首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
组蛋白H2A的变体H2A.Z在基因的表达过程中发挥着重要的作用。根据H2A.Z和H2A核小体中组蛋白甲基化修饰方式的不同,作者应用多样性增量二次判别方法(increment of diversity with quadratic discriminant,IDQD)成功地对H2A.Z和H2A核小体进行了识别,说明了以组蛋白甲基化信息作为特征参数的IDQD模型对H2A.Z和H2A核小体识别的有效性。通过计算DNA序列的柔性,发现H2A.Z核小体对应的DNA序列的平均柔性比常规H2A核小体对应的DNA序列的平均柔性弱。  相似文献   

4.
The yeast Set1-complex catalyzes histone H3 lysine 4 (H3K4) methylation. Using N-terminal Edman sequencing, we determined that 50% of H3K4 is methylated and consists of roughly equal amounts of mono, di and tri-methylated H3K4. We further show that loss of either Paf1 of the Paf1 elongation complex, or ubiquitination of histone H2B, has only a modest effect on bulk histone mono-methylation at H3K4. Despite the fact that Set1 recruitment decreases in paf1delta cells, loss of Paf1 results in an increase of H3K4 mono-methylation at the 5' coding region of active genes, suggesting a Paf1-independent targeting of Set1. In contrast to Paf1 inactivation, deleting RTF1 affects H3K4 mono-methylation at the 3' coding region of active genes and results in a decrease of global H3K4 mono-methylation. Our results indicate that the requirements for mono-methylation are distinct from those for H3K4 di and tri-methylation, and point to differences among members of the Paf1 complex in the regulation of H3K4 methylation.  相似文献   

5.
6.
7.
8.
Nucleosomes are dynamic entities with wide‐ranging compositional variations. Human histone variants H2A.B and H2A.Z.2.2 play critical roles in multiple biological processes by forming unstable nucleosomes and open chromatin structures, but how H2A.B and H2A.Z.2.2 confer these dynamic features to nucleosomes remains unclear. Here, we report cryo‐EM structures of nucleosome core particles containing human H2A.B (H2A.B‐NCP) at atomic resolution, identifying large‐scale structural rearrangements in the histone octamer in H2A.B‐NCP. H2A.B‐NCP compacts approximately 103 bp of DNA wrapping around the core histones in approximately 1.2 left‐handed superhelical turns, in sharp contrast to canonical nucleosome encompassing approximately 1.7 turns of DNA. Micrococcal nuclease digestion assay reveals that nineteen H2A.B‐specific residues, including a ROF (“regulating‐octamer‐folding”) sequence of six consecutive residues, are responsible for loosening of H2A.B‐NCPs. Unlike H2A.B‐NCP, the H2A.Z.2.2‐containing nucleosome (Z.2.2‐NCP) adopts a less‐extended structure and compacts around 125 bp of DNA. Further investigation uncovers a crucial role for the H2A.Z.2.2‐specific ROF in both H2A.Z.2.2‐NCP opening and SWR1‐dependent histone replacement. Taken together, these first high‐resolution structure of unstable nucleosomes induced by histone H2A variants elucidate specific functions of H2A.B and H2A.Z.2.2 in enhancing chromatin dynamics.  相似文献   

9.
In the absence of pathogen attack, organisms usually suppress immune responses to reduce the negative effects of disease resistance. Monoubiquitination of histone variants at specific gene loci is crucial for gene expression, but its involvement in the regulation of plant immunity remains unclear. Here, we show that a rice SWI/SNF2 ATPase gene BRHIS1 is downregulated in response to the rice blast fungal pathogen or to the defense‐priming‐inducing compound BIT (1,2‐benzisothiazol‐3(2h)‐one,1, 1‐dioxide). The BRHIS1‐containing complex represses the expression of some disease defense‐related genes, including the pathogenesis‐related gene OsPBZc and the leucine‐rich‐repeat (LRR) receptor‐like protein kinase gene OsSIRK1. This is achieved through BRHIS1 recruitment to the promoter regions of target genes through specific interaction with monoubiquitinated histone variants H2B.7 and H2A.Xa/H2A.Xb/H2A.3, in the absence of pathogen attack or BIT treatment. Our results show that rice disease defense genes are initially organized in an expression‐ready state by specific monoubiquitination of H2A and H2B variants deposited on their promoter regions, but are kept suppressed by the BRHIS1 complex, facilitating the prompt initiation of innate immune responses in response to infection through the stringent regulation of BRHIS1.  相似文献   

10.
11.
Anti-inflammatory drugs are often of limited use due to low efficacy and toxic effects. The present study describes the anti-inflammatory effects of a novel nonapeptide termed IIIM1, using the mouse hind paw edema as an experimental model of inflammation. Multiple prophylactic injections of IIIM1 resulted in a significant reduction in carrageenan-induced foot pad swelling, both in mice and rats. A single prophylactic treatment of the peptide caused the maximal effect at 7-9 days between the initial peptide treatment and the subsequent carrageenan injection. A reduced inflammatory reaction was observed in transgenic mice constitutively expressing the peptide. A marked decrease in oxidative burst was observed in activated peritoneal macrophages obtained from peptide-treated mice. Furthermore, the sera of IIIM1-treated mice caused a significant decrease in the oxidative burst of macrophages. In addition, the reduction of hind paw swelling in mice injected with the sera of IIIM1-treated mice strongly suggests the presence of a circulating inducible factor responsible for the anti-inflammatory effect of the peptide. Previous LC/MS/MS analysis revealed the presence of a new peptide, termed RA1, in the sera of IIIM1-treated mice. RA1 was identified as a fragment of the Oryza Sativa Japonica protein. The anti-inflammatory effect of RA1 as evidenced by the reduction in carrageenan-induced hind paw swelling corresponded with the decrease in the oxidative burst of macrophages treated in vitro with this peptide. In conclusion, both IIIM1 and RA1 represent potential agents for the efficient treatment of inflammatory diseases that are currently incurable using presently available drugs.  相似文献   

12.
13.
染色质是真核细胞中遗传物质DNA的载体,染色质结构动态变化与DNA复制、转录、重组、修复等重要生物学事件密切相关.组蛋白是染色质结构的基本组成元件之一,组蛋白变体和组蛋白修饰是两类基本的染色质结构调控因子.在构成核小体的四种核心组蛋白(H2A、H2B、H3、H4)当中,H2A拥有最多的变体类型并在染色质结构调控中发挥重要作用.H2A组蛋白伴侣对H2A组蛋白及其变体的特异识别对于后者的折叠、修饰、传递、转运、组装、移除等生物学功能至关重要.本文着重探讨了组蛋白伴侣特异识别H2A组蛋白的分子机理,二者调控染色质结构的作用机制以及相应的生物学意义.  相似文献   

14.
《Cell》2023,186(5):1050-1065.e19
  1. Download : Download high-res image (202KB)
  2. Download : Download full-size image
  相似文献   

15.
16.
Histone phosphorylation is dynamically regulated during cell division, for example phosphorylation of histone H3 (H3)-Ser10, H3-Thr11 and H3-Ser28. Here we analyzed maize (Zea mays L) for Thr133-phosphorylated histone H2A, which is important for spindle checkpoint control and localization of the centromere cohesion protector Shugoshin in mammals and yeast. Immunostaining results indicate that phosphorylated H2A-Thr133 signals bridged those of the centromeric H3 histone variant CENH3 by using a plant displaying yellow fluorescent protein-CENH3 signals and H2A-Thr133 is phosphorylated in different cell types. During mitosis, H2A-Thr133 phosphorylation becomes strong in metaphase and is specific to centromere regions but drops during later anaphase and telophase. Immunostaining for several maize dicentric chromosomes revealed that the inactive centromeres have lost phosphorylation of H2A-Thr133. During meiosis in maize meiocytes, H2A phosphorylation becomes strong in the early pachytene stage and increases to a maximum at metaphase I. In the maize meiotic mutant afd1 (absence of first division), sister chromatids show equational separation at metaphase I, but there are no changes in H2A-Thr-133 phosphorylation during meiosis compared with the wild type. In sgo1 mutants, sister chromatids segregate randomly during meiosis II, and phosphorylation of H2A-Thr-133 is observed on the centromere regions during meiosis II. The availability of such mutants in maize that lack sister cohesion and Shugoshin indicate that the signals for phosphorylation are not dependent on cohesion but on centromere activity.  相似文献   

17.
18.
19.
20.
Relaxation of nucleosomes on an homologous series (pBR) of ca 350-370 bp DNA minicircles originating from plasmid pBR322 was recently used as a tool to study their structure and dynamics. These nucleosomes thermally fluctuated between three distinct DNA conformations within a histone N-terminal tail-modulated equilibrium: one conformation was canonical, with 1.75 turn wrapping and negatively crossed entering and exiting DNAs; another was also "closed", but with these DNAs positively crossed; and the third was "open", with a lower than 1.5 turn wrapping and uncrossed DNAs. In this work, a new minicircle series (5S) of similar size was used, which contained the 5S nucleosome positioning sequence. Results showed that DNA in pBR nucleosomes was untwisted by approximately 0.2 turn relative to 5S nucleosomes, which DNase I footprinting confirmed in revealing a approximately 1 bp untwisting at each of the two dyad-distal sites where H2B N-terminal tails pass between the two gyres. In contrast, both nucleosomes showed untwistings at the dyad-proximal sites, i.e. on the other gyre, which were also observed in the high-resolution crystal structure. 5S nucleosomes also differ with respect to their dynamics: they hardly accessed the positively crossed conformation, but had an easier access to the negatively crossed conformation. Simulation showed that such reverse effects on the conformational free energies could be simply achieved by slightly altering the trajectories of entering and exiting DNAs. We propose that this is accomplished by H2B tail untwisting at the distal sites through action at a distance ( approximately 20 bp) on H3-tail interactions with the small groove at the nucleosome entry-exit. These results may help to gain a first glimpse into the two perhaps most intriguing features of the high-resolution structure: the alignment of the grooves on the two gyres and the passage of H2B and H3 N-terminal tails between them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号