首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
小鼠胚胎干细胞是从胚泡未分化的内部细胞团中得到的干细胞,它在体外培养的环境中具有无限增殖、自我更新以及多向分化的特性。将小鼠胚胎干细胞在体外诱导分化为肌肉细胞,并且利用这些分化得来的肌肉细胞治疗肌肉退行性疾病,是干细胞研究领域的热点。该实验的目的在于筛选小鼠胚胎干细胞向骨骼肌细胞定向分化的实验条件,有效地将体外单层贴壁培养的小鼠胚胎干细胞诱导分化成骨骼肌细胞。最终发现,10-8mol/L维甲酸(retinoid acid,RA)+0.5%二甲基亚砜(dimethyl sulfoxide,DMSO)组诱导小鼠胚胎干细胞在体外分化成骨骼肌前体细胞的效率最高,分化得到的骨骼肌前体细胞经进一步纯化,能分化为多核的肌管。该实验为治疗肌肉退行性疾病提供了细胞来源,也为研究小鼠胚胎干细胞分化为骨骼肌细胞的机制提供了有利的条件。  相似文献   

3.
Members of the transforming growth factor-β superfamily play essential roles in both the pluripotency and differentiation of embryonic stem (ES) cells. Although bone morphogenic proteins (BMPs) maintain pluripotency of undifferentiated mouse ES cells, the role of autocrine Nodal signaling is less clear. Pharmacological, molecular, and genetic methods were used to further understand the roles and potential interactions of these pathways. Treatment of undifferentiated ES cells with SB431542, a pharmacological inhibitor of Smad2 signaling, resulted in a rapid reduction of phosphorylated Smad2 and altered the expression of several putative downstream targets. Unexpectedly, inhibition of the Nodal signaling pathway resulted in enhanced BMP signaling, as assessed by Smad1/5 phosphorylation. SB431542-treated cells also demonstrated significant induction of the Id genes, which are known direct targets of BMP signaling and important factors in ES cell pluripotency. Inhibition of BMP signaling decreased the SB431542-mediated phosphorylation of Smad1/5 and induction of Id genes, suggesting that BMP signaling is necessary for some Smad2-mediated activity. Because Smad7, a known inhibitory factor to both Nodal and BMP signaling, was down-regulated following inhibition of Nodal-Smad2 signaling, the contribution of Smad7 to the cross-talk between the transforming growth factor-β pathways in ES cells was examined. Biochemical manipulation of Smad7 expression, through shRNA knockdown or inducible gene expression, significantly reduced the SB431542-mediated phosphorylation of Smad1/5 and induction of the Id genes. We conclude that autocrine Nodal signaling in undifferentiated mouse ES cells modulates the vital pluripotency pathway of BMP signaling.  相似文献   

4.
5.
Embryonic stem cells (ESCs) are characterized by their ability to self-renew and to differentiate into all cell types of a given organism. Understanding the molecular mechanisms that govern the ESC state is of great interest not only for basic research—for instance, ESCs represent a perfect system to study cellular differentiation in vitro—but also for their potential implications in human health, as these mechanisms are likewise involved in cancer progression and could be exploited in regenerative medicine. In this minireview, we focus on the latest insights into the molecular mechanisms mediated by the pluripotency factors as well as their roles during differentiation. We also discuss recent advances in understanding the function of the epigenetic regulators, Polycomb and MLL complexes, in ESC biology.  相似文献   

6.
A 30-node signed and directed network responsible for self-renewal and pluripotency of mouse embryonic stem cells (mESCs) was extracted from several ChIP-Seq and knockdown followed by expression prior studies. The underlying regulatory logic among network components was then learned using the initial network topology and single cell gene expression measurements from mESCs cultured in serum/LIF or serum-free 2i/LIF conditions. Comparing the learned network regulatory logic derived from cells cultured in serum/LIF vs. 2i/LIF revealed differential roles for Nanog, Oct4/Pou5f1, Sox2, Esrrb and Tcf3. Overall, gene expression in the serum/LIF condition was more variable than in the 2i/LIF but mostly consistent across the two conditions. Expression levels for most genes in single cells were bimodal across the entire population and this motivated a Boolean modeling approach. In silico predictions derived from removal of nodes from the Boolean dynamical model were validated with experimental single and combinatorial RNA interference (RNAi) knockdowns of selected network components. Quantitative post-RNAi expression level measurements of remaining network components showed good agreement with the in silico predictions. Computational removal of nodes from the Boolean network model was also used to predict lineage specification outcomes. In summary, data integration, modeling, and targeted experiments were used to improve our understanding of the regulatory topology that controls mESC fate decisions as well as to develop robust directed lineage specification protocols.  相似文献   

7.
小鼠胚胎干细胞建系技术研究进展   总被引:4,自引:0,他引:4  
目前,对小鼠胚胎干细胞的研究较为深入,并已成为研究细胞分化及信号转导、新基因发现及功能鉴定、器官发生、人类疾病和药物开发等的有效手段。胚胎干细胞建系是一项基础性工作。虽然技术日趋成熟,有些品系小鼠的胚胎干细胞建系已是常规技术,但不同品系小鼠胚胎干细胞的建系效率仍有很大差异,建系途径和方法各有特点,一个品系胚胎干细胞的建系方法不一定都适用于其他品系。本文从小鼠胚胎干细胞建系的途径、分离操作技术、培养体系等方面进行综述,并就与之相关的有些问题提出思考和对策。  相似文献   

8.
高胜利  高淑红  刘丽霞 《生物磁学》2009,(20):3852-3854,F0003
目的:研究Wnt3a在诱导小鼠胚胎干细胞心肌细胞分化中的作用和原理。方法:设计不同浓度,不同成分的Wnt3a条件培养基对小鼠胚胎干细胞诱导分化,对分化细胞进行形态学鉴定,通过免疫细胞化学检测心肌肌钙蛋白-T(cTnT)的表达,通过RT.PCR检测肌球蛋白重链(ot.MHC)和肌球蛋白轻链(MLC.2v)的表达。结果:Wnt3a诱导小鼠胚胎干细胞分化为心肌样细胞,分化细胞具有自动收缩性,免疫细胞化学检测心肌肌钙蛋白.T(cTllT)表达阳性,RT.PCR检测肌球蛋白重链(d—MHC)和肌球蛋白轻链(MLC-2v)表达阳性。经典Wnt信号途径的抑制剂Frizzled一8/Fc,能够抑制Wnt3a的诱导分化作用。结论:Wnt3a通过经典Wnt信号途径诱导小鼠胚胎干细胞向心肌细胞分化。  相似文献   

9.
构建Stella基因真核表达质粒,转染小鼠胚胎干细胞(Embryonic stem cells,ESC)并初步探讨Stella对减数分裂起始相关基因(Stra8)及胚胎干细胞多能性的影响。通过RT-PCR扩增目的基因,并连接至真核表达载体pEGFP-C1,利用重组质粒转染小鼠胚胎干细胞。对转染细胞进行荧光检测,确认Stella的表达,并利用免疫荧光及PCR检测转染细胞基因表达情况。酶切鉴定及测序分析表明成功构建含Stella基因的重组真核表达质粒,过表达Stella对ES细胞的增殖和形态学特征、进入减数分裂阶段的相关基因及其多能性基因的表达影响并不显著。故此得出结论:Stella在小鼠胚胎干细胞中能够正确表达,但对ES细胞的分化、Stra8基因的表达及其多能性基因的表达并无显著影响。  相似文献   

10.
小鼠胚胎干细胞的培养   总被引:1,自引:0,他引:1  
目的:建立小鼠胚胎干细胞(embryonic stem cells,ES)的培养方法。方法:制备G418抗性的原代小鼠胚胎成纤维细胞,经丝裂霉素C处理后成滋养层细胞,将小鼠胚胎干细胞复苏后,应用含白血病抑制因子的ES细胞培养液,培养小鼠ES细胞,观察集落的生长情况,并在光镜下观察细胞形态。结果:小鼠胚胎成纤维细胞生长良好,ES细胞呈克隆状生长,且保持未分化状态。结论:建立了小鼠胚胎干细胞培养的有效方法,为下一步基因打靶奠定基础。  相似文献   

11.
12.
Highlights? Prdm14 expression is important for maintenance of naive pluripotency ? PRDM14 antagonizes FGFR signaling and activates Akt-mTORC1 signaling ? PRDM14 represses de novo DNA methyltransferase expression ? This regulatory input is mediated through recruitment of PRC2  相似文献   

13.
14.
The mammalian target of rapamycin (mTOR) pathway regulates stem cell regeneration and differentiation in response to growth factors, nutrients, cellular energetics, and various extrinsic stressors. Inhibition of mTOR activity has been shown to enhance the regenerative potential of pluripotent stem cells. DEPTOR is the only known endogenous inhibitor of all known cellular mTOR functions. We show that DEPTOR plays a key role in maintaining stem cell pluripotency by limiting mTOR activity in undifferentiated embryonic stem cells (ESCs). DEPTOR levels dramatically decrease with differentiation of mouse ESCs, and knockdown of DEPTOR is sufficient to promote ESC differentiation. A strong decrease in DEPTOR expression is also observed during human ESCs differentiation. Furthermore, reduction in DEPTOR level during differentiation is accompanied by a corresponding increase in mTOR complex 1 activity in mouse ESCs. Our data provide evidence that DEPTOR is a novel stemness factor that promotes pluripotency and self-renewal in ESCs by inhibiting mTOR signaling.  相似文献   

15.
无血清无饲养层条件下培养小鼠胚胎干细胞   总被引:2,自引:0,他引:2  
目的研究在无血清无饲养层条件下小鼠胚胎干细胞的培养方法,为最终建立无血清无饲养层培养系统打下基础。方法比较小鼠胚胎干细胞ES-S8株在无血清培养体系和有血清培养体系中的生长情况,分析ES-S8细胞克隆形成效率,测定其生长速度;然后在撤去血清和饲养层的条件下培养ES-S8细胞,进行AKP染色和表面标记物SSEA-1免疫荧光检测。结果ES-S8细胞在无血清培养条件下细胞生长速度减缓,克隆形成率降低,但AKP染色、SSEA-1免疫荧光均显阳性;在无血清无饲养层条件下ES-S8细胞培养仍能形成克隆,且AKP染色、SSEA-1免疫荧光均显阳性。结论研究表明ES-S8细胞能够在无血清无饲养层的培养条件下生长,保持其良好的未分化特性。  相似文献   

16.
韩嵘  苏平  尚克刚 《遗传学报》2001,28(9):816-821,T001
虽然ES细胞技术的应用十分广泛,对ES细胞多能性本质的研究还不是很深入,体外培养的ES细胞群体的不均一性加大了这方面研究的难度,报道了对ES细胞中特异表达的基因,将报告基因βgeo插入oct-基因转录元件中构建了标记载体pG18NG,转染ES细胞MESPU22和MESPU13后获得了稳定整合的细胞克隆,经体外培养、诱导分化、嵌入体制作等实验,证明利用该载体对ES细胞中的未分化细胞成功进行了标记,该标记在体内、体外都是有效的。  相似文献   

17.
Occludin is the only known integral membrane protein of tight junctions (TJs), and is now believed to be directly involved in the barrier and fence functions of TJs. Occludin-deficient embryonic stem (ES) cells were generated by targeted disruption of both alleles of the occludin gene. When these cells were subjected to suspension culture, they aggregated to form simple, and then cystic embryoid bodies (EBs) with the same time course as EB formation from wild-type ES cells. Immunofluorescence microscopy and ultrathin section electron microscopy revealed that polarized epithelial (visceral endoderm-like) cells were differentiated to delineate EBs not only from wild-type but also from occludin-deficient ES cells. Freeze fracture analyses indicated no significant differences in number or morphology of TJ strands between wild-type and occludin-deficient epithelial cells. Furthermore, zonula occludens (ZO)-1, a TJ-associated peripheral membrane protein, was still exclusively concentrated at TJ in occludin-deficient epithelial cells. In good agreement with these morphological observations, TJ in occludin-deficient epithelial cells functioned as a primary barrier to the diffusion of a low molecular mass tracer through the paracellular pathway. These findings indicate that there are as yet unidentified TJ integral membrane protein(s) which can form strand structures, recruit ZO-1, and function as a barrier without occludin.  相似文献   

18.
Polyploid amphibians and fishes occur naturally in nature, while polyploid mammals do not. For example, tetraploid mouse embryos normally develop into blastocysts, but exhibit abnormalities and die soon after implantation. Thus, polyploidization is thought to be harmful during early mammalian development. However, the mechanisms through which polyploidization disrupts development are still poorly understood. In this study, we aimed to elucidate how genome duplication affects early mammalian development. To this end, we established tetraploid embryonic stem cells (TESCs) produced from the inner cell masses of tetraploid blastocysts using electrofusion of two-cell embryos in mice and studied the developmental potential of TESCs. We demonstrated that TESCs possessed essential pluripotency and differentiation potency to form teratomas, which differentiated into the three germ layers, including diploid embryonic stem cells. TESCs also contributed to the inner cell masses in aggregated chimeric blastocysts, despite the observation that tetraploid embryos fail in normal development soon after implantation in mice. In TESCs, stability after several passages, colony morphology, and alkaline phosphatase activity were similar to those of diploid ESCs. TESCs also exhibited sufficient expression and localization of pluripotent markers and retained the normal epigenetic status of relevant reprogramming factors. TESCs proliferated at a slower rate than ESCs, indicating that the difference in genomic dosage was responsible for the different growth rates. Thus, our findings suggested that mouse ESCs maintained intrinsic pluripotency and differentiation potential despite tetraploidization, providing insights into our understanding of developmental elimination in polyploid mammals.  相似文献   

19.
20.
胚胎干细胞是具有分化为各种类型组织细胞潜能的全能干细胞,可在体外大量扩增,细胞因子、激素、诱导剂和细胞内转录因子等可诱导和调控胚胎干细胞进行心肌细胞定向分化.这将使干细胞移植治疗心肌损伤性疾病成为可能。该文介绍胚胎干细胞定向心肌分化的诱导因素及其机制的研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号