首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hypopigmentation is a characteristic of several diseases associated with vesicle traffic defects, like the Hermansky-Pudlak, Chediak-Higashi, and Griscelli syndromes. Hypopigmentation is also a characteristic of the zebrafish mutant vps18(hi2499A), which is affected in the gene vps18, a component of the homotypic fusion and protein sorting complex that is involved in tethering during vesicular traffic. Vps18, as part of this complex, participates in the formation of early endosomes, late endosomes, and lysosomes. Here, we show that Vps18 is also involved in the formation of melanosomes. In the zebrafish mutant vps18(hi2499A) the retroviral insertion located at exon 4 of vps18, leads to the formation of two abnormal splicing variants lacking the coding sequence for the clathrin repeat and the RING finger conserved domains. A deficiency of Vps18 in zebrafish larvae results in hepatomegaly and skin hypopigmentation. We also observed a drastic reduction in the number of melanosomes in the eye's retinal pigmented epithelium along with the accumulation of immature melanosomes. A significant reduction in the vps18(hi2499A) larvae visual system capacity was found using the optokinetic response assay. We propose that the insertional mutant vps18(hi2499A) can be used as a model for studying hypopigmentation diseases in which vesicle traffic problems exist.  相似文献   

2.
Wilbanks AM  Laporte SA  Bohn LM  Barak LS  Caron MG 《Biochemistry》2002,41(40):11981-11989
The DRY motif is a triplet amino acid sequence (aspartic acid, arginine, and tyrosine) that is highly conserved in G protein-coupled receptors (GPCRs). Recently, we have shown that a molecular determinant for nephrogenic diabetes insipidus, the vasopressin receptor with a substitution at the DRY motif arginine (V2R R137H), is a constitutively desensitized receptor that is unable to couple to G proteins due to its constitutive association with beta-arrestin [Barak, L. S. (2001) Proc. Natl. Acad. Sci. U.S.A. 98, 93-98]. Additionally, the mutant receptors are localized in endocytic vesicles, identical to wild-type receptors stimulated with agonist. In this study, we asked whether the constitutively desensitized phenotype observed in the V2R R137H represents a general paradigm that may be extended to other GPCRs. We show that arginine substitutions in the DRY motifs of the alpha(1B) adrenergic receptor (alpha(1B)-AR) and angiotensin II type 1A receptor (AT(1A)R) result in receptors that are uncoupled from G proteins, associated with beta-arrestins, and found localized in endocytic vesicles rather than at the plasma membrane in the absence of agonists. The localization of the alpha(1B)-ARs and AT(1A)Rs with arginine substitutions can be restored to the plasma membrane by either using selective antagonists or preventing the endocytosis of the beta-arrestin-receptor complexes. These results indicate that the arginine residue of the DRY motif is essential for preserving the localization of the inactive receptor complex. Furthermore, constitutive desensitization may underlie some loss-of-function receptor phenotypes and represent an unappreciated mechanism of hormonal resistance.  相似文献   

3.
目的:在化学物质乙基亚硝基脲(ENU)诱变的F1代斑马鱼中筛选学习记忆缺陷的突变体,为学习与记忆相关机制的研究提供新的模式动物。方法:通过抑制逃避反应的行为学方法筛选出斑马鱼突变体,然后利用qRT-PCR检测基因表达对突变体进行鉴定。结果:筛选到一例斑马鱼突变体fgt。该突变体在训练后24 h的长时记忆显著的低于野生型。其F2代在训练后的24 h的长时记忆中有将近一半(13/30)显著的低于野生型,而另一半则相对正常。对一个新的环境的探索后,学习记忆相关的早期即刻基因(IEGs)c-fos在将近一半突变体F2代中(13/30)的表达与野生型的对照相比明显升高,且有统计学上的显著性差异,另外一半相对正常,与行为学结果是一致的。结论:筛选获得的斑马鱼fgt突变体是一个显性长时记忆缺陷的突变体。  相似文献   

4.
Hypopigmentation is a characteristic of several diseases associated with vesicle traffic defects, like the Hermansky–Pudlak, Chediak–Higashi, and Griscelli syndromes. Hypopigmentation is also a characteristic of the zebrafish mutant vps18hi2499A, which is affected in the gene vps18, a component of the homotypic fusion and protein sorting complex that is involved in tethering during vesicular traffic. Vps18, as part of this complex, participates in the formation of early endosomes, late endosomes, and lysosomes. Here, we show that Vps18 is also involved in the formation of melanosomes. In the zebrafish mutant vps18hi2499A the retroviral insertion located at exon 4 of vps18, leads to the formation of two abnormal splicing variants lacking the coding sequence for the clathrin repeat and the RING finger conserved domains. A deficiency of Vps18 in zebrafish larvae results in hepatomegaly and skin hypopigmentation. We also observed a drastic reduction in the number of melanosomes in the eye's retinal pigmented epithelium along with the accumulation of immature melanosomes. A significant reduction in the vps18hi2499A larvae visual system capacity was found using the optokinetic response assay. We propose that the insertional mutant vps18hi2499A can be used as a model for studying hypopigmentation diseases in which vesicle traffic problems exist.  相似文献   

5.
Neuronal ceroid lipofuscinosis (NCL) is the most common childhood-onset neurodegenerative disease. NCL is inevitably fatal, and there is currently no treatment available. Children with NCL show a progressive decline in movement, vision and mental abilities, and an accumulation of autofluorescent deposits in neurons and other cell types. Late-infantile NCL is caused by mutations in the lysosomal protease tripeptidyl peptidase 1 (TPP1). TPP1 cleaves tripeptides from the N-terminus of proteins in vitro, but little is known about the physiological function of TPP1. TPP1 shows wide conservation in vertebrates but it is not found in Drosophila, Caenorhabditis elegans or Saccharomyces cerevisiae. Here, we characterize ddTpp1, a TPP1 ortholog present in the social amoeba Dictyostelium discoideum. Lysates from cells lacking ddTpp1 show a reduced but not abolished ability to cleave a TPP1 substrate, suggesting that other Dictyostelium enzymes can perform this cleavage. ddTpp1 and human TPP1 localize to the lysosome in Dictyostelium, indicating conserved function and trafficking. Cells that lack ddTpp1 show precocious multicellular development and a reduced ability to form spores during development. When cultured in autophagy-stimulating conditions, cells lacking ddTpp1 rapidly decrease in size and are less viable than wild-type cells, suggesting that one function of ddTpp1 could be to limit autophagy. Cells that lack ddTpp1 exhibit strongly impaired development in the presence of the lysosome-perturbing drug chloroquine, and this phenotype can be suppressed through a secondary mutation in the gene that we name suppressor of tpp1 A (stpA), which encodes a protein with some similarity to mammalian oxysterol-binding proteins (OSBPs). Taken together, these results suggest that targeting specific proteins could be a viable way to suppress the effects of loss of TPP1 function.KEY WORDS: Neuronal ceroid lipofuscinosis, Batten disease, TPP1, Tripeptidyl peptidase 1, Dictyostelium  相似文献   

6.
Regeneration is a complex biological process by which animals can restore the shape, structure and function of body parts lost after injury, or after experimental amputation. Only a few species of vertebrates display the capacity to regenerate body parts during adulthood. In the case of the heart, newts display a remarkable ability to regenerate large portions of myocardium after amputation, although the mechanisms underlying this process have not been addressed. Recently, it has been shown that adult zebrafish can also regenerate their hearts, thus offering new possibilities for experimentally approaching this fascinating biological phenomenon. The first insights into heart regeneration gained by studying this model organism are reviewed here.  相似文献   

7.

Background

Animal models of human diseases are essential as they allow analysis of the disease process at the cellular level and can advance therapeutics by serving as a tool for drug screening and target validation. Here we report the development of a complete genetic model of spinal muscular atrophy (SMA) in the vertebrate zebrafish to complement existing zebrafish, mouse, and invertebrate models and show its utility for testing compounds that alter SMN2 splicing.

Results

The human motoneuron disease SMA is caused by low levels, as opposed to a complete absence, of the survival motor neuron protein (SMN). To generate a true model of SMA in zebrafish, we have generated a transgenic zebrafish expressing the human SMN2 gene (hSMN2), which produces only a low amount of full-length SMN, and crossed this onto the smn -/- background. We show that human SMN2 is spliced in zebrafish as it is in humans and makes low levels of SMN protein. Moreover, we show that an antisense oligonucleotide that enhances correct hSMN2 splicing increases full-length hSMN RNA in this model. When we placed this transgene on the smn mutant background it rescued the neuromuscular presynaptic SV2 defect that occurs in smn mutants and increased their survival.

Conclusions

We have generated a transgenic fish carrying the human hSMN2 gene. This gene is spliced in fish as it is in humans and mice suggesting a conserved splicing mechanism in these vertebrates. Moreover, antisense targeting of an intronic splicing silencer site increased the amount of full length SMN generated from this transgene. Having this transgene on the smn mutant fish rescued the presynaptic defect and increased survival. This model of zebrafish SMA has all of the components of human SMA and can thus be used to understand motoneuron dysfunction in SMA, can be used as an vivo test for drugs or antisense approaches that increase full-length SMN, and can be developed for drug screening.  相似文献   

8.
9.
Neuroblastoma is a tumor arising in the peripheral sympathetic nervous system and is the most common cancer in childhood. Since most of the cellular and molecular mechanisms underlying neuroblastoma onset and progression remain unknown, the generation of new in vivo models might be appropriate to better dissect the peripheral sympathetic nervous system development in both physiological and disease states. This review is focused on the use of zebrafish as a suitable and innovative model to study neuroblastoma development. Here, we briefly summarize the current knowledge about zebrafish peripheral sympathetic nervous system formation, focusing on key genes and cellular pathways that play a crucial role in the differentiation of sympathetic neurons during embryonic development. In addition, we include examples of how genetic changes known to be associated with aggressive neuroblastoma can mimic this malignancy in zebrafish. Thus, we note the value of the zebrafish model in the field of neuroblastoma research, showing how it can improve our current knowledge about genes and biological pathways that contribute to malignant transformation and progression during embryonic life.  相似文献   

10.
Conventional drug discovery approaches require a priori selection of an appropriate molecular target, but it is often not obvious which biological pathways must be targeted to reverse a disease phenotype. Phenotype-based screens offer the potential to identify pathways and potential therapies that influence disease processes. The zebrafish mutation gridlock (grl, affecting the gene hey2) disrupts aortic blood flow in a region and physiological manner akin to aortic coarctation in humans. Here we use a whole-organism, phenotype-based, small-molecule screen to discover a class of compounds that suppress the coarctation phenotype and permit survival to adulthood. These compounds function during the specification and migration of angioblasts. They act to upregulate expression of vascular endothelial growth factor (VEGF), and the activation of the VEGF pathway is sufficient to suppress the gridlock phenotype. Thus, organism-based screens allow the discovery of small molecules that ameliorate complex dysmorphic syndromes even without targeting the affected gene directly.  相似文献   

11.
12.
Iron is a crucial metal for normal development, being required for the production of heme, which is incorporated into cytochromes and hemoglobin. The zebrafish chianti (cia) mutant manifests a hypochromic, microcytic anemia after the onset of embryonic circulation, indicative of a perturbation in red blood cell hemoglobin production. We show that cia encodes tfr1a, which is specifically expressed in the developing blood and requisite only for iron uptake in erythroid precursors. In the process of isolating zebrafish tfr1, we discovered two tfr1-like genes (tfr1a and tfr1b) and a single tfr2 ortholog. Abrogation of tfr1b function using antisense morpholinos revealed that this paralog was dispensable for hemoglobin production in red cells. tfr1b morphants exhibited growth retardation and brain necrosis, similar to the central nervous system defects observed in the Tfr1 null mouse, indicating that tfr1b is probably used by non-erythroid tissues for iron acquisition. Overexpression of mouse Tfr1, mouse Tfr2, and zebrafish tfr1b partially rescued hypochromia in cia embryos, establishing that each of these transferrin receptors are capable of supporting iron uptake for hemoglobin production in vivo. Taken together, these data show that zebrafish tfr1a and tfr1b share biochemical function but have restricted domains of tissue expression, and establish a genetic model to study the specific function of Tfr1 in erythroid cells.  相似文献   

13.
14.
Up to recently, studies on dog genetics were rather scare notwithstanding the enormous potential that the canine model can offer in the study of the genotype/phenotype relationship and the analysis of the causes of many genetic diseases, with simple or complex inheritance, that affect dogs but also the human population. This potentiality is essentially due to the natural history of dogs whose domestication from wolves dated back 15,000 years, at least. All modern dogs originated from a limited number of female wolves from Eastern Asia. By applying a combination of selections and strong inbreeding practices, humans have created over 350 breeds, each of them corresponding to a genetic isolate and altogether offering a unique panel of polymorphism never encountered in any other mammals. In this review we summarized what makes dogs an unavoidable model. Contrary to the classical models like the two yeasts, nematode, fish, fly, mouse, or rat mainly used to understand the function of genes, dog with the creation across the centuries of numerous breeds offers a unique opportunity to study the role of their alleles. We report recent data on the construction of genomic maps and on the sequencing program of the dog genome launched by the National Institute of Health (NIH). To take fully advantage of the canine model, we advocate for the systematic construction of a rich canine single nucleotide polymorphisms (SNP) ressource to perform linkage desiquilibrium studies of normal or pathological traits as well as to get insight into the genetic diversity of the canine species.  相似文献   

15.
16.
Despite efforts to generate new vaccines and antibiotics for tuberculosis, the disease remains a public health problem worldwide. The zebrafish Danio rerio has emerged as a useful model to investigate mycobacterial pathogenesis and treatment. Infection of zebrafish with Mycobacterium marinum, the closest relative of the Mycobacterium tuberculosis complex, recapitulates many aspects of human tuberculosis. The zebrafish model affords optical transparency, abundant genetic tools and in vivo imaging of the progression of infection. Here, we review how the zebrafish–M. marinum system has been deployed to make novel observations about the role of innate immunity, the tuberculous granuloma, and crucial host and bacterial genes. Finally, we assess how these findings relate to human disease and provide a framework for novel strategies to treat tuberculosis.KEY WORDS: Disease models, Genetics, Mycobacterium, Pathogenesis, Tuberculosis, Zebrafish  相似文献   

17.
Ma N  Huang Z  Chen X  He F  Wang K  Liu W  Zhao L  Xu X  Liao W  Ruan H  Luo S  Zhang W 《PloS one》2011,6(11):e27540
Hematopoiesis is a complicated and dynamic process about which the molecular mechanisms remain poorly understood. Danio rerio (zebrafish) is an excellent vertebrate system for studying hematopoiesis and developmental mechanisms. In the previous study, we isolated and identified a cloche(172) (clo(172)) mutant, a novel allele compared to the original cloche (clo) mutant, through using complementation test and initial mapping. Here, according to whole mount in-situ hybridization, we report that the endothelial cells in clo(172) mutant embryos, although initially developed, failed to form the functional vascular system eventually. In addition, further characterization indicates that the clo(172) mutant exhibited weaker defects instead of completely lost in primitive erythroid cells and definitive hematopoietic cells compared with the clo(s5) mutant. In contrast, primitive myeloid cells were totally lost in clo(172) mutant. Furthermore, these reappeared definitive myeloid cells were demonstrated to initiate from the remaining hematopoietic stem cells (HSCs) in clo(172) mutant, confirmed by the dramatic decrease of lyc in clo(172)runx1(w84x) double mutant. Collectively, the clo(172) mutant is a weak allele compared to the clo(s5) mutant, therefore providing a model for studying the early development of hematopoietic and vascular system, as well as an opportunity to further understand the function of the cloche gene.  相似文献   

18.
19.
Apoptosis plays important roles in embryogenesis, tissue homeostasis, and immune system regulation. The zebrafish (Danio rerio) is a powerful vertebrate model organism that has been extensively used to study apoptotic cell death during normal development and under conditions of cellular stress. In the past 5 years, a detailed picture has begun to emerge of the molecular underpinnings of the cell-intrinsic and the cell-extrinsic apoptosis signaling pathways in zebrafish. We begin this review with an introduction to the techniques and experimental approaches that are used to study apoptosis in zebrafish. We follow with a general overview of developmental apoptosis during zebrafish embryogenesis. Finally, we present a comprehensive review of the intrinsic and extrinsic apoptosis pathways in zebrafish, focusing on the high degree of conservation with humans and other mammals. Recent publications that draw upon the unique advantages of the zebrafish system to study novel aspects of apoptosis regulation and function are highlighted throughout.  相似文献   

20.
张勇  陈芳源  邓敏 《遗传》2009,31(9):889-895
斑马鱼已经成为当今人类遗传学和血液学研究的重要模式生物之一。文章介绍了斑马鱼造血系统的基本生物学特征, 并重点阐述了斑马鱼在血液肿瘤学领域的应用和研究概况, 显示了斑马鱼在血液肿瘤学的基础和临床研究方面均有着独特的应用前景, 文章对此进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号