首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Soybean (S, Glycine max (L.) Merr.) lines with relatively few cysts of soybean cyst nematode (CN, Heterodera glycines Ichinohe) populations are usually called CN-resistant. The phenotype of number of cysts per plant is of the CN-S (Cyst Nematode-Soybean) association and determined by the interactions of genes for avirulence-resistance. The acronym alins was proposed for these alleles for incompatibility, with xalin representing the interaction X of one microsymbiont malin with its host h-alin. These alins are dominant in the gene-for-gene model but may be mostly recessive with CN-S. Definitive genetic studies have been hindered by the heterogeneity of sexually reproducing CN populations and lack of the appropriate genetic models. Loegering's abstract interorganismal genetic model was modified so that one model represented all four possible interactions of dominant-recessive alins for an incompatible phenotype. This involved redefining the Boolean algebra symbol 1 to represent both the alins AND their frequencies. The model was used to derive the relationship: {ie893-01} where the expectation E of cysts (of any CN-S combination, as proportion of number of cysts on a check cultivar) is proportional to the product of CN genotypic frequencies expressed as functions of m-alin frequencies. Each m-alin is at a different locus, i.e., {ie893-02}. The number of terms multiplied for each CN-S is equal to the number of alins in the S line (or F2 plant). There are too many unknowns in the equation to solve for any of them. The relationship does explain the continuous distributions of phenotypes that were nearly always observed. Basic genetic principles were used to concurrently derive the models and to obtain discontinuous distributions of numbers of cyst phenotypes in segregating generations due to one recessive alin in a CN-susceptible soybean line.Contribution from the Missouri Agricultural Experiment Station, Journal Series No. 9739  相似文献   

2.
Resistance to the soybean cyst nematode (SCN) (Heterodera glycines Ichinohe) is difficult to evaluate in soybean [Glycine max (L.) Merr.] breeding. PI 437.654 has resistance to more SCN race isolates than any other known soybean. We screened 298 F67 recombinant-inbred lines from a cross between PI 437.654 and BSR101 for SCN race-3 resistance, genetically mapped 355 RFLP markers and the I locus, and tested these markers for association with resistance loci. The Rhg 4 resistance locus was within 1 cM of the I locus on linkage group A. Two additional QTLs associated with SCN resistance were located within 3cM of markers on groups G and M. These two loci were not independent because 91 of 96 lines that had a resistant-parent marker type on group G also had a resistant-parent marker type on group M. Rhg 4 and the QTL on G showed a significant interaction by together providing complete resistance to SCN race-3. Individually, the QTL on G had greater effect on resistance than did Rhg 4, but neither locus alone provided a degree of resistance much different from the susceptible parent. The nearest markers to the mapped QTLs on groups A and G had allele frequencies from the resistant parent indicating 52 resistant lines in this population, a number not significantly different from the 55 resistant lines found. Therefore, no QTLs from PI 437.654 other than those mapped here are expected to be required for resistance to SCN race-3. All 50 lines that had the PI 437.654 marker type at the nearest marker to each of the QTLs on groups A and G were resistant to SCN race-3. We believe markers near to these QTLs can be used effectively to select for SCN race-3 resistance, thereby improving the ability to breed SCN-resistant soybean varieties.  相似文献   

3.

Background

Sudden death syndrome (SDS) is a serious threat to soybean production that can be managed with host plant resistance. To dissect the genetic architecture of quantitative resistance to the disease in soybean, two independent association panels of elite soybean cultivars, consisting of 392 and 300 unique accessions, respectively, were evaluated for SDS resistance in multiple environments and years. The two association panels were genotyped with 52,041 and 5,361 single nucleotide polymorphisms (SNPs), respectively. Genome-wide association mapping was carried out using a mixed linear model that accounted for population structure and cryptic relatedness.

Result

A total of 20 loci underlying SDS resistance were identified in the two independent studies, including 7 loci localized in previously mapped QTL intervals and 13 novel loci. One strong peak of association on chromosome 18, associated with all disease assessment criteria across the two panels, spanned a physical region of 1.2 Mb around a previously cloned SDS resistance gene (GmRLK18-1) in locus Rfs2. An additional variant independently associated with SDS resistance was also found in this genomic region. Other peaks were within, or close to, sequences annotated as homologous to genes previously shown to be involved in plant disease resistance. The identified loci explained an average of 54.5% of the phenotypic variance measured by different disease assessment criteria.

Conclusions

This study identified multiple novel loci and refined the map locations of known loci related to SDS resistance. These insights into the genetic basis of SDS resistance can now be used to further enhance durable resistance to SDS in soybean. Additionally, the associations identified here provide a basis for further efforts to pinpoint causal variants and to clarify how the implicated genes affect SDS resistance in soybean.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-809) contains supplementary material, which is available to authorized users.  相似文献   

4.
5.
Experiments were conducted in four commercial fields differing in severity of iron-deficiency chlorosis (IDC), and soybean cyst nematode (SCN) in Waseca and Lamberton, Minnesota to determine the interaction between the IDC and SCN. Each experiment was a randomized complete block with a factorial treatment design including 23 cultivars with or without traits of resistance to SCN, and IDC. The study illustrated the interactive effects of the two defensive traits on the diseases and soybean yields. IDC rating was higher in SCN-susceptible than SCN-resistant soybean, suggesting SCN infection increased IDC. Resistance to IDC apparently increased SCN reproduction due to better soybean plant growth. Yield response to the defensive traits depended on the disease pressures in a field. When both IDC and SCN were present in a field, deploying SCN-resistance was the best solution to the problems. However, SCN-resistance suppressed soybean yields when used in fields without the disease problems. IDC-resistance increased yield of SCN-susceptible cultivars, but it did not result in detectable yield benefit of SCN-resistant cultivars in SCN-infested sites. Effective use of the defensive traits for management of IDC and SCN requires specific knowledge of the disease problems present in a field. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U. S. Department of Agriculture and the University of Minnesota.  相似文献   

6.
Cyst nematodes produce parasitism proteins that contain putative nuclear localisation signals (NLSs) and, therefore, are predicted to be imported into the nucleus of the host plant cell. The in planta localisation patterns of eight soybean cyst nematode (Heterodera glycines) parasitism proteins with putative NLSs were determined by producing these proteins as translational fusions with the GFP and GUS reporter proteins. Two parasitism proteins were found to be imported into the nuclei of onion epidermal cells as well as Arabidopsis protoplasts. One of these two parasitism proteins was further transported into the nucleoli. Mutations introduced into the NLS domains of these two proteins abolished nuclear import and caused a cytoplasmic accumulation. Furthermore, we observed active nuclear uptake for three additional parasitism proteins, however, only when these proteins were synthesised as truncated forms. Two of these proteins were further transported into nucleoli. We hypothesise that nuclear uptake and nucleolar localisation are important mechanisms for H. glycines to modulate the nuclear biology of parasitised cells of its host plant.  相似文献   

7.

Background

A previous study reported a comprehensive quantitative trait locus (QTL) and genome wide association study (GWAS) of southern leaf blight (SLB) resistance in the maize Nested Association Mapping (NAM) panel. Since that time, the genomic resources available for such analyses have improved substantially. An updated NAM genetic linkage map has a nearly six-fold greater marker density than the previous map and the combined SNPs and read-depth variants (RDVs) from maize HapMaps 1 and 2 provided 28.5 M genomic variants for association analysis, 17 fold more than HapMap 1. In addition, phenotypic values of the NAM RILs were re-estimated to account for environment-specific flowering time covariates and a small proportion of lines were dropped due to genotypic data quality problems. Comparisons of original and updated QTL and GWAS results confound the effects of linkage map density, GWAS marker density, population sample size, and phenotype estimates. Therefore, we evaluated the effects of changing each of these parameters individually and in combination to determine their relative impact on marker-trait associations in original and updated analyses.

Results

Of the four parameters varied, map density caused the largest changes in QTL and GWAS results. The updated QTL model had better cross-validation prediction accuracy than the previous model. Whereas joint linkage QTL positions were relatively stable to input changes, the residual values derived from those QTL models (used as inputs to GWAS) were more sensitive, resulting in substantial differences between GWAS results. The updated NAM GWAS identified several candidate genes consistent with previous QTL fine-mapping results.

Conclusions

The highly polygenic nature of resistance to SLB complicates the identification of causal genes. Joint linkage QTL are relatively stable to perturbations of data inputs, but their resolution is generally on the order of tens or more Mbp. GWAS associations have higher resolution, but lower power due to stringent thresholds designed to minimize false positive associations, resulting in variability of detection across studies. The updated higher density linkage map improves QTL estimation and, along with a much denser SNP HapMap, greatly increases the likelihood of detecting SNPs in linkage with causal variants. We recommend use of the updated genetic resources and results but emphasize the limited repeatability of small-effect associations.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1068) contains supplementary material, which is available to authorized users.  相似文献   

8.

Background

Durum wheat (Triticum durum Desf.) is a tetraploid cereal grown in the medium to low-precipitation areas of the Mediterranean Basin, North America and South-West Asia. Genomics applications in durum wheat have the potential to boost exploitation of genetic resources and to advance understanding of the genetics of important complex traits (e.g. resilience to environmental and biotic stresses). A dense and accurate consensus map specific for T. durum will greatly facilitate genetic mapping, functional genomics and marker-assisted improvement.

Results

High quality genotypic data from six core recombinant inbred line populations were used to obtain a consensus framework map of 598 simple sequence repeats (SSR) and Diversity Array Technology® (DArT) anchor markers (common across populations). Interpolation of unique markers from 14 maps allowed us to position a total of 2,575 markers in a consensus map of 2,463 cM. The T. durum A and B genomes were covered in their near totality based on the reference SSR hexaploid wheat map. The consensus locus order compared to those of the single component maps showed good correspondence, (average Spearman’s rank correlation rho ρ value of 0.96). Differences in marker order and local recombination rate were observed between the durum and hexaploid wheat consensus maps. The consensus map was used to carry out a whole-genome search for genetic differentiation signatures and association to heading date in a panel of 183 accessions adapted to the Mediterranean areas. Linkage disequilibrium was found to decay below the r2 threshold = 0.3 within 2.20 cM, on average. Strong molecular differentiations among sub-populations were mapped to 87 chromosome regions. A genome-wide association scan for heading date from 27 field trials in the Mediterranean Basin and in Mexico yielded 50 chromosome regions with evidences of association in multiple environments.

Conclusions

The consensus map presented here was used as a reference for genetic diversity and mapping analyses in T. durum, providing nearly complete genome coverage and even marker density. Markers previously mapped in hexaploid wheat constitute a strong link between the two species. The consensus map provides the basis for high-density single nucleotide polymorphic (SNP) marker implementation in durum wheat.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-873) contains supplementary material, which is available to authorized users.  相似文献   

9.
Heterodera glycines, the soybean cyst nematode (SCN), is a damaging agricultural pest that could be effectively managed if critical phenotypes, such as virulence and host range could be understood. While SCN is amenable to genetic analysis, lack of DNA sequence data prevents the use of such methods to study this pathogen. Fortunately, new methods of DNA sequencing that produced large amounts of data and permit whole genome comparative analyses have become available. In this study, 400 million bases of genomic DNA sequence were collected from two inbred biotypes of SCN using 454 micro-bead DNA sequencing. Comparisons to a BAC, sequenced by Sanger sequencing, showed that the micro-bead sequences could identify low and high copy number regions within the BAC. Potential single nucleotide polymorphisms (SNPs) between the two SCN biotypes were identified by comparing the two sets of sequences. Selected resequencing revealed that up to 84% of the SNPs were correct. We conclude that the quality of the micro-bead sequence data was sufficient for de novo SNP identification and should be applicable to organisms with similar genome sizes and complexities. The SNPs identified will be an important starting point in associating phenotypes with specific regions of the SCN genome.  相似文献   

10.
Seven soybeans were selected from 200 entries evaluated for tolerance to soybean cyst nematode (SCN), Heterodera glycines. Tolerance to SCN was measured by comparing the seed yield from aldicarb-treated vs. nontreated plots. A yield response index (YRI) was calculated for each entry: YRI = (seed yield from nontreated plot/seed yield from treated plot) × 100. The soybean entries Coker 156, PI 97100, and S79-8059 exhibited high tolerance (YRI) to SCN when compared to Essex even though they became heavily infected with SCN. Tolerance in soybeans to SCN may be useful in pest management programs designed to stabilize soybean yield.  相似文献   

11.
12.
The rhg1 gene or genes lie at a recessive or co-dominant locus, necessary for resistance to all Hg types of the soybean (Glycine max (L.) Merr.) cyst nematode (Heterodera glycines I.). The aim here was to identify nucleotide changes within a candidate gene found at the rhg1 locus that were capable of altering resistance to Hg types 0 (race 3). A 1.5 ± 0.25 cM region of chromosome 18 (linkage group G) was shown to encompass rhg1 using recombination events from four near isogenic line populations and nine DNA markers. The DNA markers anchored two bacterial artificial chromosome (BAC) clones 21d9 and 73p6. A single receptor like kinase (RLK; leucine rich repeat-transmembrane-protein kinase) candidate resistance gene was amplified from both BACs using redundant primers. The DNA sequence showed nine alleles of the RLK at Rhg1 in the soybean germplasm. Markers designed to detect alleles showed perfect association between allele 1 and resistance to soybean cyst nematode Hg types 0 in three segregating populations, fifteen additional selected recombination events and twenty-two Plant Introductions. A quantitative trait nucleotide in the RLK at rhg1 was inferred that alters A47 to V47 in the context of H297 rather than N297. Contiguous DNA sequence of 315 kbp of chromosome 18 (about 2 cM) contained additional gene candidates that may modulate resistance to other Hg-types including a variant laccase, a hydrogen-sodium ion antiport and two proteins of unknown function. A molecular basis for recessive and co-dominant resistance that involves interactions among paralagous disease-resistance genes was inferred that would improve methods for developing new nematode-resistant soybean cultivars.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

13.
Heterodera glycines, the soybean cyst nematode, is a major yield-limiting pathogen in most soybean production areas worldwide. Field populations of H. glycines exhibit diversity in their ability to develop on resistant soybean cultivars. Since 1970, this diversity has been characterized by a bioassay used to assign a race classification to a population. The value of the race scheme is reflected in the number and quality of resistant soybean cultivars that have been developed and released by soybean breeders and nematologists working in concert. However, the race scheme also has been misapplied as a means of studying H. glycines genotypes, in part due to the use of the term "race." For fungal and bacterial pathogen species, "race" can theoretically be applied to individuals of a population, thus allowing inference of individual genotypes. Application of a race designation to an individual egg or second-stage juvenile (J2) of H. glycines is not possible because a single J2 cannot be tested on multiple hosts. For other nematode species, "race" is defined by host ranges involving different plant species, whereas the H. glycines race test involves a set of lines of the same plant species. Nonetheless, because H. glycines populations vary in genetic diversity, and this variation has implications for management strategies, a mechanism is needed for documenting and discussing population differences. The HG Type scheme described herein avoids the implication of genetic uniformity or predictability in contrast to the way the race scheme has been used.  相似文献   

14.
The soybean cyst nematode (SCN), Heterodera glycines, is the most damaging pathogen of soybean. Methods to phenotype soybean varieties for resistance to SCN are currently very laborious and time consuming. Streamlining a portion of this phenotyping process could increase productivity and accuracy. Here we report an automated method to count SCN females using a fluorescence-based imaging system that is well suited to high-throughput SCN phenotyping methods used in greenhouse screening. For optimal automated imaging, females were washed from roots at 30 days post-inoculation into small Petri dishes. Using a Kodak Image Station 4000MM Pro, the Petri dishes were scanned using excitation and emission wavelengths of 470 nm and 535 nm, respectively. Fluorescent images were captured and analyzed with Carestream Molecular Imaging Software for automated counting. We demonstrate that the automated fluorescent-based imaging system is just as accurate (r(2) ≥ 0.95) and more efficient (>50% faster) than manual counting under a microscope. This method can greatly improve the consistency and turnaround of data while reducing the time and labor commitment associated with SCN female counting.  相似文献   

15.
Heterodera glycines is a serious pest of soybean in the United States. Plant introductions 90763 and 424595 are reported to be resistant to H. glycines race 5; however their genetic relationship for resistance is unknown. Crosses between these two lines and the susceptible cultivar Essex were studied in the F₁, F₂, and F₃ generations to determine the number of genes involved in inheritance of resistance. The plants were screened using conventional techniques based on the index of parasitism. The data were subjected to analyses using chi-square test to determine goodness of fit between observed and expected genetic ratios. The cross PI 424595 x Essex segregated 1 resistant:63 susceptible in the F₂ generation, which indicated the presence of three recessive genes controlling resistance to race 5. In the cross PI 90763 x Essex, resistance was conditioned by one dominant and two recessive genes. The cross between PI 424595 and PI 90763 segregated into 13 resistant:3 susceptible. The data fit a four-gene model with two recessive and two dominant genes with epistasis. PI 90763 has a dominant gene, whereas PI 424595 has a recessive gene; both share two additional recessive genes for resistance to race 5. This information is important to geneticists and soybean breeders for the development of cultivars resistant to H. glycines.  相似文献   

16.
An individual soybean breeder can generate over one hundred thousand new genotypes each year. The efficiency of selection in these populations could be improved if these genotypes were effectively screened with one DNA marker that identified an important gene, and if laboratory throughput was high and costs were low. Our aim was to develop a rapid genotyping procedure for resistance to the soybean cyst nematode. A high-throughput genotyping method was developed with fluorogenic probes to distinguish between two insertion polymorphisms in alleles of an AFLP marker that is located about 50 kbp from the Rhg4 gene candidate. The assay uses the 5 exonuclease activity of Taq polymerase in conjunction with fluorogenic probes for each allele. The method can be used for scoring the polymorphism in a recombinant inbred line population and for screening parent lines in a breeding program. The TaqmanTM method of determining genotype was accurate in 90% of scores in the RIL population compared to 95% accuracy with electrophoresis. Among 94 cultivars that are parents in our breeding program allele 2 that is derived from the sources of resistance to SCN was common in resistant cultivars (30 of 56) but rare in susceptible cultivars (3 of 38). Therefore, this method can be applied to automated large-scale genotyping for soybean breeding programs.  相似文献   

17.
18.
The cyst nematode Heterodera cajani is one of the major endemic diseases of pigeonpea, an important legume for food security and protein nutrition in India. It occurs in several pulse crops grown over a range of Indian agro climatic conditions but the extent of its intraspecific variation is inadequately defined. In view of this, 11 populations of Heterodera cajani were analyzed using morphometrics and the results correlated with those obtained from an AFLP approach using 24 primer pair combinations that amplified a total of 1278 AFLP markers. The cluster solution from this binary data indicated similarities for five populations that differed from those suggested by morphometrics. The differences obtained could not be related to geographic distance between populations. The data suggests that recent and long distance dispersal has occurred whose causes need to be defined to restrict further field introductions. Four AFLP primer pairs clustered the populations similarly to that generated using all 24 primer pairs. This simplified approach may provide a rapid basis for discriminating populations for their future management and help to check further distribution in agricultural trade. It may also have potential to determine differences in populations that relate to host range or virulence to resistance genes.  相似文献   

19.
Knowledge of the virulence phenotypes of soybean cyst nematode, Heterodera glycines populations is important in choosing appropriate sources for breeding resistant cultivars and managing the nematode. We investigated races of 59 H. glycines populations collected from 1997 to 1998 and races and HG Types of 94 populations collected in 2002 from soybean fields across southern and central Minnesota. In the 1997 to 1998 samples, race 3 was predominant and represented 78% of the populations. The remaining populations were 11.9% race 1, 1.7% race 4, 6.8% race 6, and 1.7% race 14. In the 2002 samples, the populations were classified as 15.3% race 1, 77.6% race 3, 2.4% race 5, 3.5% race 6 and 1.2% race 9. Percentage of 1997 to 1998 populations with female indices (FI) higher than 10 were 10.2% on Pickett 71, 3.4% on Peking, 13.6% on PI 88788, 3.4% on PI 90763, 1.7% on PI 209332, and 1.7% on PI 437654. Percentage of 2002 populations with FI >10 was 1.1% on Peking, 17.0% on PI88788, 14.9% on PI 209332, 33.0% on PI 548316, 11.7% on Pickett 71, and 0% on the other three indicators, PI 90763, PI 437654, and PI 89772. The line PI 548316 was relatively susceptible to the Minnesota H. glycines populations and may not be recommended for breeding resistant cultivars in the state. There was no noticeable change of frequencies of virulence phenotypes in response to the use of resistant cultivars during 1997 to 2002 in Minnesota except that FI increased on the PI 209332.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号