共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Hany E. S. Marei Asmaa Althani Nahla Afifi Ahmed Abd-Elmaksoud Camilla Bernardini Fabrizio Michetti Marta Barba Mario Pescatori Giulio Maira Emanuela Paldino Luigi Manni Patrizia Casalbore Carlo Cenciarelli 《PloS one》2013,8(12)
The adult human olfactory bulb neural stem/progenitor cells (OBNC/PC) are promising candidate for cell-based therapy for traumatic and neurodegenerative insults. Exogenous application of NGF was suggested as a promising therapeutic strategy for traumatic and neurodegenerative diseases, however effective delivery of NGF into the CNS parenchyma is still challenging due mainly to its limited ability to cross the blood–brain barrier, and intolerable side effects if administered into the brain ventricular system. An effective method to ensure delivery of NGF into the parenchyma of CNS is the genetic modification of NSC to overexpress NGF gene. Overexpression of NGF in adult human OBNSC is expected to alter their proliferation and differentiation nature, and thus might enhance their therapeutic potential. In this study, we genetically modified adult human OBNS/PC to overexpress human NGF (hNGF) and green fluorescent protein (GFP) genes to provide insight about the effects of hNGF and GFP genes overexpression in adult human OBNS/PC on their in vitro multipotentiality using DNA microarray, immunophenotyping, and Western blot (WB) protocols. Our analysis revealed that OBNS/PC-GFP and OBNS/PC-GFP-hNGF differentiation is a multifaceted process involving changes in major biological processes as reflected in alteration of the gene expression levels of crucial markers such as cell cycle and survival markers, stemness markers, and differentiation markers. The differentiation of both cell classes was also associated with modulations of key signaling pathways such MAPK signaling pathway, ErbB signaling pathway, and neuroactive ligand-receptor interaction pathway for OBNS/PC-GFP, and axon guidance, calcium channel, voltage-dependent, gamma subunit 7 for OBNS/PC-GFP-hNGF as revealed by GO and KEGG. Differentiated OBNS/PC-GFP-hNGF displayed extensively branched cytoplasmic processes, a significant faster growth rate and up modulated the expression of oligodendroglia precursor cells markers (PDGFRα, NG2 and CNPase) respect to OBNS/PC-GFP counterparts. These findings suggest an enhanced proliferation and oligodendrocytic differentiation potential for OBNS/PC-GFP-hNGF as compared to OBNS/PC-GFP. 相似文献
5.
Expression of Myostatin in Neural Cells of the Olfactory System 总被引:1,自引:0,他引:1
Shunsuke Iwasaki Masato Miyake Hitoshi Watanabe Eri Kitagawa Kouichi Watanabe Shyuichi Ohwada Haruki Kitazawa Michael T. Rose Hisashi Aso 《Molecular neurobiology》2013,47(1):1-8
Recent studies show that myostatin mRNA expression is found in some regions of the brain. However, the functional significance of this is currently unknown. We therefore investigated myostatin expression and function in the brain. In this study, we used immunohistochemistry, in situ hybridization, and RT-PCR analysis to reveal that myostatin is expressed in the mitral cells in the olfactory bulb (OB) and in neurons in the olfactory cortex (OC). Using 3D reconstruction, mitral cells positive for myostatin were positioned in the lateral and ventral regions of the OB. In contrast, myostatin-positive mitral cells were detected in mice at 2 weeks of age, but not on days 0 and 7 after birth. Activin receptor IIB, a myostatin receptor, was expressed in the OB, OC, hippocampus, and paraventricular thalamic nucleus. Moreover, c-Fos immunostaining in granule cells in the OB was augmented after intracerebroventricular injection of myostatin. These findings suggest that myostatin is localized in specific cells associated with the olfactory system of the brain and may act as a key inhibitor in cell and/or signal development of the olfactory system. 相似文献
6.
Patrizia Casalbore Manuela Budoni Lucia Ricci-Vitiani Carlo Cenciarelli Giovanna Petrucci Luisa Milazzo Nicola Montano Elisabetta Tabolacci Giulio Maira Luigi M. Larocca Roberto Pallini 《PloS one》2009,4(2)
Background
Multipotent neural stem cells (NSCs) have been isolated from neurogenic regions of the adult brain. Reportedly, these cells can be expanded in vitro under prolonged mitogen stimulation without propensity to transform. However, the constitutive activation of the cellular machinery required to bypass apoptosis and senescence places these cells at risk for malignant transformation.Methodology/Principal Findings
Using serum-free medium supplemented with epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF), we established clonally derived NS/progenitor cell (NS/PC) cultures from the olfactory bulb (OB) of five adult patients. The NS/PC cultures obtained from one OB specimen lost growth factor dependence and neuronal differentiation at early passage. These cells developed glioblastoma tumors upon xenografting in immunosuppressed mice. The remaining NS/PC cultures were propagated either as floating neurospheres or as adherent monolayers with mainteinance of growth factor dependence and multipotentiality at late passage. These cells were engrafted onto the CNS of immunosuppressed rodents. Overall, the grafted NS/PCs homed in the host parenchyma showing ramified morphology and neuronal marker expression. However, a group of animals transplanted with NS/PCs obtained from an adherent culture developed fast growing tumors histologically resembling neuroesthesioblastoma. Cytogenetic and molecular analyses showed that the NS/PC undergo chromosomal changes with repeated in vitro passages under mitogen stimulation, and that up-regulation of hTERT and NOTCH1 associates with in vivo tumorigenicity.Conclusions/Significance
Using culturing techniques described in current literature, NS/PCs arise from the OB of adult patients which in vivo either integrate in the CNS parenchyma showing neuron-like features or initiate tumor formation. Extensive xenografting studies on each human derived NS cell line appear mandatory before any use of these cells in the clinical setting. 相似文献7.
Olfaction plays an indispensable role in human and animals in self and environmental recognition, as well as intra‐ and interspecific communication. Following the discovery of a family of olfactory receptors (ORs) by Buck and Axel in 1991, it has been established that the sense of smell begins with the molecular recognition of a chemical odorant by one or more ORs expressed in the olfactory sensory neurons. Therefore, characterization of the molecular interactions between odorant molecules and ORs is a key step in the elucidation of the general properties of the olfactory system and in the development of applications, i.e., design of new odorants, search for blockers, etc. The process putted in place at ChemCom to improve the expression of ORs at the cytoplasmic membrane of the HEK293 cell and assays enabling large‐scale deorphanization, and to characterize the interaction between chemical odorants and ORs is described. The family of human ORs includes ca. 400 putatively functional ORs which are GPCRs (G protein‐coupled receptors); to date over 100 human ORs have been deorphanized. 相似文献
8.
In humans, the pleasantness of odors is a major contributor to social relationships and food intake. Smells evoke attraction and repulsion responses, reflecting the hedonic value of the odorant. While olfactory preferences are known to be strongly modulated by experience and learning, it has been recently suggested that, in humans, the pleasantness of odors may be partly explained by the physicochemical properties of the odorant molecules themselves. If odor hedonic value is indeed predetermined by odorant structure, then it could be hypothesized that other species will show similar odor preferences to humans. Combining behavioral and psychophysical approaches, we here show that odorants rated as pleasant by humans were also those which, behaviorally, mice investigated longer and human subjects sniffed longer, thereby revealing for the first time a component of olfactory hedonic perception conserved across species. Consistent with this, we further show that odor pleasantness rating in humans and investigation time in mice were both correlated with the physicochemical properties of the molecules, suggesting that olfactory preferences are indeed partly engraved in the physicochemical structure of the odorant. That odor preferences are shared between mammal species and are guided by physicochemical features of odorant stimuli strengthens the view that odor preference is partially predetermined. These findings open up new perspectives for the study of the neural mechanisms of hedonic perception. 相似文献
9.
10.
Increased Gene Targeting in Ku70 and Xrcc4 Transiently Deficient Human Somatic Cells 总被引:2,自引:0,他引:2
The insertion of foreign DNA at a specific genomic locus directed by homologous DNA sequences, or gene targeting, is an inefficient
process in mammalian somatic cells. Given the key role of non-homologous end joining (NHEJ) pathway in DNA double-strand break
(DSB) repair in mammalian cells, we investigated the effects of decreasing NHEJ protein levels on gene targeting. Here we
demonstrate that the transient knockdown of integral NHEJ proteins, Ku70 and Xrcc4, by RNAi in human HCT116 cells has a remarkable
effect on gene targeting/random insertions ratios. A timely transfection of an HPRT-based targeting vector after RNAi treatment
led to a 70% reduction in random integration events and a 33-fold increase in gene targeting at the HPRT locus. These findings
bolster the role of NHEJ proteins in foreign DNA integration in vivo, and demonstrate that their transient depletion by RNAi
is a viable approach to increase the frequency of gene targeting events. Understanding how foreign DNA integrates into a cell’s
genome is important to advance strategies for biotechnology and genetic medicine. 相似文献
11.
外泌体作为是细胞旁分泌的重要介质,在促血管形成方面有重要作用。在我们前期研究中,已经成功从嗅黏膜间充质干细胞(olfactory mucosa mesenchymal stem cells,OM-MSCs)分离、鉴定了其外泌体,然而,OM-MSCs源外泌体对血管生成的影响尚不清楚。本研究旨在探讨OM-MSCs来源外泌体对内皮细胞血管生成能力的影响。采用PKH67 荧光标记OM-MSCs源外泌体,与人脑微血管内皮细胞(human brain microvessel endothelial cells, HBMECs) 共培养,观察 OM-MSCs外泌体能否进入 HBMECs。采用CCK-8法、Transwell 迁移实验和小管实验,观察 OM-MSCs外泌体对 HBMECs增殖、迁移及管状结构形成的影响。采用基质胶塞实验及CD31免疫荧光,观察OM-MSCs外泌体在体内对血管生成的影响。上述研究均以等量 PBS 作为对照。结果提示,OM-MSCs外泌体可被HBMECs 摄取。CCK-8 法检测显示,在处理1、2、3、4、5 d各时间点,实验组细胞增殖均优于对照组(1.32±0.14 vs. 0.98±0.04, 1.36±0.14 vs.1.04±0.06, 1.75±0.18 vs.1.33±0.11, 2.16±0.11 vs.1.50±0.19, 2.71±0.11 vs. 1.81±0.20, P<0.01)。Transwell 实验结果显示,实验组跨膜迁移细胞吸光度值较对照组显著增多(1.12±0.05 vs.0.02±0.02, P<0.05)。在体外小管实验中,从节点、交叉点、网眼数、血管分支数和总长度5个方面,实验组均高于空白对照组(374.33±127.74 vs. 193.33±44.79, 104.56±33.07 vs. 54.33±11.65, 20.11±11.20 vs. 7.56±3.64, 81.67±19.07 vs. 57.00±13.02, 11466.22±2781.03 vs. 8544.00±1848.61, P<0.05);在体内实验中,实验组成血管及CD31阳性率(%)亦显著高于对照组(85.00±5.57 vs.8.00±2.08, P<0.05)。本研究表明:OM-MSCs外泌体可促进 HBMECs 增殖、迁移及管样结构形成,提示OM-MSCs外泌体可促进血管新生。 相似文献
12.
成年大鼠海马神经前体细胞表达功能性的 L-型钙通道 总被引:2,自引:1,他引:2
为了建立一种能够获得高纯度成年大鼠海马神经前体细胞(HPCs)的体外贴壁培养方法,并鉴定HPCs上是否存在功能性L-型钙通道,分离Wistar成年大鼠海马组织,制成单细胞悬液,利用无血清培养技术,在添加碱性成纤维细胞生长因子(bFGF)、表皮生长因子(EGF)、N2和B27 supplement的DMEM/F12培养液中进行培养.连续传代,采用细胞免疫荧光法对第六代细胞进行鉴定,呈巢蛋白(nestin)阳性的细胞可达99.9%.把培养高纯度的细胞在分化培养基中诱导分化14天后,表现为神经元和星形胶质细胞的形态,且分别呈Ⅲ型β-微管蛋白(Tujl)阳性和胶质纤维酸性蛋白(GFAP)阳性.细胞免疫荧光和免疫印迹结果显示,HPCs表达L-型钙通道的Cav1.2α1C和Cav1.3α1D亚单位,共聚焦钙成像证明了功能性L-型钙通道的存在,并且利用全细胞膜片钳技术记录到了L-型钙电流.以上结果表明成年Wistar大鼠的海马HPCs可表达功能性的L-型钙通道. 相似文献
13.
14.
Julien Grenier Marie-Aimée Teillet Rapha?lle Grifone Robert G. Kelly Delphine Duprez 《PloS one》2009,4(2)
Background
In vertebrates, the skeletal elements of the jaw, together with the connective tissues and tendons, originate from neural crest cells, while the associated muscles derive mainly from cranial mesoderm. Previous studies have shown that neural crest cells migrate in close association with cranial mesoderm and then circumscribe but do not penetrate the core of muscle precursor cells of the branchial arches at early stages of development, thus defining a sharp boundary between neural crest cells and mesodermal muscle progenitor cells. Tendons constitute one of the neural crest derivatives likely to interact with muscle formation. However, head tendon formation has not been studied, nor have tendon and muscle interactions in the head.Methodology/Principal Findings
Reinvestigation of the relationship between cranial neural crest cells and muscle precursor cells during development of the first branchial arch, using quail/chick chimeras and molecular markers revealed several novel features concerning the interface between neural crest cells and mesoderm. We observed that neural crest cells migrate into the cephalic mesoderm containing myogenic precursor cells, leading to the presence of neural crest cells inside the mesodermal core of the first branchial arch. We have also established that all the forming tendons associated with branchiomeric and eye muscles are of neural crest origin and express the Scleraxis marker in chick and mouse embryos. Moreover, analysis of Scleraxis expression in the absence of branchiomeric muscles in Tbx1−/− mutant mice, showed that muscles are not necessary for the initiation of tendon formation but are required for further tendon development.Conclusions/Significance
This results show that neural crest cells and muscle progenitor cells are more extensively mixed than previously believed during arch development. In addition, our results show that interactions between muscles and tendons during craniofacial development are similar to those observed in the limb, despite the distinct embryological origin of these cell types in the head. 相似文献15.
Stephen M. Richardson Devina Purmessur Pauline Baird Ben Probyn Anthony J. Freemont Judith A. Hoyland 《PloS one》2012,7(10)
Innervation of nociceptive nerve fibres into the normally aneural nucleus pulposus (NP) of the intervertebral disc (IVD) occurs during degeneration resulting in discogenic back pain. The neurotrophins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), which are associated with stimulation of axonal outgrowth and nociception by neuronal cells, are both expressed by NP cells, with BDNF levels increasing with disease severity. However the mechanism of interaction between human NP cells and neural cells has yet to be fully elucidated. Therefore the aim of this study was to determine whether non-degenerate or degenerate human NP cells inhibit or stimulate neural outgrowth and whether any outgrowth is mediated by NGF or BDNF. Human NP cells from non-degenerate and degenerate IVD were cultured in alginate beads then co-cultured for 48 hours with human SH-SY5Y neuroblastoma cells. Co-culture of non-degenerate NP cells with neural cells resulted in both an inhibition of neurite outgrowth and reduction in percentage of neurite expressing cells. Conversely co-culture with degenerate NP cells resulted in an increase in both neurite length and percentage of neurite expressing cells. Addition of anti-NGF to the co-culture with degenerate cells resulted in a decrease in percentage of neurite expressing cells, while addition of anti-BDNF resulted in a decrease in both neurite length and percentage of neurite expressing cells. Our findings show that while non-degenerate NP cells are capable of inhibiting neurite outgrowth from human neural cells, degenerate NP cells stimulate outgrowth. Neurotrophin blocking studies demonstrated that both NGF and BDNF, secreted by degenerate NP cells, may play a role in this stimulation with BDNF potentially playing the predominant role. These findings suggest that NP cells are capable of regulating nerve ingrowth and that neoinnervation occurring during IVD degeneration may be stimulated by the NP cells themselves. 相似文献
16.
目的:研究体外培养的人胎脑源性神经前体细胞的致瘤性。方法:将人胎脑源神经前体细胞体外培养至第1、25、40、60代,且每代细胞分别制备成神经球及单个细胞混悬液两种制剂,并取293T细胞作为阳性对照,共9组,每组5只,分别皮下接种于4~8周龄的BALB/C裸鼠,接种后饲养6个月,定期观察裸鼠精神状态、饮食、排便、以及接种局部有无出现结节或肿块,接种6个月后处死裸鼠,对接种局部及内脏进行组织病理切片及HE染色。结果:将人胎脑源性神经前体细胞接种于裸鼠皮下6个月未见肿瘤形成,且未见其他异常组织形成;而阳性对照组293T细胞接种于裸鼠皮下1个月后可见明显肿瘤形成。结论:人胎脑源神经前体细胞对裸鼠不具有体内致瘤性。 相似文献
17.
HCMV感染抑制人海马神经干细胞分化 总被引:1,自引:0,他引:1
研究HCMV感染对体外培养的人海马源性神经干细胞(Neural stem cells,NSCs)分化的影响。体外分离、培养人海马NSCs,应用免疫荧光方法检测其NSCs标记物-巢蛋白(Nestin)的表达。10%胎牛血清诱导NSCs贴壁分化,同时用MOI为5的HCMV AD169株感染NSCs,7d后使用激光共聚焦显微镜免疫荧光方法检测Nestin、神经胶质纤维酸性蛋白(GFAP)和HCMV即刻早期蛋白(IE)的表达,计算阳性细胞比率。本实验所培养的细胞(4~6代)95±8%表达Nestin;分化诱导7d后,感染组86±12%细胞表达IE,未感染组和感染组Nestin阳性率分别为50±19%和93±10%(t=6.03,P<0.01),GFAP阳性细胞率分别为81±11%和55±17%(t=3.77,P<0.01)。以上结果表明分化过程中的NSCs是HCMV的容许细胞;HCMV感染可以抑制NSCs的分化。 相似文献
18.
19.
Jennifer Gordon Ilker K. Sariyer Marisol De La Fuente-Granada Brian J. Augelli Jessica Otte S. Ausim Azizi Shohreh Amini Kamel Khalili Barbara Krynska 《PloS one》2013,8(6)
JC virus (JCV), a common human polyomavirus, is the etiological agent of the demyelinating disease, progressive multifocal leukoencephalopathy (PML). In addition to its role in PML, studies have demonstrated the transforming ability of the JCV early protein, T-antigen, and its association with some human cancers. JCV infection occurs in childhood and latent virus is thought to be maintained within the bone marrow, which harbors cells of hematopoietic and non-hematopoietic lineages. Here we show that non-hematopoietic mesenchymal stem cells (MSCs) isolated from the bone marrow of JCV T-antigen transgenic mice give rise to JCV T-antigen positive cells when cultured under neural conditions. JCV T-antigen positive cells exhibited neural crest characteristics and demonstrated p75, SOX-10 and nestin positivity. When cultured in conditions typical for mesenchymal cells, a population of T-antigen negative cells, which did not express neural crest markers arose from the MSCs. JCV T-antigen positive cells could be cultured long-term while maintaining their neural crest characteristics. When these cells were induced to differentiate into neural crest derivatives, JCV T-antigen was downregulated in cells differentiating into bone and maintained in glial cells expressing GFAP and S100. We conclude that JCV T-antigen can be stably expressed within a fraction of bone marrow cells differentiating along the neural crest/glial lineage when cultured in vitro. These findings identify a cell population within the bone marrow permissible for JCV early gene expression suggesting the possibility that these cells could support persistent viral infection and thus provide clues toward understanding the role of the bone marrow in JCV latency and reactivation. Further, our data provides an excellent experimental model system for studying the cell-type specificity of JCV T-antigen expression, the role of bone marrow-derived stem cells in the pathogenesis of JCV-related diseases and the opportunities for the use of this model in development of therapeutic strategies. 相似文献
20.
Nadja Zeltner Fabien G. Lafaille Faranak Fattahi Lorenz Studer 《Journal of visualized experiments : JoVE》2014,(87)
Human pluripotent stem cells (hPSCs) have great potential for studying human embryonic development, for modeling human diseases in the dish and as a source of transplantable cells for regenerative applications after disease or accidents. Neural crest (NC) cells are the precursors for a large variety of adult somatic cells, such as cells from the peripheral nervous system and glia, melanocytes and mesenchymal cells. They are a valuable source of cells to study aspects of human embryonic development, including cell fate specification and migration. Further differentiation of NC progenitor cells into terminally differentiated cell types offers the possibility to model human diseases in vitro, investigate disease mechanisms and generate cells for regenerative medicine. This article presents the adaptation of a currently available in vitro differentiation protocol for the derivation of NC cells from hPSCs. This new protocol requires 18 days of differentiation, is feeder-free, easily scalable and highly reproducible among human embryonic stem cell (hESC) lines as well as human induced pluripotent stem cell (hiPSC) lines. Both old and new protocols yield NC cells of equal identity. 相似文献