首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Elastin production is characteristically turned off during the maturation of elastin-rich organs such as the aorta. MicroRNAs (miRNAs) are small regulatory RNAs that down-regulate target mRNAs by binding to miRNA regulatory elements (MREs) typically located in the 3' UTR. Here we show a striking up-regulation of miR-29 and miR-15 family miRNAs during murine aortic development with commensurate down-regulation of targets including elastin and other extracellular matrix (ECM) genes. There were a total of 14 MREs for miR-29 in the coding sequences (CDS) and 3' UTR of elastin, which was highly significant, and up to 22 miR-29 MREs were found in the CDS of multiple ECM genes including several collagens. This overrepresentation was conserved throughout mammalian evolution. Luciferase reporter assays showed synergistic effects of miR-29 and miR-15 family miRNAs on 3' UTR and coding-sequence elastin constructs. Our results demonstrate that multiple miR-29 and miR-15 family MREs are characteristic for some ECM genes and suggest that miR-29 and miR-15 family miRNAs are involved in the down-regulation of elastin in the adult aorta.  相似文献   

2.
Adriamycin (Adr) and docetaxel (Doc) are two chemotherapeutic agents commonly used in the treatment of breast cancer. However, patients with breast cancer who are treated by the drugs often develop resistance to them and some other drugs. Recently studies have shown that microRNAs (miRNAs, miRs) play an important role in drug-resistance. In present study, miRNA expression profiles of MCF-7/S and its two resistant variant MCF-7/Adr and MCF-7/Doc cells were analyzed using microarray and the results were confirmed by real-time quantitative polymerase chain reaction. Here, 183 differentially expressed miRNAs were identified in the two resistant sublines compared to MCF-7/S. Then, five up-regulated miRNAs (miR-100, miR-29a, miR-196a, miR-222 and miR-30a) in both MCF-7/Adr and MCF-7/Doc were selected to explore their roles in acquisition of drug-resistance using transfection experiment. The results showed that miR-222 and miR-29a mimics and inhibitors had partially changed the drug-resistance of breast cancer cells, which was also confirmed by apoptosis assay. Western blot results suggested that miR-222 and -29a could regulate the expression of PTEN, maybe through which the two miRNAs conferred Adr and Doc resistance in MCF-7 cells. Finally, pathway mapping tools were employed to further analyze signaling pathways affected by the two miRNAs. In summary, this study demonstrates that altered miRNA expression pattern is involved in acquiring resistance to Adr and Doc in breast cancer MCF-7 cells, and that there are some miRNAs who displayed consistent up- or down-regulated expression changes in the two resistant sublines. The most importance is that we identify two miRNAs (miR-222 and miR-29a) involved in drug-resistance, at least in part via targeting PTEN.  相似文献   

3.
Recent data strongly suggests the profound role of miRNAs in cancer progression. Here, we showed miR-126 expression was much lower in HCT116, SW620 and HT-29 colon cancer cells with highly metastatic potential and miR-126 downregulation was more frequent in colorectal cancers with metastasis. Restored miR-126 expression inhibited HT-29 cell growth, cell-cycle progression and invasion. Mechanically, microarray results combined with bioinformatic and experimental analysis demonstrated miR-126 exerted cancer suppressor role via inhibiting RhoA/ROCK signaling pathway. These results suggest miR-126 function as a potential tumor suppressor in colon cancer progression and miR-126/RhoA/ROCK may be a novel candidate for developing rational therapeutic strategies.  相似文献   

4.
microRNAs (miRNAs) are short non-coding RNAs that regulate gene expression by targeting mRNAs, inhibiting the expression of the associated proteins. Although a role for aberrant miRNA expression in cancer has been postulated, the pathophysiologic role and relevance of aberrantly expressed miRNAs in tumor biology has not been established. We evaluated the expression pattern of miRNAs in human breast cancer cells by qPCR, finding out an up-regulated miRNA miR-29b and studying its biological effect by migration assay. We defined a target gene PTEN by bioinformatics approach and western blot. In breast cancer cell line MDA-MB-231 cell, which migrate faster than MCF-7, we observed that miR-29b was highly over-expressed. Inhibition of miR-29b in cultured cells increased the expression of the phosphatase and tensin homolog (PTEN) tumor suppressor, promoting apoptosis, decreasing migration, and decreasing invasion. In contrast, enhanced miR-29b expression by transfection with pre-miR-29b decreased the expression of PTEN and impaired apoptosis, increasing tumor cell migration and invasion. Moreover, PTEN was shown to be a direct target of miR-29b and was also shown to contribute to the miR-29b-mediated effects on cell invasion. Modulation of miR-29b altered the role of PTEN involved in cell migration and invasion. Aberrant expression of miR-29b, which modulates PTEN expression, can contribute to migration, invasion, and anti-apoptosis.  相似文献   

5.
Dicer is aberrantly expressed in several types of malignancies. Cleaved by Dicer, the small noncoding microRNAs (miRNAs) are considered potential tools for the diagnosis and prognosis of cancer. This study investigated the expression of miRNAs thought to target Dicer. Expression of 1,205 human miRNAs and miRNA*s were examined in four patients with prostate cancer (PCa) by miRNA array in which the threshold was set as two-fold. Seventy-three miRNAs and miRNA*s were significantly down-regulated while 10 were up-regulated in PCa tissues compared with matched histologically normal glands. Of these, miR-29b-1, miR-200a, miR-370, and miR-31, which were the most down/up-regulated and closely potentially target to the Dicer 3′ UTR, were investigated further. Tissues of primary tumors and matched normal prostate glands from 185 patients with PCa were collected for further investigation. Dicer mRNA levels were negatively correlated with miR-29b-1 (ρs = −0.177, p = 0.017), miR-200a (ρs = -0.489, p < 0.0001) and miR-31 (ρs = −0.314, p < 0.0001) expression. Compared with adjacent normal glands, PCa tissues showed significantly lower miR-200a and miR-31 expression levels. Furthermore, in metastatic PCa, the expression levels of miR-200a, miR-370, and miR-31 were dramatically higher than in localized PCa. Additionally, elevated expression levels of miR-200a and miR-31 appeared to be associated with castration-resistant PCa. These findings suggest possibilities that miR-200a and miR-31 target Dicer and are involved in the carcinogenesis, migration, and behavior of castration-resistant PCa, indicating that they could be potential biomarkers for monitoring PCa progression.  相似文献   

6.
7.
This study aimed to explore the roles of microRNAs (miRNAs) in calf rumen development during early life. Rumen tissues were collected from 16 calves (8 at pre-weaning and 8 at post-weaning) for miRNA-sequencing, differential expression (DE), miRNA weighted gene co-expression network (WGCNA) and miRNA-mRNA co-expression analyses. 295 miRNAs were identified. Bta-miR-143, miR-26a, miR-145 and miR-27b were the most abundantly expressed. 122 miRNAs were significantly DE between the pre- and post-weaning periods and the most up- and down-regulated miRNAs were bta-miR-29b and bta-miR-493, respectively. Enrichment analyses of the target genes of DE miRNAs revealed important roles for miRNA in rumen developmental processes, immune system development, protein digestion and processes related to the extracellular matrix. WGCNA indicated that bta-miR-145 and bta-miR-199a-3p are important hub miRNAs in the regulation of these processes. Therefore, bta-miR-143, miR-29b, miR-145, miR-493, miR-26a and miR-199 family members might be key regulators of calf rumen development during early life.  相似文献   

8.
微小RNA(microRNA、miRNA)与胃癌的发生发展可通过调控其靶基因参与的信号传导通路,影响胃癌的发生、侵袭和转移等过程,发挥着类似于癌基因或抑癌基因的作用。目前,已发现多种microR—NA与胃癌关系密切,包括通过调节周期蛋白依赖性蛋白激酶(Cdk)表达影响胃癌细胞增殖的miR-106b-93~25家族、miR-222—221家族和抑制高迁移率族蛋白A2(HMGA2)基因表达抑制胃癌细胞转移的miR-129和let-一7miRNA家族等。另有研究表明,miR-d21和miR-31检测阳性率显著高于血清CEA,可能成为新的胃癌肿瘤标志物。miR-15b和miR-16与胃癌多药耐药的关系也说明microRNA可能成为胃癌治疗新的靶点。  相似文献   

9.
MicroRNAs (miRNAs) play critical regulatory roles in the physiological and pathological processes. The high stability of miRNAs in human serum represents attractive novel diagnostic biomarkers of clinical conditions. Several studies have shown that aberrant expression of miRNAs in human cancer including lung cancer, but little is known about their effects on some infectious lung diseases such as pulmonary tuberculosis (TB) and pneumonia. In this study, we investigated miRNA expression pattern in serum of Egyptian patients with lung cancer, TB, and pneumonia compared with matched healthy controls. Using microarray-based expression profiling followed by real-time quantitative polymerase chain reaction validation, we compared the levels of a series of circulating miRNAs (miR-21, miR-155, miR-182, and miR-197) in serum from patients with lung cancer (n = 65), pulmonary tuberculosis (n = 29), pneumonia (n = 29), and transudate (n = 16) compared with matched healthy controls (n = 37). MiRNA SNORD68 was the housekeeping endogenous control. We found that the serum levels of miR-21, miR-155, and miR-197 were significantly elevated in the patients with lung cancer and pneumonia whereas miR-182 and miR-197 levels were increased only in patients with lung cancer and TB, respectively, compared with controls. Receiver operating characteristic analysis revealed that miR-182, miR-155, and miR-197 have superior diagnostic potential in discriminating patients with lung cancer, pneumonia, and TB, respectively, from controls. Our results conclude that the differential expression of the four studied miRNAs can be potential non-invasive biomarkers for patients with lung cancer, TB and pneumonia.  相似文献   

10.
Pancreatic cancer is a deadly disease with a poor prognosis. Recently, miRNAs have been reported to be abnormally expressed in several cancers and play a role in cancer development and progression. However, the role of miRNA in cancer stem cells remains unclear. Therefore, our aim was to investigate the role of miRNA in the CD133+ pancreatic cancer cell line Capan-1M9 because CD133 is a putative marker of pancreatic cancer stem cells. Using miRNA microarray, we found that the expression level of the miR-30 family decreased in CD133 genetic knockdown shCD133 Capan-1M9 cells. We focused on miR-30a, -30b, and -30c in the miR-30 family and created pancreatic cancer cell sublines, each transfected with these miRNAs. High expression of miR-30a, -30b, or -30c had no effect on cell proliferation and sphere forming. In contrast, these sublines were resistant to gemcitabine, which is a standard anticancer drug for pancreatic cancer, and in addition, promoted migration and invasion. Moreover, mesenchymal markers were up-regulated by these miRNAs, suggesting that mesenchymal phenotype is associated with an increase in migration and invasion. Thus, our study demonstrated that high expression of the miR-30 family modulated by CD133 promotes migratory and invasive abilities in CD133+ pancreatic cancer cells. These findings suggest that targeted therapies to the miR-30 family contribute to the development of novel therapies for CD133+ pancreatic cancer stem cells.  相似文献   

11.
Kallikrein-related peptidases (KLKs) are a family of serine proteases that were shown to be useful cancer biomarkers. KLKs have been shown to be dysregulated in prostate cancer (PCa). microRNAs (miRNAs) are short RNA nucleotides that negatively regulate gene expression and have been reportedly dysregulated in PCa. We compiled a comprehensive list of 55 miRNAs that are differentially expressed in PCa from previous microarray analysis and published literature. Target prediction analyses showed that 29 of these miRNAs are predicted to target 10 KLKs. Eight of these miRNAs were predicted to target more than one KLK. Quantitative real-time (qRT)-PCR demonstrated that there was an inverse correlation pattern in the expression (normal vs. cancer) between dysregulated miRNAs and their target KLKs. In addition, we experientially validated the miRNA-KLK interaction by transfecting miR-331-3p and miR-143 into a PCa cell line. Decreased expression of targets KLK4 and KLK10, respectively, and decreased cellular growth were observed. In addition to KLKs, dysregulated miRNAs were predicted to target other genes involved in the pathogenesis of PCa. These data show that miRNAs can contribute to KLK regulation in PCa. The miRNA-KLK axis of interaction projects a new element in the pathogenesis of PCa that may have therapeutic implications.  相似文献   

12.
13.
Cui Y  Su WY  Xing J  Wang YC  Wang P  Chen XY  Shen ZY  Cao H  Lu YY  Fang JY 《PloS one》2011,6(10):e25872
As a newly identified and characterized gene, p42.3 is associated with cell proliferation and tumorigenicity. The expression of p42.3 is upregulated in human gastric cancer (GC), but its underlying mechanisms of action are not well understood. MicroRNAs (miRNAs) are known to play vital regulatory roles in many cellular processes. Here we utilized bioinformatics and experimental approaches to investigate the regulatory relationship between miRNAs and the p42.3 gene. We showed that miR-29a could repress p42.3 expression at both the mRNA and protein levels via directly binding to its 3'UTR. Furthermore, an inverse relationship was observed between miR-29a and p42.3 expression in gastric cancer cell lines and GC tissue samples, especially in cases where p42.3 was downregulated. Taken together, we have elucidated previously unrecognized roles of miR-29a and indicated that miR-29a may function, at least partially, by targeting the p42.3 gene in human GC.  相似文献   

14.
Early detection of colorectal cancer and monitoring the progress in colon carcinogenesis stages is essential to reduce mortality. Therefore, there is continuous search for noninvasive biomarkers with high stability and good sensitivity and specificity. miRNAs have attracted attention as promising biomarkers as they are stably expressed in circulation. The aim of our study is to evaluate the aberrant expression of circulating miRNAs during the stepwise progress of colitis-associated colon cancer. This was accomplished through assessing the expression levels of five miRNAs (miR-141, miR-15b, miR-17-3p, miR-21, and miR-29a) in serum and their corresponding tissue samples through the different cycles of colorectal carcinogenesis cascade using the azoxymethane/dextran sulfate sodium murine model. We also compared the diagnostic performance of these selected miRNAs with the conventional tumor biomarkers CEA and CA 19-9. The results of our study revealed that the expression levels of those miRNAs were dynamically changing in accordance with the tumor development state. Moreover, their aberrant expression in serum was statistically correlated with that in tissue. Our data also revealed that serum miR-15b, miR-21, and miR-29a showed the best performance in terms of diagnostic power. Our findings highlight the efficiency of these circulating miRNAs not only for early diagnostics purposes, but also for monitoring progress in the colorectal carcinogenesis process, and therefore encouraging integrating these noninvasive biomarkers into the clinical diagnostic settings beside the traditional diagnostic markers for accurate screening of the early progress of colon carcinogenesis.  相似文献   

15.

Introduction

Breast cancer is a common disease with distinct tumor subtypes phenotypically characterized by ER and HER2/neu receptor status. MiRNAs play regulatory roles in tumor initiation and progression, and altered miRNA expression has been demonstrated in a variety of cancer states presenting the potential for exploitation as cancer biomarkers. Blood provides an excellent medium for biomarker discovery. This study investigated systemic miRNAs differentially expressed in Luminal A-like (ER+PR+HER2/neu-) breast cancer and their effectiveness as oncologic biomarkers in the clinical setting.

Methods

Blood samples were prospectively collected from patients with Luminal A-like breast cancer (n = 54) and controls (n = 56). RNA was extracted, reverse transcribed and subjected to microarray analysis (n = 10 Luminal A-like; n = 10 Control). Differentially expressed miRNAs were identified by artificial neural network (ANN) data-mining algorithms. Expression of specific miRNAs was validated by RQ-PCR (n = 44 Luminal A; n = 46 Control) and potential relationships between circulating miRNA levels and clinicopathological features of breast cancer were investigated.

Results

Microarray analysis identified 76 differentially expressed miRNAs. ANN revealed 10 miRNAs for further analysis (miR-19b, miR-29a, miR-93, miR-181a, miR-182, miR-223, miR-301a, miR-423-5p, miR-486-5 and miR-652). The biomarker potential of 4 miRNAs (miR-29a, miR-181a, miR-223 and miR-652) was confirmed by RQ-PCR, with significantly reduced expression in blood of women with Luminal A-like breast tumors compared to healthy controls (p = 0.001, 0.004, 0.009 and 0.004 respectively). Binary logistic regression confirmed that combination of 3 of these miRNAs (miR-29a, miR-181a and miR-652) could reliably differentiate between cancers and controls with an AUC of 0.80.

Conclusion

This study provides insight into the underlying molecular portrait of Luminal A-like breast cancer subtype. From an initial 76 miRNAs, 4 were validated with altered expression in the blood of women with Luminal A-like breast cancer. The expression profiles of these 3 miRNAs, in combination with mammography, has potential to facilitate accurate subtype-specific breast tumor detection.  相似文献   

16.
BackgroundChemoprevention is the best cost-effective way regarding cancers. MicroRNAs (miRNAs) have been reported to be differentially expressed during the development of lung cancer. However, if lung cancer prevention can be achieved through modulating miRNAs expression so far remains unknown.PurposeTo discover ectopically expressed miRNAs in NNK-induced lung cancer and clarify whether Licochalcone A (lico A) can prevent NNK-induced lung cancer by modulating miRNA expression.Study design and methodsA/J mice were used to construct a lung cancer model by intraperitoneal injection with physiological saline NNK (100 mg/kg). Chemopreventive effects of lico A against lung cancer at 2 mg/kg and 20 mg/kg doses were evaluated in vivo. MicroRNA array and RT-qPCR were used to assess the expression levels of miRNAs. MLE-12 cells were treated with 0.1 mg/ml NNK, stimulating the ectopic expression pattern of miR-144-3p, miR-20a-5p, miR-29c-3p, let-7d-3p, and miR-328-3p. miR-144-3p mimics and inhibitors were used to manipulate miR-144-3p levels. The effects of lico A (10 μM) on cell cycle distribution, apoptosis, and the expression of CK19, RASA1, miR-144-3p, miR-20a-5p, miR-29c-3p, let-7d-3p, and miR-328-3p in NNK-treated MLE-12 cells were studied.ResultsThe expression levels of miR-144-3p, miR-20a-5p, and miR-29c-3p increased, while those of let-7d-3p and miR-328-3p decreased in both NNK-induced A/J mice and MLE-12 cells. Lico A could reverse the NNK-induced ectopic miRNA (miR-144-3p, miR-20a-5p, miR-29c-3p, let-7d-3p, and miR-328-3p) expression both in vivo and in vitro and elicit in vivo lung cancer chemopreventive effect against NNK. In MLE-12 cells, the overexpression of miR-144-3p elicited the same effect as NNK regarding the expression of lung cancer biomarker CK19; the silencing of miR-144-3p reversed the effect of NNK on cell cycle distribution and apoptosis. Lico A could reverse the effect of NNK on the expression of miR-144-3p, CK19, and RASA1 (predicted target of miR-144-3p).ConclusionThe present study suggests that miR-144-3p, miR-20a-5p, miR-29c-3p, let-7d-3p, and miR-328-3p were involved in the in vivo pathogenesis of NNK-induced lung cancer, and lico A could reverse the effect of NNK both in vivo and in vitro to elicit lung cancer chemopreventive effects through, at least partially, these five ectopically expressed miRNAs, especially miR-144-3p.  相似文献   

17.
18.
Both miRNAs and nitric oxide (NO) play important roles in colonic inflammation and tumorigenesis. Resistance of colonic epithelial cells to apoptosis may contribute to tumor development. We hypothesized that some miRNAs could increase the resistance of colonic cancer cells to nitric oxide-induced apoptotic cell death. Here we show that NO induced apoptosis and stimulated expression of some miRNAs. Loss of p53 not only blocked NO-induced apoptosis but also dramatically inhibited the expression of NO-related miRNAs, such as miR-34, miR-203, and miR-1301. In addition, blockage of p53-dependent miRNAs significantly reduced NO-induced apoptosis. Furthermore, forced expression of these miRNAs rendered HT-29 cells, which are resistant to apoptosis with mutant p53, more sensitive to NO-induced apoptotic cell death. Most interestingly, in a colitis-associated colon cancer mouse model, the level of miRNAs dropped significantly, accompanied by downregulation of p21, which is a key target gene of p53. In human colorectal cancer samples, the expression of miR-34 significantly correlated with the level of inducible nitric oxide synthase (iNOS). We contend that increased NO production may select cells with low levels of p53-dependent miRNAs which contributes to human colonic carcinogenesis and tumor progression.  相似文献   

19.
MicroRNAs (miRNAs), a class of short non-coding RNAs that regulate the expression of mRNA targets, are important regulators of cellular senescence and aging. We questioned which miRNAs are involved in age-related degeneration of the organ of Corti (OC), the auditory sensory epithelium that transduces mechanical stimuli to electrical activity in the inner ear. Degeneration of the OC is generally accepted as the main cause of age-related hearing loss (ARHL), a progressive loss of hearing in individuals as they grow older. To determine which miRNAs are involved in the onset and progression of ARHL, miRNA gene expression in the OC of two mouse strains, C57BL/6J and CBA/J, was compared at three different ages using GeneChip miRNA microarray and was validated by real-time PCR. We showed that 111 and 71 miRNAs exhibited differential expression in the C57 and CBA mice, respectively, and that downregulated miRNAs substantially outnumbered upregulated miRNAs during aging. miRNAs that had approximately 2-fold upregulation included members of miR-29 family and miR-34 family, which are known regulators of pro-apoptotic pathways. In contrast, miRNAs that were downregulated by about 2-fold were members of the miR-181 family and miR-183 family, which are known to be important for proliferation and differentiation, respectively. The shift of miRNA expression favoring apoptosis occurred earlier than detectable hearing threshold elevation and hair cell loss. Our study suggests that changes in miRNA expression precede morphological and functional changes, and that upregulation of pro-apoptotic miRNAs and downregulation of miRNAs promoting proliferation and differentiation are both involved in age-related degeneration of the OC.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号