In the service sector the young workers had significantly higher injury rates than adults (rate ratios for young workers were 2.28, 1.92, and 2.94 when compared with age groups 20-24, 25-34, and >34, respectively). Estimates of the proportional injury ratio (PIR) indicated significantly greater risk of finger (PIR 1.62) and hand (PIR 1.66) injuries and burns (PIR 3.27) and lacerations (PIR 1.69) in the young workers. The proportion of injuries occurring in the summer months was higher in the young than in the adults (35.2% vs. 27.0%), particularly in the service sector (79.6% vs. 25.9%). Higher injury rates in young workers compared to adults in the service sector may be explained by the seasonal employment of young workers in West Virginia.  相似文献   

19.
The aim of this paper was to study the influence of environmental characteristics of the Mediterranean climate on seasonal variability of particulate organic matter abundance in a mountain stream. Coarse and fine fractions of both suspended and benthic particulate organic matter were determined on 14 occasions between February 1998 and November 1999 in a second‐order Mediterranean stream in Central Spain (Arroyo Mediano). Temporal variability of suspended organic matter followed a seasonal pattern, attributed to litter‐fall inputs, instream processing, and the hydrological regime. Suspended organic matter (SOM) and its seasonal variability fall well within the range reported for streams in temperate non‐Mediterranean deciduous forest. However, we found no seasonal trend in benthic organic matter (BOM) storage, and it seems that the amount of BOM remained fairly constant throughout the year. Reach retention (evaluated as the ratio between BOM and SOM per m2) was higher in summer during reduced stream flow, mainly due to coarse particulate organic matter storage. These observations do not differ from those reported for other headwater streams in temperate forested biomes, from which we conclude that there was no evidence of a Mediterranean influence on particulate organic matter dynamics in the Mediano stream, nor probably in other headwater Mediterranean streams. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Hispanic construction workers, particularly those born outside of the United States, are a growing segment of the Texas workforce and are increasingly the victims of on-the-job fatalities. This study examines occupational fatality characteristics among Hispanic construction workers utilizing records collected by the Texas Workers' Compensation Commission for the Bureau of Labor Statistics, Census of Occupational Fatal Injuries program. Of the 370 fatalities recorded from 1997 to 1999, 179 cases (46.5%) involved Hispanic workers — 109 of who were born in a foreign country. The fatality rate for Hispanic construction workers was 23.5 per 100,000 workers compared to 21.2 for non-Hispanic workers. Many fatally injured Hispanic construction workers shared similar characteristics including: low skill level, young age and foreign birthplace. Hispanic workers employed as construction laborers, helpers, and roofers had the highest number of fatalities. Businesses with fewer than 10 workers employed forty-two % of all Hispanic decedents, and businesses with more than 100 employees comprised twenty % of fatalities. The leading causes of Hispanic fatalities were: transportation incidents, falls, and exposure to harmful substances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号