首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Duchenne and Becker muscular dystrophy (DMD and BMD) are caused, in the majority of cases, by deletions in the dystrophin gene (DMD). The disease is an X-linked neuromuscular diseases typically caused by disrupting (DMD) or non-disrupting (BMD) the reading frame in the dystrophin (DMD) gene. In the present study, amplifications of the genomic DNAs of unrelated 15 Saudi DMD males were carried out using multiplex polymerase chain reaction (PCR) for nine-hotspot regions of exons 4, 8, 12, 17, 19, 44, 45, 48 and 51. We detected six Saudi patients having deletions in a frequency of 40%. The frequency of deletions in exon 51 (20%) was the most common deletion frequently associated with our Saudi sample males. Exons 19, 45, and 48 were present in a frequency of 6.7% each. All deletions were recognized as an individual exonic deletions, while no gross deletion where detected. Finally, the molecular deletions in the Saudi males was expected to be characterized by a moderate frequency among different populations due to the geographical KSA region, which it is in the crossroad of intense migrations and admixture of people coming from continental Asia, Africa, and even Europe. In conclusion, attempts to include an extra DNA samples might reflect a valid vision of the deletions within the high frequency deletion regions (HFDR’s) in the DMD gene mutations in KSA.  相似文献   

2.
Duchenne muscular dystrophy (DMD) is a common X-linked recessive disease of muscle degeneration and death. In order to provide accurate and reliable genetic counseling and prenatal diagnosis, we screened DMD mutations in a cohort of 119 Chinese patients using multiplex ligation-dependent probe amplification (MLPA) and denaturing high performance liquid chromatography (DHPLC) followed by Sanger sequencing. In these unrelated DMD patients, we identified 11 patients with DMD small mutations (9.2%) and 81 patients with DMD deletions/duplications (del/dup) (68.1%), of which 64 (79.0%) were deletions, 16 (19.8%) were duplications, and one (1.2%) was both deletion and duplication. Furthermore, we analyzed the frequency of DMD breakpoint in the 64 deletion cases by calculating exon-deletion events of certain exon interval that revealed a novel mutation hotspot boundary. To explore why DMD rearrangement breakpoints were predisposed to specific regions (hotspot), we precisely characterized junction sequences of breakpoints at the nucleotide level in 21 patients with exon deleted/duplicated in DMD with a high-resolution SNP microarray assay. There were no exactly recurrent breakpoints and there was also no significant difference between single-exon del/dup and multiple-exon del/dup cases. The data from the current study provided a comprehensive strategy to detect DMD mutations for clinical practice, and identified two deletion hotspots at exon 43–55 and exon 10–23 by calculating exon-deletion events of certain exon interval. Furthermore, this is the first study to characterize DMD breakpoint at the nucleotide level in a Chinese population. Our observations provide better understanding of the mechanism for DMD gene rearrangements.  相似文献   

3.
4.
Duchenne muscular dystrophy (DMD) is a progressive muscle‐wasting disorder, caused by mutations in the DMD gene and the resulting lack of dystrophin. The DMD gene has seven promoters, giving rise to multiple full‐length and shorter isoforms. Besides the expression of dystrophin in muscles, the majority of dystrophin isoforms is expressed in brain and dystrophinopathy can lead to cognitive deficits, including intellectual impairments and deficits in executive function. In contrast to the muscle pathology, the impact of the lack of dystrophin on the brain is not very well studied. Here, we study the behavioral consequences of a lack of full‐length dystrophin isoforms in mdx mice, particularly with regard to domains of executive functions and anxiety. We observed a deficit in cognitive flexibility in mdx mice in the absence of motor dysfunction or general learning impairments using two independent behavioral tests. In addition, increased anxiety was observed, but its expression depended on the context. Overall, these results suggest that the absence of full‐length dystrophin in mice has specific behavioral effects that compare well to deficits observed in DMD patients.  相似文献   

5.
6.
The multiplex ligation-dependent probe amplification (MLPA) assay is the most powerful tool in screening for deletions and duplications in the dystrophin gene in patients with Duchenne and Becker muscular dystrophy (DMD/BMD). The efficacy of the assay was validated by testing 20 unrelated male patients with DMD/BMD who had already been screened by multiplex PCR (mPCR). We detected two duplications that had been missed by mPCR. In one DMD patient showing an ambiguous MLPA result, a novel mutation (c.3808_3809insG) was identified. MLPA improved the mutation detection rate of mPCR by 15 %. The results of our study (1) confirmed MLPA to be the method of choice for detecting DMD gene rearrangements in DMD/BMD patients, (2) showed that ambiguous MLPA amplification products should be verified by other methods, and (3) indicated that the MLPA method could be used in screening even for small mutations located in the probe-binding regions.  相似文献   

7.
Rimmed vacuoles in myofibers are thought to be due to the accumulation of autophagic vacuoles, and can be characteristic in certain myopathies with protein inclusions in myofibers. In this study, we performed a detailed clinical, molecular, and pathological characterization of Becker muscular dystrophy patients who have rimmed vacuoles in muscles. Among 65 Becker muscular dystrophy patients, we identified 12 patients who have rimmed vacuoles and 11 patients who have deletions in exons 45–48 in DMD gene. All patients having rimmed vacuoles showed milder clinical features compared to those without rimmed vacuoles. Interestingly, the rimmed vacuoles in Becker muscular dystrophy muscles seem to represent autophagic vacuoles and are also associated with polyubiquitinated protein aggregates. These findings support the notion that rimmed vacuoles can appear in Becker muscular dystrophy, and may be related to the chronic changes in muscle pathology induced by certain mutations in the DMD gene.  相似文献   

8.

Background

A significant component of the variation in cognitive disability that is observed in Duchenne muscular dystrophy (DMD) is known to be under genetic regulation. In this study we report correlations between standardised measures of intelligence and mutational class, mutation size, mutation location and the involvement of dystrophin isoforms.

Methods and Results

Sixty two male subjects were recruited as part of a study of the cognitive spectrum in boys with DMD conducted at the Sydney Children''s Hospital (SCH). All 62 children received neuropsychological testing from a single clinical psychologist and had a defined dystrophin gene (DMD) mutation; including DMD gene deletions, duplications and DNA point mutations. Full Scale Intelligence Quotients (FSIQ) in unrelated subjects with the same mutation were found to be highly correlated (r = 0.83, p = 0.0008), in contrast to results in previous publications. In 58 cases (94%) it was possible to definitively assign a mutation as affecting one or more dystrophin isoforms. A strong association between the risk of cognitive disability and the involvement of groups of DMD isoforms was found. In particular, improvements in the correlation of FSIQ with mutation location were identified when a new classification system for mutations affecting the Dp140 isoform was implemented.

Significance

These data represent one of the largest studies of FSIQ and mutational data in DMD patients and is among the first to report on a DMD cohort which has had both comprehensive mutational analysis and FSIQ testing through a single referral centre. The correlation between FSIQ results with the location of the dystrophin gene mutation suggests that the risk of cognitive deficit is a result of the cumulative loss of central nervous system (CNS) expressed dystrophin isoforms, and that correct classification of isoform involvement results in improved estimates of risk.  相似文献   

9.
Duchenne muscular dystrophy (DMD) is associated with an increase in oxidative stress. We measured 24 h 8-hydroxy-2'-deoxyguanosine (8-OHdG) excretion in 24 patients with MD (DMD + Becker's MD), 23 with myotonic dystrophy, and 34 healthy controls. The 8-OHdG/creatinine ratio was higher in patients with dystrophinopathy ( upward arrow 48%, p <.01) but not myotonic dystrophy, as compared to healthy controls. These results indicate that 8-OHdG excretion can be used as a marker of oxidative stress in clinical trials with dystrophinopathy.  相似文献   

10.
11.
Summary A DNA marker C7, localised Xp21.1-Xp21.3, has been studied in kindreds segregating for Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD). In DMD families four crossovers were observed in 38 informative meioses between C7 and the DMD locus (=0.12, z max=+2.72). In BMD families no recombinants were observed in the 16 informative meioses studied. These data are consistent with the localisation of the mutations in these disorders being in the same region of Xp21.Studies in families also segregating for the DNA marker 754 support the previously reported physical order of these loci as X centromere-754-DMD-BMD-C7-X telomere. A recombination fraction of 0.11 (z max=+5.58) was found between DMD-754 by combining our previously published data with the data presented here. C7 and 754 thus provide good bridging markers for the diagnosis of DMD and BMD.  相似文献   

12.
Malignant melanoma is still poorly understood at the genomic level. Recently, a new technique for the high-resolution analysis of copy number changes named digital karyotyping was introduced. This approach is derived from SAGE (serial analysis of gene expression) and allows the detection of genomic amplifications and deletions, which are indicative of oncogenes and tumor suppressor genes. Four human melanoma cell lines were subjected to analysis by digital karyotyping. 828,780 genomic tags were generated and analysed quantitatively. Thereby, we identified a somatic, homozygous deletion of 570 kbp removing exons 3-29 of the dystrophin (DMD, Duchenne muscular dystrophy) gene. Analysis of DMD in 51 melanoma cell lines further revealed a homozygous and a hemizygous deletion in DMD. Furthermore, DMD mRNA expression was down-regulated with respect to primary melanocytes and accompanied by loss of DMD protein expression in 38 of 55 (69%) and a significant reduction in 10 of 55 (18%) melanoma cell lines. Sequence analysis of DMD cDNAs in 37 melanoma cell lines revealed 6 new sequence variants with a significantly lower frequency than previously described DMD polymorphisms, which may affect dystrophin function. Knock-down of DMD enhanced migration and invasion, whereas re-expression of DMD attenuated migration and induced a senescent phenotype in melanoma cell lines. Taken together, our results suggest that inactivation of DMD is involved in the pathogenesis of malignant melanoma. Loss of DMD may critically change the migratory and proliferative capacity of melanocytes.  相似文献   

13.
DMD gene which is composed of 79 exons is the largest known gene located on X chromosome (Xp21). Point mutations in the dystrophin gene are responsible for 30–35% of cases with DMD/BMD. Mutation analysis of all the exons of the DMD gene is costly in developing countries, therefore, a few of the exons are selected to be analyzed routinely in clinical laboratories. In this study, direct sequencing was used for detection of point mutations in 10 exons of dystrophin gene in patients affected with DMD without detectable large rearrangements. Freely available programs were used to predict the damaging effects of the mutations. Point mutations were successfully detected in three patients. Three novel mutations, two missense mutations located on nonconservative domains and a single nucleotide deletion, were detected. Missense mutations were predicted to change splicing efficiency. Detection of point mutations by DNA analysis followed by prediction of the pathogenecity by using bioinformatic tool might be an asset to provide proper diagnosis or genetic counseling to patients and their family.  相似文献   

14.
Duchenne muscular dystrophy (DMD) is an X-linked recessive progressive muscle degenerative disorder that causes dilated cardiomyopathy in the second decade of life in affected males. Dystrophin, the gene responsible for DMD, encodes full-length dystrophin and various short dystrophin isoforms. In the mouse heart, full-length dystrophin Dp427 and a short dystrophin isoform, Dp71, are expressed. In this study, we intended to clarify the functions of these dystrophin isoforms in DMD-related cardiomyopathy. We used two strains of mice: mdx mice, in which Dp427 was absent but Dp71 was present, and DMD-null mice, in which both were absent. By immunohistochemical staining and density-gradient centrifugation, we found that Dp427 was located in the cardiac sarcolemma and also at the T-tubules, whereas Dp71 was specifically located at the T-tubules. In order to determine whether T tubule-associated Dp71 was involved in DMD-related cardiac disruption, we compared the cardiac phenotypes between DMD-null mice and mdx mice. Both DMD-null mice and mdx mice exhibited severe necrosis, which was followed by fibrosis in cardiac muscle. However, we could not detect a significant difference in myocardial fibrosis between mdx mice and DMD-null mice. Based on the present results, we have shown that cardiac myopathy is caused predominantly by a deficiency of full-length dystrophin Dp427.  相似文献   

15.
Duchenne and Becker muscular dystrophy severity depends upon the nature and location of the DMD gene lesion and generally correlates with the dystrophin open reading frame. However, there are striking exceptions where an in-frame genomic deletion leads to severe pathology or protein-truncating mutations (nonsense or frame-shifting indels) manifest as mild disease. Exceptions to the dystrophin reading frame rule are usually resolved after molecular diagnosis on muscle RNA. We report a moderate/severe Becker muscular dystrophy patient with an in-frame genomic deletion of DMD exon 5. This mutation has been reported by others as resulting in Duchenne or Intermediate muscular dystrophy, and the loss of this in-frame exon in one patient led to multiple splicing events, including omission of exon 6, that disrupts the open reading frame and is consistent with a severe phenotype. The patient described has a deletion of dystrophin exon 5 that does not compromise recognition of exon 6, and although the deletion does not disrupt the reading frame, his clinical presentation is more severe than would be expected for classical Becker muscular dystrophy. We suggest that the dystrophin isoform lacking the actin-binding sequence encoded by exon 5 is compromised, reflected by the phenotype resulting from induction of this dystrophin isoform in mouse muscle in vivo. Hence, exon skipping to address DMD-causing mutations within DMD exon 5 may not yield an isoform that confers marked clinical benefit. Additional studies will be required to determine whether multi-exon skipping strategies could yield more functional dystrophin isoforms, since some BMD patients with larger in-frame deletions in this region have been reported with mild phenotypes.  相似文献   

16.
Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are X-linked recessive genetic disorders resulting from mutations in the dystrophin gene. About two-thirds of the affected patients have large deletions or duplications, which occur in the 5' and central region of the gene. The remaining DMD/BMD cases show no deletions, so they cannot be easily identified by current strategies. In these DMD/BMD families, a linkage analysis that involves DNA markers of the flanking and intragenic dystrophin gene are necessary for carrier and prenatal diagnosis. We analyzed eighteen deletion-prone exons of the gene by a polymerase chain reaction (PCR) in order to characterize the molecular defects of the dystrophin gene in Korean DMD/BMD families. We also performed a linkage analysis to assess the usefulness and application of six short tandem repeat markers for molecular diagnosis in the families. We observed a deletion that eliminated the exon 50. Also, a linkage analysis in the families with six short tandem repeat (STR) markers showed heterozygosity at most of the STR markers. The haplotype analysis was useful for detecting the carrier status. This study will be helpful for a molecular diagnosis of DMD/BMD families in the Korean population.  相似文献   

17.
《Genomics》2022,114(1):149-160
Since RBPs play important roles in the cell, it's particularly important to find new RBPs. We performed iRIP-seq and CLIP-seq to verify two proteins, CLIP1 and DMD, predicted by RBPPred whether are RBPs or not. The experimental results confirm that these two proteins have RNA-binding activity. We identified significantly enriched binding motifs UGGGGAGG, CUUCCG and CCCGU for CLIP1 (iRIP-seq), DMD (iRIP-seq) and DMD (CLIP-seq), respectively. The computational KEGG and GO analysis show that the CLIP1 and DMD share some biological processes and functions. Besides, we found that the SNPs between DMD and its RNA partners may be associated with Becker muscular dystrophy, Duchenne muscular dystrophy, Dilated cardiomyopathy 3B and Cardiovascular phenotype. Among the thirteen cancers data, CLIP1 and another 300 oncogenes always co-occur, and 123 of these 300 genes interact with CLIP1. These cancers may be associated with the mutations occurred in both CLIP1 and the genes it interacts with.  相似文献   

18.
Duchenne muscular dystrophy (DMD) is the most frequent muscular disorder in infancy. The inheritance is X-linked recessive with mutations in the dystrophin gene (about 65% deletions, about 7% duplications, about 26% point mutations, and about 2% unknown mutations). The genetic model is complex. The sex ratio of the mutations is unequal. Point mutations and duplications arise in spermatogenesis, whereas deletions arise in oogenesis. About 33% of all patients are new mutations; however, most new mutations are germline mosaic. Becker muscular dystrophy is allelic to DMD.  相似文献   

19.
Mutations in the dystrophin gene (DMD) cause Duchenne and Becker muscular dystrophies and the majority of cases are due to DMD gene rearrangements. Despite the high incidence of these aberrations, little is known about their causative molecular mechanism(s). We examined 792 DMD/BMD clinical samples by oligonucleotide array-CGH and report on the junction sequence analysis of 15 unique deletion cases and three complex intragenic rearrangements to elucidate potential underlying mechanism(s). Furthermore, we present three cases with intergenic rearrangements involving DMD and neighboring loci. The cases with intragenic rearrangements include an inversion with flanking deleted sequences; a duplicated segment inserted in direct orientation into a deleted region; and a splicing mutation adjacent to a deletion. Bioinformatic analysis demonstrated that 7 of 12 breakpoints combined among 3 complex cases aligned with repetitive sequences, as compared to 4 of 30 breakpoints for the 15 deletion cases. Moreover, the inversion/deletion case may involve a stem-loop structure that has contributed to the initiation of this rearrangement. For the duplication/deletion and splicing mutation/deletion cases, the presence of the first mutation, either a duplication or point mutation, may have elicited the deletion events in an attempt to correct preexisting mutations. While NHEJ is one potential mechanism for these complex rearrangements, the highly complex junction sequence of the inversion/deletion case suggests the involvement of a replication-based mechanism. Our results support the notion that regional genomic instability, aided by the presence of repetitive elements, a stem-loop structure, and possibly preexisting mutations, may elicit complex rearrangements of the DMD gene.  相似文献   

20.
Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disorder. It is caused by loss-of-function mutations in the dystrophin gene. Currently, there is no cure. A highly promising therapeutic strategy is to replace or repair the defective dystrophin gene by gene therapy. Numerous animal models of DMD have been developed over the last 30 years, ranging from invertebrate to large mammalian models. mdx mice are the most commonly employed models in DMD research and have been used to lay the groundwork for DMD gene therapy. After ~30 years of development, the field has reached the stage at which the results in mdx mice can be validated and scaled-up in symptomatic large animals. The canine DMD (cDMD) model will be excellent for these studies. In this article, we review the animal models for DMD, the pros and cons of each model system, and the history and progress of preclinical DMD gene therapy research in the animal models. We also discuss the current and emerging challenges in this field and ways to address these challenges using animal models, in particular cDMD dogs.KEY WORDS: Duchenne muscular dystrophy, Dystrophin, Animal model, Canine DMD, Gene therapy  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号