首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cross‐linking mass spectrometry has developed into an important method to study protein structures and interactions. The in‐solution cross‐linking workflows involve time and sample consuming steps and do not provide sensible solutions for differentiating cross‐links obtained from co‐occurring protein oligomers, complexes, or conformers. Here we developed a cross‐linking workflow combining blue native PAGE with in‐gel cross‐linking mass spectrometry (IGX‐MS). This workflow circumvents steps, such as buffer exchange and cross‐linker concentration optimization. Additionally, IGX‐MS enables the parallel analysis of co‐occurring protein complexes using only small amounts of sample. Another benefit of IGX‐MS, demonstrated by experiments on GroEL and purified bovine heart mitochondria, is the substantial reduction of undesired over‐length cross‐links compared to in‐solution cross‐linking. We next used IGX‐MS to investigate the complement components C5, C6, and their hetero‐dimeric C5b6 complex. The obtained cross‐links were used to generate a refined structural model of the complement component C6, resembling C6 in its inactivated state. This finding shows that IGX‐MS can provide new insights into the initial stages of the terminal complement pathway.  相似文献   

2.
Structural biology is entering an exciting time where many new high-resolution structures of large complexes and membrane proteins (MPs) are determined regularly. These advances have been driven by over 15 years of technological improvements, first in macromolecular crystallography, and recently in cryo-electron microscopy. Obtaining information about MP higher order structure and interactions is also a frontier, important but challenging owing to their unique properties and the need to choose suitable detergents/lipids for their study. The development of mass spectrometry (MS), both instruments and methodology in the past 10 years, has also advanced it as a complementary method to study MP structure and interactions. In this review, we discuss advances in MS-based footprinting for MPs and highlight recent methodologies that offer new promise for MP study by chemical footprinting and mass spectrometry.  相似文献   

3.
4.
5.
Two‐dimensional blue native/SDS‐PAGE is widely applied to investigate native protein–protein interactions, particularly those within membrane multi‐protein complexes. MS has enabled the application of this approach at the proteome scale, typically by analysis of picked protein spots. Here, we investigated the potential of using LC‐MS/MS as an alternative for SDS‐PAGE in blue native (BN) analysis of protein complexes. By subjecting equal slices from BN gel lanes to label‐free semi‐quantitative LC‐MS/MS, we determined an abundance profile for each protein across the BN gel, and used these profiles to identify potentially interacting proteins by protein correlation profiling. We demonstrate the feasibility of this approach by considering the oxidative phosphorylation complexes I–V in the native human embryonic kidney 293 mitochondrial fraction, showing that the method is capable of detecting both the fully assembled complexes as well as assembly/turnover intermediates of complex I (NADH:ubiquinone oxidoreductase). Using protein correlation profiling with a profile for subunits NDUFS2, 3, 7 and 8 we identified multiple proteins possibly involved in the biogenesis of complex I, including the recently implicated chaperone C6ORF66 and a novel candidate, C3ORF60.  相似文献   

6.
An important step in the proteomic analysis of missing proteins is the use of a wide range of tissues, optimal extraction, and the processing of protein material in order to ensure the highest sensitivity in downstream protein detection. This work describes a purification protocol for identifying low-abundance proteins in human chorionic villi using the proposed “1DE-gel concentration” method. This involves the removal of SDS in a short electrophoresis run in a stacking gel without protein separation. Following the in-gel digestion of the obtained holistic single protein band, we used the peptide mixture for further LC–MS/MS analysis. Statistically significant results were derived from six datasets, containing three treatments, each from two tissue sources (elective or missed abortions). The 1DE-gel concentration increased the coverage of the chorionic villus proteome. Our approach allowed the identification of 15 low-abundance proteins, of which some had not been previously detected via the mass spectrometry of trophoblasts. In the post hoc data analysis, we found a dubious or uncertain protein (PSG7) encoded on human chromosome 19 according to neXtProt. A proteomic sample preparation workflow with the 1DE-gel concentration can be used as a prospective tool for uncovering the low-abundance part of the human proteome.  相似文献   

7.
Here we combined tandem affinity purification with several mass-spectrometry-based approaches to gain more insight into the composition and structure of the yeast nuclear-cytoplasmic exosome protein complex. The yeast exosome fulfills several different functions in RNA metabolism and can be localized in both the cytoplasm and the nucleus. These two exosome complexes differ in protein composition, although they share several constituents. We focused on these differences in composition by selecting a nuclear-specific exosome protein (Rrp6) and a cytoplasmic-specific protein (Ski7) as the tandem-affinity-purification-tagged affinity bait protein. First, we investigated both these purified exosome assemblies by macromolecular mass spectrometry (MS) to determine the stability and mass of the intact protein complexes and to obtain information on composition and core constituents. We used tandem MS on these intact protein complexes to further probe the composition and to obtain insight into the peripheral nature of some of the constituents. Finally, we combine stable isotope labeling with MS to quantitate differences in exosome composition and posttranslational modifications. We identified a few phosphorylation sites that are differentially regulated between the cytoplasmic exosome and the nuclear exosome. From all of these data, we conclude that the yeast nuclear exosome and the cytoplasmic exosome share a common stable core complex, but are decorated with quite a few differing peripheral proteins. We show that the nuclear exosome selectively copurifies with the α/β importin heterodimer, which is known to be involved in the transport of proteins across the nuclear membrane.  相似文献   

8.
Homo‐oligomeric ligand‐activated proteins are ubiquitous in biology. The functions of such molecules are commonly regulated by allosteric coupling between ligand‐binding sites. Understanding the basis for this regulation requires both quantifying the free energy ΔG transduced between sites, and the structural basis by which it is transduced. We consider allostery in three variants of the model ring‐shaped homo‐oligomeric trp RNA‐binding attenuation protein (TRAP). First, we developed a nearest‐neighbor statistical thermodynamic binding model comprising microscopic free energies for ligand binding to isolated sites ΔG 0, and for coupling between adjacent sites, ΔG α . Using the resulting partition function (PF) we explored the effects of these parameters on simulated population distributions for the 2 N possible liganded states. We then experimentally monitored ligand‐dependent population shifts using conventional spectroscopic and calorimetric methods and using native mass spectrometry (MS). By resolving species with differing numbers of bound ligands by their mass, native MS revealed striking differences in their ligand‐dependent population shifts. Fitting the populations to a binding polynomial derived from the PF yielded coupling free energy terms corresponding to orders of magnitude differences in cooperativity. Uniquely, this approach predicts which of the possible 2 N liganded states are populated at different ligand concentrations, providing necessary insights into regulation. The combination of statistical thermodynamic modeling with native MS may provide the thermodynamic foundation for a meaningful understanding of the structure–thermodynamic linkage that drives cooperativity.  相似文献   

9.
The purification of low-abundance protein complexes and detection of in vivo protein–protein interactions in complex biological samples remains a challenging task. Here, we devised crosslinking and tandem affinity purification coupled to mass spectrometry (XL–TAP–MS), a quantitative proteomics approach for analyzing tandem affinity-purified, crosslinked protein complexes from plant tissues. We exemplarily applied XL–TAP–MS to study the MKK2–Mitogen-activated protein kinase (MPK4) signaling module in Arabidopsis thaliana. A tandem affinity tag consisting of an in vivo-biotinylated protein domain flanked by two hexahistidine sequences was adopted to allow for the affinity-based isolation of formaldehyde–crosslinked protein complexes under fully denaturing conditions. Combined with 15N stable isotopic labeling and tandem MS we captured and identified a total of 107 MKK2–MPK4 module-interacting proteins. Consistent with the role of the MPK signaling module in plant immunity, many of the module-interacting proteins are involved in the biotic and abiotic stress response of Arabidopsis. Validation of binary protein–protein interactions by in planta split-luciferase assays and in vitro kinase assays disclosed several direct phosphorylation targets of MPK4. Together, the XL–TAP–MS approach purifies low abundance protein complexes from biological samples and discovers previously unknown protein–protein interactions.

XL–TAP–MS: a novel technique that allows purification of crosslinked, low abundant protein complexes from plant tissues under denatured conditions and detection of in vivo protein–protein interactions.  相似文献   

10.
A wide range of biophysical approaches has been applied to structural biology, all with the same overall goal-to understand the molecular machines that allow cells to function. While knowledge of the identity and composition of component protein subunits is an important foundation for understanding these macromolecular complexes it has become increasingly clear that knowledge of the exact composition alone is insufficient for understanding dynamic interactions and regulatory mechanisms. In this review we focus on recent developments of mass spectrometry (MS) that allow us to unravel the functional 'secrets' of non-covalent molecular machines.  相似文献   

11.
12.
Transverse relaxation-optimized spectroscopy (TROSY), in combination with various isotope-labeling techniques, has opened avenues to study biomolecules with molecular masses of up to 1000000Da by solution NMR. Important recent applications of TROSY include the structure determination of membrane proteins in detergent micelles, structural and functional studies of large proteins in both monomeric form and macromolecular complexes, and investigations of intermolecular interactions in large complexes. TROSY improves the measurement of residual dipolar couplings and the detection of scalar couplings across hydrogen bonds - techniques that promise to further enhance the determination of solution structures of large proteins and oligonucleotides.  相似文献   

13.
The advent of machine learning‐based structure prediction algorithms such as AlphaFold2 (AF2) and RoseTTa Fold have moved the generation of accurate structural models for the entire cellular protein machinery into the reach of the scientific community. However, structure predictions of protein complexes are based on user‐provided input and may require experimental validation. Mass spectrometry (MS) is a versatile, time‐effective tool that provides information on post‐translational modifications, ligand interactions, conformational changes, and higher‐order oligomerization. Using three protein systems, we show that native MS experiments can uncover structural features of ligand interactions, homology models, and point mutations that are undetectable by AF2 alone. We conclude that machine learning can be complemented with MS to yield more accurate structural models on a small and large scale.  相似文献   

14.
15.
Biomolecular interaction analysis mass spectrometry (BIA/MS) is a two-dimensional analytical technique that quantitatively and qualitatively detects analytes of interests. In the first dimension, surface plasmon resonance (SPR) is utilized for detection of biomolecules in their native environment. Because SPR detection is non-destructive, analyte(s) retained on the SPR-active sensor surface can be analyzed in a second dimension using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The qualitative nature of the MALDI-TOF MS analysis complements the quantitative character of SPR sensing and overcomes the shortcomings of the SPR detection stemming from the inability to differentiate and characterize multi-protein complexes and non-specific binding. In this work, the benefit of performing MS analysis following SPR sensing is established. Retrieval and detection of four markers present in biological fluids (cystatin C, beta-2-microglobulin, urinary protein 1 and retinol binding protein) was explored to demonstrate the effectiveness of BIA/MS in simultaneous detection of clinically related biomarkers and delineation of non-specific binding. Furthermore, the BIA/MS limit of detection at very low SPR responses was investigated. Finally, detection of in-vivo assembled protein complexes was achieved for the first time using BIA/MS.  相似文献   

16.
The study of protein structure and function has evolved to become a leading discipline in the biophysical sciences. Although it is not yet possible to determine 3D protein structures from MS data alone, multiple MS-based techniques can be combined to obtain structural and functional data that are complementary to classical protein structure information obtained from NMR or X-ray crystallography. Monitoring gas-phase interactions of noncovalent complexes yields information on binding constants, complex stability, and the nature of interactions. Ion mobility MS and chemical crosslinking strategies can be applied to probe the architecture of macromolecular assemblies and protein-ligand complexes. MS analysis of hydrogen-deuterium exchange can be used to determine the localization of secondary structure elements, binding sites and conformational dynamics of proteins in solution. This minireview focuses first on new strategies that combine these techniques to gain insights into protein structure and function. Using one such strategy, we then demonstrate how a novel hydrogen-deuterium exchange microfluidics tool can be used online with an ESI mass spectrometer to monitor regional accessibility in a peptide, as exemplified with amyloid-β peptide 1-40.  相似文献   

17.
Binding of antibodies to their receptors is a core component of the innate immune system. Understanding the precise interactions between antibodies and their Fc receptors has led to the engineering of novel mAb biotherapeutics with tailored biological activities. One of the most significant findings is that afucosylated monoclonal antibodies demonstrate increased affinity toward the receptor FcγRIIIa, with a commensurate increase in antibody-dependent cellular cytotoxicity. Crystal structure analysis has led to the hypothesis that afucosylation in the Fc region results in reduced steric hindrance between antibody–receptor intermolecular glycan interactions, enhancing receptor affinity; however, solution-phase data have yet to corroborate this hypothesis. In addition, recent work has shown that the fragment antigen-binding (Fab) region may directly interact with Fc receptors; however, the biological consequences of these interactions remain unclear. By probing differences in solvent accessibility between native and afucosylated immunoglobulin G1 (IgG1) using hydroxyl radical footprinting–MS, we provide the first solution-phase evidence that an IgG1 bearing an afucosylated Fc region appears to require fewer conformational changes for FcγRIIIa binding. In addition, we performed extensive molecular dynamics (MD) simulations to understand the molecular mechanism behind the effects of afucosylation. The combination of these techniques provides molecular insight into the steric hindrance from the core Fc fucose in IgG1 and corroborates previously proposed Fab–receptor interactions. Furthermore, MD-guided rational mutagenesis enabled us to demonstrate that Fab–receptor interactions directly contribute to the modulation of antibody-dependent cellular cytotoxicity activity. This work demonstrates that in addition to Fc–polypeptide and glycan-mediated interactions, the Fab provides a third component that influences IgG–Fc receptor biology.  相似文献   

18.
In recent years, advances in mass spectrometry have provided unprecedented knowledge of protein expression within cells. It has become apparent that many proteins function as macromolecular complexes. Structural genomics programs are determining the fold of these proteins at an increasing rate and electron microscopic tomography potentially provides a means to determine the location of these complexes within the cell. A complete understanding of the molecular mechanism of these proteins requires detailed information on the interactions and dynamics within the complex. Recent advances in mass spectrometry now make it possible to use hydrogen/deuterium exchange to detect intersubunit interfaces and dynamics within supramolecular complexes.  相似文献   

19.
The fluorescence detection system for the analytical ultracentrifuge (AU–FDS) enables the measurement of hydrodynamic properties and interactions of biomolecules at subnanomolar concentrations. In this study, we describe methods for (i) preparing and purifying fluorescently labeled biomolecules and (ii) determining the meniscus position in the AU–FDS using BODIPY 493/503 fluorescent dye suspended in light oil. We subsequently use these methods to measure the interaction of DNA with Escherichia coli Klenow fragment (KF) and show that KF binds matched DNA to form 1:1 and 2:1 (protein/DNA) complexes with dissociation constants of 4.2 and 22 nM, respectively.  相似文献   

20.
The outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus 2019 disease, has led to an ongoing global pandemic since 2019. Mass spectrometry can be used to understand the molecular mechanisms of viral infection by SARS-CoV-2, for example, by determining virus–host protein–protein interactions through which SARS-CoV-2 hijacks its human hosts during infection, and to study the role of post-translational modifications. We have reanalyzed public affinity purification–mass spectrometry data using open modification searching to investigate the presence of post-translational modifications in the context of the SARS-CoV-2 virus–host protein–protein interaction network. Based on an over twofold increase in identified spectra, our detected protein interactions show a high overlap with independent mass spectrometry-based SARS-CoV-2 studies and virus–host interactions for alternative viruses, as well as previously unknown protein interactions. In addition, we identified several novel modification sites on SARS-CoV-2 proteins that we investigated in relation to their interactions with host proteins. A detailed analysis of relevant modifications, including phosphorylation, ubiquitination, and S-nitrosylation, provides important hypotheses about the functional role of these modifications during viral infection by SARS-CoV-2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号