首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Enhancing differentiation of mesenchymal stem cells (MSCs) to endothelial cells may improve their ability to vascularize tissue and promote wound healing. This study describes a novel role for nitric oxide (NO) in reprogramming MSCs towards an endothelial lineage and highlights the role of Wnt signaling and epigenetic modification by NO. Rat MSCs were transduced with lentiviral vectors expressing endothelial nitric oxide synthase (pLV-eNOS) and a mutated caveolin gene (pLV-CAV-1F92A) to enhance NO generation resulting in increased in vitro capillary tubule formation and endothelial marker gene expression. An exogenous source of NO could also stimulate CD31 expression in MSCs. NO was associated with an arterial-specific endothelial gene expression profile of Notch1, Dll4, and Hey2 and significantly reduced expression of venous markers. Wnt signaling associated with NO was evident through increased gene expression of Wnt3a and β-catenin protein, and expression of the endothelial marker Pecam-1 could be significantly reduced by treatment with the Wnt signaling inhibitor Dkk-1. The role of NO as an epigenetic modifier was evident with reduced gene expression of the methyltransferase, DNMT1, and bisulfite sequencing of the endothelial Flt1 promoter region in NO-producing MSCs showed significant demethylation compared to control cells. Finally, subcutaneous implantation of NO-producing MSCs seeded in a biomaterial scaffold (NovoSorb®) resulted in survival of transplanted cells and the formation of blood vessels. In summary, this study describes, NO as a potent endothelial programming factor which acts as an epigenetic modifier in MSCs and may provide a novel platform for vascular regenerative therapy.  相似文献   

2.
3.
Current cerebral organoid technology provides excellent in vitro models mimicking the structure and function of the developing human brain, which enables studies on normal and pathological brain; however, further improvements are necessary to overcome the problems of immaturity and dearth of non-parenchymal cells. Vascularization is one of the major challenges for recapitulating processes in the developing human brain. Here, we examined the formation of blood vessel-like structures in cerebral organoids induced by vascular endothelial growth factor (VEGF) in vitro. The results indicated that VEGF enhanced differentiation of vascular endothelial cells (ECs) without reducing neuronal markers in the embryonic bodies (EBs), which then successfully developed into cerebral organoids with open-circle vascular structures expressing an EC marker, CD31, and a tight junction marker, claudin-5, characteristic of the blood-brain barrier (BBB). Further treatment with VEGF and Wnt7a promoted the formation of the outer lining consisting of pericyte-like cells, which surrounded the vascular tubes. RNA sequencing revealed that VEGF upregulated genes associated with tube formation, vasculogenesis, and the BBB; it also changed the expression of genes involved in brain embryogenesis, suggesting a role of VEGF in neuronal development. These results indicate that VEGF treatment can be used to generate vessel-like structures with mature BBB characteristics in cerebral organoids in vitro.  相似文献   

4.
VE-cadherin and claudin-5 are major components of adherens and tight junctions of vascular endothelial cells and a decrease in their expression and an increase in the tyrosine-phosphorylation of VE-cadherin are associated with an increase in endothelial paracellular permeability. To clarify the mechanism underlying the development of edema in nasal polyps, we studied these molecules in polyp microvessels. Normal inferior turbinate mucosal tissues and nasal polyps from patients treated with or without glucocorticoid were stained for VE-cadherin or claudin-5 and CD31 by a double-immunofluorescence method and the immunofluorescence intensities were graded 1–3 with increasing intensity. To correct for differences in fluorescence intensity attributable to a different endothelial area being exposed in a section or to the thickness of a section, the relative immunofluorescence intensity was estimated by dividing the grade of VE-cadherin or claudin-5 by that of CD31 in each microvessel. Tyrosine-phosphorylation of VE-cadherin was examined by Western blot analysis. The relative intensities of VE-cadherin and claudin-5 in the CD31-positive microvessels significantly decreased in the following order; inferior turbinate mucosa, treated polyps and untreated polyps. The ratio of tyrosine-phosphorylated VE-cadherin to VE-cadherin was significantly higher in untreated polyps than in the inferior turbinate mucosa and treated polyps, between which no significant difference in the ratio was seen. Thus, in nasal polyps, the barrier function of endothelial adherens and tight junctions is weakened, although glucocorticoid treatment improves this weakened barrier function.  相似文献   

5.
Growth factors are currently evaluated as therapeutics in stroke and neurodegeneration. Besides direct neurotrophic effects, they promote proliferation, survival, and differentiation of both transplanted and endogenous neural precursor cells (NPCs). In the current study, we investigated whether NPCs expressing Vascular Endothelial Growth Factor VEGF-A165 are a useful vehicle for growth factor delivery after transplantation into the caudate putamen of the rat brain. We found an increased survival of adenovirally transfected NPCs after 11 days, but not after 24 hours or 4 days. Additional brain immunohistochemistry revealed increased expression of the endothelial cell marker PECAM-1 (CD31) after 24 hours, 4 day, and 11 days after transplantation. In conclusion, we show that the graft itself is a useful vehicle for growth factor delivery, promoting the survival of NPCs. Moreover, transplantation of VEGF-expressing NPCs supports angiogenesis in the brain, which may contribute to potential brain repair.  相似文献   

6.
Adipose-derived stem cells (ADSCs) have emerged as a cell source for regeneration medicine. ADSCs possess the capacity to differentiate into endothelial cells and serve an essential role in vascular development and function. LncRNA taurine upregulated gene 1 (TUG1) has recently been linked with angiogenesis in hepatoblastoma. However, the roles of TUG1 in endothelial differentiation of ADSCs remain unidentified. Human adipose-derived stem cells (hADSCs) were obtained and characterized by flow cytometry, Oil red O and Alizarin Red staining. HADSCs were maintained in the endothelial differentiation medium and the expressions of TUG1, miR-143, and FGF1 were examined by qRT-PCR. To assess endothelial differentiation, the expressions of CD31, von Willebrand factor (vWF), VE-cadherin were examined by Western blot analysis, qRT-PCR, and immunofluorescence. Tube formation in Matrigel was examined. The interactions between TUG1 and miR-143, miR-143 and FGF1 were validated by luciferase assays. During the endothelial differentiation process, TUG1 and FGF1 were upregulated, whereas miR-143 was downregulated. TUG1 overexpression downregulated miR-143, upregulated FGF1, CD31, vWF, and VE-cadherin, and enhanced capillary tube formation. Luciferase assays showed that TUG1 interacted with miR-143, and FGF1 was a direct target of miR-143. Furthermore, the enhancement of endothelial differentiation induced by TUG1 overexpression was abolished by miR-143 overexpression. Our findings implicated that lncRNA TUG1 promoted endothelial differentiation of ADSCs by regulating the miR-143/FGF1 axis.  相似文献   

7.
Inducing of dental pulp stem cells (DPSCs) into endothelial cells (ECs) to prevascularize pulp tissue constructs may offer a novel and viable approach for enhancing pulp regeneration. However, there are numerous challenges in current methods for the acquisition of sufficient translational ECs. It was known that Sema4D/PlexinB1 signaling exerts profound effects on enhancing vascular endothelial growth factor (VEGF) secretion and angiogenesis. Whether Sema4D/PlexinB1 could regulate endothelial differentiation of DPSCs is not yet investigated. In this study, when DPSCs were treated with Sema4D (2 μg/mL), ECs-specific (VEGFR1, VEGFR2, CD31, and vWF), and angiogenic genes and proteins were significantly upregulated. The induced ECs exhibited similar endothelial vessel formation ability to that of human umbilical vein endothelial cells (HUVECs). Furthermore, phosphorylation of AKT increased dramatically within 5 minutes (from 0.93 to 21.8), while p-ERK1/2 was moderately elevated (from 0.94 to 2.65). In summary, our results demonstrated that Sema4D/PlexinB1 signaling induces endothelial differentiation of DPSCs. The interactions of Sema4D, VEGF, ANGPTL4, ANG1, and HIF-1α may play a crucial role in mediating the differentiation process.  相似文献   

8.
This study was to investigate the effect of oxidized low‐density lipoprotein (ox‐LDL) on the behaviour of bone marrow stem cells and their endothelial differentiation as well as the underlying mechanisms. Adult rat bone marrow multipotent progenitor cells (MAPCs) were incubated with ox‐LDL for up to 2 weeks. Ox‐LDL treatment resulted in a time‐ and dose‐dependent reduction of MAPC population in culture through a combination of decreased cell proliferation and increased apoptosis. The expression of stem cell marker Oct‐4 was significantly suppressed in MAPCs by ox‐LDL in a dose‐ and time‐dependant manner. Endothelial differentiation of MAPCs was substantially inhibited by ox‐LDL with markedly decreased expression of endothelial markers vWF, Flk‐1 and CD31, as well as impaired in vitro vascular structure formation. Ox‐LDL‐induced apoptosis and inhibition of Oct‐4 expression, cell proliferation and endothelial differentiation of MAPCs were associated with significant inhibition of Akt phosphorylation. Akt overexpression in MAPCs transfected with a constitutively active Akt completely reversed the effects of ox‐LDL on MAPCs including enhanced apoptosis, decreased cell proliferation, suppressed Oct‐4 expression and endothelial differentiation as well as in vitro vascular structure formation. In conclusion, ox‐LDL promotes apoptosis and inhibits Oct‐4 expression and self‐renewal of MAPCs, and impairs their endothelial differentiation via suppression of Akt signalling.  相似文献   

9.
摘要 目的:探讨银杏叶提取物注射液联合地塞米松对突发性耳聋患者内皮功能、血液流变学及外周血T淋巴细胞亚群的影响。方法:选取2018年1月到2019年12月我院收治的100例突发性耳聋患者,将纳入病例依照随机数字表法分为对照组(n=50,给予鼓室注射地塞米松治疗)和观察组(n=50,对照组基础上静脉滴注银杏叶提取物注射液),两组疗程均为10 d。对比两组疗效、血液流变学、内皮功能、外周血T淋巴细胞亚群、纯音听阈值及不良反应。结果:观察组治疗10 d后的临床总有效率为96.00%,高于对照组的82.00%(P<0.05)。观察组治疗10 d后纯音听阈值明显较对照组小(P<0.05)。观察组治疗10 d后纤维蛋白原、全血高切黏度、全血低切黏度低于对照组(P<0.05)。观察组治疗10 d后可溶性血管细胞间黏附分子-1 (sVCAM-1)、内皮素-1(ET-1)低于对照组(P<0.05)。观察组10 d后CD8+较对照组低,CD3+、CD4+/CD8+、CD4+较对照组高(P<0.05)。两组不良反应发生率比较无差异(P>0.05)。结论:采用银杏叶提取物注射液联合地塞米松治疗突发性耳聋患者,可有效改善内皮功能和血液流变学,提高机体免疫功能,效果确切,安全性佳。  相似文献   

10.
Recent research findings postulate that adipocytes and endothelial cells (EC) may share a common progenitor. However, the interlinking pathways between adipose tissue and endothelium, and the differentiation potential of cells to convert from one tissue into the other via progenitor cells have not been elucidated and are therefore the focus of this study. Stromal vascular fraction (SVF) cells were isolated from liposuction aspirates or excised adipose tissue and separated into CD31+ and CD31- populations by magnet-assisted cell sorting. Differentiation to fat tissue was induced in both CD31 fractions after expansion by insulin, dexamethasone, isobutylmethylxanthine, triiodothyronine, pioglitazone, and transferrin. Differentiation was assayed enzymatically and by cell counting. Maturation to endothelium was performed with vascular endothelial growth factor (VEGF), insulin-like growth factor-1 plus 2% fetal calf serum, and confirmed by flow cytometry and tube formation assays on Matrigel. Our results show that the SVF contains a CD31-, S100+ cell type that can differentiate into adipocytes and EC. The SVF also comprises CD31+ cells that, although they have an endothelial phenotype, can be converted into mature adipocytes. These findings demonstrate the potency of SVF cells to perform both adipogenic and endothelial differentiation. Further, they reveal the plasticity of mature cells of mesenchymal origin to undergo conversion from endothelium to adipose tissue and vice versa.  相似文献   

11.
Diabetic retinopathy (DR) is characterized by the development of intraretinal microvascular abnormalities. Endoplasmic reticulum (ER) stress is known to play a pathogenic role in vascular impairment in DR. The present study demonstrated that the treatment of human retinal endothelial cells with ER stress inducers such as thapsigargin (Tg) and tunicamycin (Tm) significantly increased the permeability of exogenously added FITC-dextran, accompanied by a decrease of transendothelial electrical resistance (TEER). The expression of claudin-5 among tight junction proteins was significantly decreased by the treatment with Tg or Tm. A p38 MAPK inhibitor, SB203580, and an NF-κB inhibitor, dexamethasone, significantly suppressed the Tg-induced down-regulation of claudin-5, decrease of TEER and leakage of added FITC-dextran. The translocation of NF-κB p65 subunit to the nucleus was also inhibited by the addition of SB203580 or dexamethasone. The effects of dexamethasone are thought to be due to the transrepression of the above signaling and direct regulation of claudin-5 gene.  相似文献   

12.

Background

This study demonstrates that a dynamic susceptibility contrast-magnetic resonance imaging (DSC-MRI) perfusion parameter may indicate vascular abnormality in a brain tumor model and reflects an effect of dexamethasone treatment. In addition, X-ray computed tomography (CT) measurements of vascular tortuosity and tissue markers of vascular morphology were performed to investigate the underpinnings of tumor response to dexamethasone.

Methodology/Principal Findings

One cohort of Fisher 344 rats (N = 13), inoculated intracerebrally with 9L gliosarcoma cells, was treated with dexamethasone (i.p. 3 mg/kg/day) for five consecutive days, and another cohort (N = 11) was treated with equal volume of saline. Longitudinal DSC-MRI studies were performed at the first (baseline), third and fifth day of treatments. Relative cerebral blood volume (rCBV) was significantly reduced on the third day of dexamethasone treatment (0.65±.13) as compared to the fifth day during treatment (1.26±.19, p<0.05). In saline treated rats, relative CBV gradually increased during treatment (0.89±.13, 1.00±.21, 1.13±.23) with no significant difference on the third day of treatment (p>0.05). In separate serial studies, microfocal X-ray CT of ex vivo brain specimens (N = 9) and immunohistochemistry for endothelial cell marker anti-CD31 (N = 8) were performed. Vascular morphology of ex vivo rat brains from micro-CT analysis showed hypervascular characteristics in tumors, and both vessel density (41.32±2.34 branches/mm3, p<0.001) and vessel tortuosity (p<0.05) were significantly reduced in tumors of rats treated with dexamethasone compared to saline (74.29±3.51 branches/mm3). The vascular architecture of rat brain tissue was examined with anti-CD31 antibody, and dexamethasone treated tumor regions showed reduced vessel area (16.45±1.36 µm2) as compared to saline treated tumor regions (30.83±4.31 µm2, p<0.001) and non-tumor regions (22.80±1.11 µm2, p<0.01).

Conclusions/Significance

Increased vascular density and tortuosity are culprit to abnormal perfusion, which is transiently reduced during dexamethasone treatment.  相似文献   

13.
The formation of endothelial tight junctions (TJs) is crucial in blood-brain barrier (BBB) differentiation, and the expression and targeting of TJ-associated proteins mark the beginning of BBB functions. Using confocal microscopy, this study analyzed endothelial TJs in adult human cerebral cortex and the fetal telencephalon and leptomeninges in order to compare the localization of two TJ-associated transmembrane proteins, occludin and claudin-5. In the arterioles and microvessels of adult brain, occludin and claudin-5 form continuous bands of endothelial immunoreactivity. During fetal development, occludin and claudin-5 immunoreactivity is first detected as a diffuse labeling of endothelial cytoplasm. Later, at 14 weeks, the immunosignal for both proteins shifts from the cytoplasm to the interface of adjacent endothelial cells, forming a linear, widely discontinuous pattern of immunoreactivity that achieves an adult-like appearance within a few weeks. These results demonstrate that occludin and claudin-5 expression is an early event in human brain development, followed shortly by assembly of both proteins at the junctional areas. This incremental process suggests more rapid establishment of the human BBB, consistent with its specific function of creating a suitable environment for neuron differentiation and neurite outgrowth during neocortical histogenesis.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00418-004-0665-1Daniela Virgintino and Mariella Errede contributed equally to this work  相似文献   

14.
To clarify the process of endothelial differentiation, we isolated AC133(+) cells and induced the in vitro differentiation of these cells into endothelial cells. AC133(+) cells efficiently differentiated into endothelial cells when the cells were cultured on fibronectin-coated dishes in the presence of vascular endothelial growth factor. Time-course analysis of the alteration of endothelial markers on cultured AC133(+) cells revealed that the expression of CD31 (PECAM-1) on AC133(+) cells was the earliest marker among all of the tested markers. Based on the hypothesis that CD31 is an early indicator during the endothelial differentiation, we examined the relationship between CD31 expression and the ability to differentiate into endothelial cells in cells derived from AC133(+) cells. CD31-bright cells, which were sorted from cultured AC133(+) cells, differentiated more efficiently into endothelial cells than had CD31-positive or CD31-negative cells, suggesting that CD31-bright cells may be precursor cells for endothelial cells. In the present study, we identified CD31(+) cells derived from cultured AC133(+) cells that are able to differentiate to endothelial cells as precursor cells.  相似文献   

15.
Definitive mesoderm arises from a bipotent mesendodermal population, and to study processes controlling its development at this stage, embryonic stem (ES) cells can be employed. SHB (Src homology 2 protein in beta-cells) is an adapter protein previously found to be involved in ES cell differentiation to mesoderm. To further study the role of SHB in this context, we have established ES cell lines deficient for one (SHB+/-) or both SHB alleles (SHB-/-). Differentiating embryoid bodies (EBs) derived from these ES cell lines were used for gene expression analysis. Alternatively, EBs were stained for the blood vessel marker CD31. For hematopoietic differentiation, EBs were differentiated in methylcellulose. SHB-/- EBs exhibited delayed down-regulation of the early mesodermal marker Brachyury. Later mesodermal markers relatively specific for the hematopoietic, vascular, and cardiac lineages were expressed at lower levels on day 6 or 8 of differentiation in EBs lacking SHB. The expression of vascular endothelial growth factor receptor-2 and fibroblast growth factor receptor-1 was also reduced in SHB-/- EBs. SHB-/- EBs demonstrated impaired blood vessel formation after vascular endothelial growth factor stimulation. In addition, the SHB-/- ES cells formed fewer blood cell colonies than SHB+/+ ES cells. It is concluded that SHB is required for appropriate hematopoietic and vascular differentiation and that delayed down-regulation of Brachyury expression may play a role in this context.  相似文献   

16.

Background

While neurosphere- as well as xenograft tumor-initiating cells have been identified in gliomas, the resemblance between glioma cells and neural stem/progenitor cells as well as the prognostic value of stem/progenitor cell marker expression in glioma are poorly clarified.

Methodology/Principal Findings

Viable glioma cells were characterized for surface marker expression along the glial genesis hierarchy. Six low-grade and 17 high-grade glioma specimens were flow-cytometrically analyzed for markers characteristics of stem cells (CD133); glial progenitors (PDGFRα, A2B5, O4, and CD44); and late oligodendrocyte progenitors (O1). In parallel, the expression of glial fibrillary acidic protein (GFAP), synaptophysin and neuron-specific enolase (NSE) was immunohistochemically analyzed in fixed tissue specimens. Irrespective of the grade and morphological diagnosis of gliomas, glioma cells concomitantly expressed PDGFRα, A2B5, O4, CD44 and GFAP. In contrast, O1 was weakly expressed in all low-grade and the majority of high-grade glioma specimens analyzed. Co-expression of neuronal markers was observed in all high-grade, but not low-grade, glioma specimens analyzed. The rare CD133 expressing cells in low-grade glioma specimens typically co-expressed vessel endothelial marker CD31. In contrast, distinct CD133 expression profiles in up to 90% of CD45-negative glioma cells were observed in 12 of the 17 high-grade glioma specimens and the majority of these CD133 expressing cells were CD31 negative. The CD133 expression correlates inversely with length of patient survival. Surprisingly, cytogenetic analysis showed that gliomas contained normal and abnormal cell karyotypes with hitherto indistinguishable phenotype.

Conclusions/Significance

This study constitutes an important step towards clarification of lineage commitment and differentiation blockage of glioma cells. Our data suggest that glioma cells may resemble expansion of glial lineage progenitor cells with compromised differentiation capacity downstream of A2B5 and O4 expression. The concurrent expression of neuronal markers demonstrates that high-grade glioma cells are endowed with multi-lineage differentiation potential in vivo. Importantly, enhanced CD133 expression marks a poor prognosis in gliomas.  相似文献   

17.
Cyclic AMP (cAMP) promotes functions of tight junctions in endothelial cells, although its target remains unknown. We showed here that cAMP increased gene expression of claudin-5 and decreased that of claudin-1 in porcine blood-brain-barrier endothelial cells via protein kinase A (PKA)-independent and -dependent pathways, respectively. cAMP also enhanced immunoreactivity of claudin-5 along cell borders and in the cytoplasm, reorganized actin filaments, and altered signals of claudin-5, occludin, ZO-1, and ZO-2 along cell boundaries from zipperlike to linear patterns. In contrast, claudin-1 was detected only in the cytoplasm in a dotlike pattern, and its immunolabeling was reduced by cAMP. Interestingly, 31- and 62-kDa claudin-5 immunoprecipitates in the NP-40-soluble and -insoluble fractions, respectively, were highly phosphorylated on threonine residue(s) upon cAMP treatment. All these changes induced by cAMP, except for claudin-5 expression and its signals in the cytoplasm, were reversed by an inhibitor of PKA, H-89. We also demonstrated that cAMP elevated the barrier function of tight junctions in porcine blood-brain-barrier endothelial cells in PKA-dependent and -independent manners. These findings indicate that both PKA-induced phosphorylation of claudin-5 immunoprecipitates and cAMP-dependent but PKA-independent induction of claudin-5 expression could be involved in promotion of tight-junction function in endothelial cells.  相似文献   

18.
The signals that direct pluripotent stem cell differentiation into lineage‐specific cells remain largely unknown. Here, we investigated the roles of BMP on vascular progenitor development from human embryonic stem cells (hESCs). In a serum‐free condition, hESCs sequentially differentiated into CD34+CD31?, CD34+CD31+, and then CD34?CD31+ cells during vascular cell development. CD34+CD31+ cells contained vascular progenitor population that gives rise to endothelial cells and smooth muscle cells. BMP4 promoted hESC differentiation into CD34+CD31+ cells at an early stage. In contrast, TGFβ suppressed BMP4‐induced CD34+CD31+ cell development, and promoted CD34+CD31? cells that failed to give rise to either endothelial or smooth muscle cells. The BMP‐Smad inhibitor, dorsomorphin, inhibited phosphorylation of Smad1/5/8, and blocked hESC differentiation to CD34+CD31+ progenitor cells, suggesting that BMP Smad‐dependent signaling is critical for CD34+CD31+ vascular progenitor development. Our findings provide new insight into how pluripotent hESCs differentiate into vascular cells. J. Cell. Biochem. 109: 363–374, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
We showed that antenatal corticosteroids reduced blood-brain barrier permeability in fetuses at 60 and 80%, but not 90% of gestation, and decreased brain water content in fetuses. Our objective was to examine the effects of postnatal corticosteroids on regional blood-brain barrier permeability and brain water content in newborn lambs. Three dexamethasone treatment groups were studied in 3- to 5-day-old lambs. A 0.01 mg/kg dose was selected to estimate the amount of dexamethasone that might have reached fetuses via antenatal treatment of ewes in our previous studies. The other doses (0.25 and 0.5 mg/kg) were chosen to approximate those used clinically to treat infants with bronchopulmonary dysplasia. Lambs were randomly assigned to receive four intramuscular injections of dexamethasone or placebo given 12 h apart on days 3 and 4 of age. Blood-brain barrier function was measured with the blood-to-brain transfer constant (K(i)) to alpha-aminoisobutyric acid, brain plasma volume was measured with polyethylene glycol for the calculation of K(i,) and brain water was measured by wet-to-dry tissue weights. Postnatal treatment with corticosteroids did not reduce barrier permeability in newborn lambs. Brain blood volume was higher in the 0.25 and 0.5 mg/kg dose dexamethasone groups than in the placebo group. Brain water content did not differ among the groups. We conclude that postnatal treatment with corticosteroids did not reduce regional blood-brain barrier permeability or brain water content but increased the brain plasma volume in newborn lambs. These findings are consistent with our previous work indicating that barrier permeability is responsive to corticosteroids at 60 and 80% of gestation and brain water regulation at 60% of gestation, but not in near-term fetuses or newborn lambs.  相似文献   

20.
Aldosterone classically modulates Na transport in tight epithelia such as the renal collecting duct (CD) through the transcellular route, but it is not known whether the hormone could also affect paracellular permeability. Such permeability is controlled by tight junctions (TJ) that form a size- and charge-selective barrier. Among TJ proteins, claudin-4 has been highlighted as a key element to control paracellular charge selectivity. In RCCD2 CD cells grown on filters, we have identified novel early aldosterone effects on TJ. Endogenous claudin-4 abundance and cellular localization were unaltered by aldosterone. However, the hormone promoted rapid (within 15-20 min) and transient phosphorylation of endogenous claudin-4 on threonine residues, without affecting tyrosine or serine; this event was fully developed at 10 nM aldosterone and appeared specific for aldosterone (because it is not observed after dexamethasone treatment and it depends on mineralocorticoid receptor occupancy). Within the same delay, aldosterone also promoted an increased apical-to-basal passage of 125I (a substitute for 36Cl), whereas 22Na passage was unaffected; paracellular permeability to [3H]mannitol was also reduced. Later on (45 min), a fall in transepithelial resistance was observed. These data indicate that aldosterone modulates TJ properties in renal epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号