首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rapid conversion of Southeast Asian lowland rainforests into monocultures calls for the development of rapid methods for species identification to support ecological research and sustainable land‐use management. Here, we investigated the utilization of DNA barcodes for identifying flowering plants from Sumatra, Indonesia. A total of 1,207 matK barcodes (441 species) and 2,376 rbcL barcodes (750 species) were successfully generated. The barcode effectiveness is assessed using four approaches: (a) comparison between morphological and molecular identification results, (b) best‐close match analysis with TaxonDNA, (c) barcoding gap analysis, and (d) formation of monophyletic groups. Results show that rbcL has a much higher level of sequence recoverability than matK (95% and 66%). The comparison between morphological and molecular identifications revealed that matK and rbcL worked best assigning a plant specimen to the genus level. Estimates of identification success using best‐close match analysis showed that >70% of the investigated species were correctly identified when using single barcode. The use of two‐loci barcodes was able to increase the identification success up to 80%. The barcoding gap analysis revealed that neither matK nor rbcL succeeded to create a clear gap between the intraspecific and interspecific divergences. However, these two barcodes were able to discriminate at least 70% of the species from each other. Fifteen genera and twenty‐one species were found to be nonmonophyletic with both markers. The two‐loci barcodes were sufficient to reconstruct evolutionary relationships among the plant taxa in the study area that are congruent with the broadly accepted APG III phylogeny.  相似文献   

2.
Abstract Four DNA barcoding loci, chloroplast loci rbcL, matK, trnH‐psbA, and nuclear locus internal transcribed spacer (ITS), were tested for the accurate discrimination of the Chinese species of Gaultheria by using intraspecific and interspecific pairwise P‐distance, Wilcoxon signed rank test, and tree‐based analyses. This study included 186 individuals from 89 populations representing 30 species. For all individuals, single locus markers showed high levels of sequencing universality but were ineffective for species resolvability. Polymerase chain reaction amplification and sequencing were successful for all four loci. Both ITS and matK showed significantly higher levels of interspecific species delimitation than rbcL and trnH‐psbA. A combination of matK and ITS was the most efficient DNA barcode among all studied regions, however, they do not represent an appropriate candidate barcode for Chinese Gaultheria, by which only 11 out of 30 species can be separated. Loci rbcL, matK, and trnH‐psbA, which were recently proposed as universal plant barcodes, have a very poor capacity for species separation for Chinese Gaultheria. DNA barcodes may be reliable tools to identify the evolutionary units of this group, so further studies are needed to develop more efficient DNA barcodes for Gaultheria and other genera with complicated evolutionary histories.  相似文献   

3.
Although DNA barcoding has been widely used to identify plant species composition in temperate and tropical ecosystems, relatively few studies have used DNA barcodes to document both herbaceous and woody components of forest plot. A total of 201 species (72 woody species and 129 herbaceous species) representing 135 genera distributed across 64 families of seed plants were collected in a 25 ha CForBio subalpine forest dynamics plot. In total, 491 specimens were screened for three DNA regions of the chloroplast genome (rbcL, matK, and trnHpsbA) as well as the internal transcribed spacers (ITS) of nuclear ribosomal DNA. We quantified species resolution for each barcode separately or in combination using a ML tree‐based method. Amplification and sequencing success were highest for rbcL, followed by trnH‐psbA, which performed better than ITS and matK. The rbcL + ITS barcode had slightly higher species resolution rates (88.60%) compared with rbcL + matK (86.60%) and rbcL + trnH‐psbA (86.01%). The addition of trnH‐psbA or ITS to the rbcL + matK barcode only marginally increased species resolution rates, although in combination the four barcodes had the highest discriminatory power (90.21%). The situations where DNA barcodes did not discriminate among species were typically associated with higher numbers of co‐occurring con‐generic species. In addition, herbaceous species were much better resolved than woody species. Our study represents one of the first applications of DNA barcodes in a subalpine forest dynamics plot and contributes to our understanding of patterns of genetic divergence among woody and herbaceous plant species.  相似文献   

4.
DNA barcoding is a well-established tool for rapid species identification and biodiversity monitoring. A reliable and traceable DNA barcode reference library with extensive coverage is necessary but unavailable for many geographical regions. The arid region in northwestern China, a vast area of about 2.5 million km2, is ecologically fragile and often overlooked in biodiversity studies. In particular, DNA barcode data from the arid region in China are lacking. We develop and evaluate the efficacy of an extensive DNA barcode library for native flowering plants in the arid region of northwestern China. Plant specimens were collected, identified and vouchered for this purpose. The database utilized four DNA barcode markers, namely rbcL, matK, ITS and ITS2, for 1816 accessions (representing 890 species from 385 genera and 72 families), and consisted of 5196 barcode sequences. Individual barcodes varied in resolution rates: species- and genus-level rates for rbcL, matK, ITS and ITS2 were 79.9%–51.1%/76.1%, 79.9%–67.2%/88.9%, 85.0%–72.0%/88.2% and 81.0%–67.4%/84.9%, respectively. The three-barcode combination of rbcL + matK + ITS (RMI) revealed a higher species- and genus-level resolution (75.5%/92.1%, respectively). A total of 110 plastomes were newly generated as super-barcodes to increase species resolution for seven species-rich genera, namely Astragalus, Caragana, Lactuca, Lappula, Lepidium, Silene and Zygophyllum. Plastomes revealed higher species resolution compared to standard DNA barcodes and their combination. We suggest future databases include super-barcodes, especially for species-rich and complex genera. The plant DNA barcode library in the current study provides a valuable resource for future biological investigations in the arid regions of China.  相似文献   

5.
Abstract One application of DNA barcoding is species identification based on sequences of a short and standardized DNA region. In plants, various DNA regions, alone or in combination, have been proposed and investigated, but consensus on a universal plant barcode remains elusive. In this study, we tested the utility of four candidate barcoding regions (rbcL, matK, trnHpsbA, and internal transcribed spacer (ITS)) as DNA barcodes for discriminating species in a large and hemiparasitic genus Pedicularis (Orobanchaceae). Amplification and sequencing was successful using single primer pairs for rbcL, trnH‐psbA, and ITS, whereas two primer pairs were required for matK. Patterns of sequence divergence commonly showed a “barcoding gap”, that is, a bimodal frequency distribution of pairwise distances representing genetic diversity within and between species, respectively. Considering primer universality, ease of amplification and sequencing, and performance in discriminating species, we found the most effective single‐region barcode for Pedicularis to be ITS, and the most effective two‐region barcode to be rbcL + ITS. Both discriminated at least 78% of the 88 species and correctly identified at least 89% of the sequences in our sample, and were effective in placing unidentified samples in known species groups. Our results suggest that DNA barcoding has the potential to aid taxonomic research in Pedicularis, a species‐rich cosmopolitan clade much in need of revision, as well as ecological studies in its center of diversity, the Hengduan Mountains region of China.  相似文献   

6.
Previous research on barcoding sedges (Carex) suggested that basic searches within a global barcoding database would probably not resolve more than 60% of the world’s some 2000 species. In this study, we take an alternative approach and explore the performance of plant DNA barcoding in the Carex lineage from an explicitly regional perspective. We characterize the utility of a subset of the proposed protein-coding and noncoding plastid barcoding regions (matK, rpoB, rpoC1, rbcL, atpF-atpH, psbK-psbI) for distinguishing species of Carex and Kobresia in the Canadian Arctic Archipelago, a clearly defined eco-geographical region representing 1% of the Earth’s landmass. Our results show that matK resolves the greatest number of species of any single-locus (95%), and when combined in a two-locus barcode, it provides 100% species resolution in all but one combination (matK + atpFH) during unweighted pair-group method with arithmetic mean averages (UPGMA) analyses. Noncoding regions were equally or more variable than matK, but as single markers they resolve substantially fewer taxa than matK alone. When difficulties with sequencing and alignment due to microstructural variation in noncoding regions are also considered, our results support other studies in suggesting that protein-coding regions are more practical as barcoding markers. Plastid DNA barcodes are an effective identification tool for species of Carex and Kobresia in the Canadian Arctic Archipelago, a region where the number of co-existing closely related species is limited. We suggest that if a regional approach to plant DNA barcoding was applied on a global scale, it could provide a solution to the generally poor species resolution seen in previous barcoding studies.  相似文献   

7.
The genus Curcuma L. is commonly used as spices, medicines, dyes and ornamentals. Owing to its economic significance and lack of clear‐cut morphological differences between species, this genus is an ideal case for developing DNA barcodes. In this study, four chloroplast DNA regions (matK, rbcL, trnH‐psbA and trnL‐F) and one nuclear region (ITS2) were generated for 44 Curcuma species and five species from closely related genera, represented by 96 samples. PCR amplification success rate, intra‐ and inter‐specific genetic distance variation and the correct identification percentage were taken into account to assess candidate barcode regions. PCR and sequence success rate were high in matK (89.7%), rbcL (100%), trnH‐psbA (100%), trnL‐F (95.7%) and ITS2 (82.6%) regions. The results further showed that four candidate chloroplast barcoding regions (matK, rbcL, trnH‐psbA and trnL‐F) yield no barcode gaps, indicating that the genus Curcuma represents a challenging group for DNA barcoding. The ITS2 region presented large interspecific variation and provided the highest correct identification rates (46.7%) based on BLASTClust method among the five regions. However, the ITS2 only provided 7.9% based on NJ tree method. An increase in discriminatory power needs the development of more variable markers.  相似文献   

8.
DNA barcoding has been proposed to be one of the most promising tools for accurate and rapid identification of taxa. However, few publications have evaluated the efficiency of DNA barcoding for the large genera of flowering plants. Dendrobium, one of the largest genera of flowering plants, contains many species that are important in horticulture, medicine and biodiversity conservation. Besides, Dendrobium is a notoriously difficult group to identify. DNA barcoding was expected to be a supplementary means for species identification, conservation and future studies in Dendrobium. We assessed the power of 11 candidate barcodes on the basis of 1,698 accessions of 184 Dendrobium species obtained primarily from mainland Asia. Our results indicated that five single barcodes, i.e., ITS, ITS2, matK, rbcL and trnH-psbA, can be easily amplified and sequenced with the currently established primers. Four barcodes, ITS, ITS2, ITS+matK, and ITS2+matK, have distinct barcoding gaps. ITS+matK was the optimal barcode based on all evaluation methods. Furthermore, the efficiency of ITS+matK was verified in four other large genera including Ficus, Lysimachia, Paphiopedilum, and Pedicularis in this study. Therefore, we tentatively recommend the combination of ITS+matK as a core DNA barcode for large flowering plant genera.  相似文献   

9.

Background

The plant working group of the Consortium for the Barcode of Life recommended the two-locus combination of rbcL + matK as the plant barcode, yet the combination was shown to successfully discriminate among 907 samples from 550 species at the species level with a probability of 72%. The group admits that the two-locus barcode is far from perfect due to the low identification rate, and the search is not over.

Methodology/Principal Findings

Here, we compared seven candidate DNA barcodes (psbA-trnH, matK, rbcL, rpoC1, ycf5, ITS2, and ITS) from medicinal plant species. Our ranking criteria included PCR amplification efficiency, differential intra- and inter-specific divergences, and the DNA barcoding gap. Our data suggest that the second internal transcribed spacer (ITS2) of nuclear ribosomal DNA represents the most suitable region for DNA barcoding applications. Furthermore, we tested the discrimination ability of ITS2 in more than 6600 plant samples belonging to 4800 species from 753 distinct genera and found that the rate of successful identification with the ITS2 was 92.7% at the species level.

Conclusions

The ITS2 region can be potentially used as a standard DNA barcode to identify medicinal plants and their closely related species. We also propose that ITS2 can serve as a novel universal barcode for the identification of a broader range of plant taxa.  相似文献   

10.
In plants, matK and rbcL have been selected as core barcodes by the Consortium for the Barcode of Life (CBOL) Plant Working Group (PWG), and ITS/ITS2 and psbA‐trnH were suggested as supplementary loci. Yet, research on DNA barcoding of non‐flowering seed plants has been less extensive, and the evaluation of DNA barcodes in this division has been limited thus far. Here, we evaluated seven markers (psbA‐trnH, matK, rbcL, rpoB, rpoC1, ITS and ITS2) from non‐flowering seed plants. The usefulness of each region was assessed using four criteria: the success rate of PCR amplification, the differential intra‐ and inter‐specific divergences, the DNA barcoding gap and the ability to discriminate species. Among the seven loci tested, ITS2 produced the best results in the barcoding of non‐flowering seed plants. In addition, we compared the abilities of the five most‐recommended markers (psbA‐trnH, matK, rbcL, ITS and ITS2) to identify additional species using a large database of gymnosperms from GenBank. ITS2 remained effective for species identification in a wide range of non‐flowering seed plants: for the 1531 samples from 608 species of 80 diverse genera, ITS2 correctly authenticated 66% of them at the species level. In conclusion, the ITS2 region can serve as a useful barcode to discriminate non‐flowering seed plants, and this study will contribute valuable information for the barcoding of plant species.  相似文献   

11.
DNA barcoding constitutes a fundamental tool for species identification, especially for highly diverse geographic regions. Here, we characterize and evaluate the plant core barcoding regions matK and rbcL to identify the 25 conifer species from the state of Hidalgo, Mexico, including 10 species in various threat categories. Sequence quality, linguistic complexity, and the presence of the barcode gap were estimated. Two methods were compared for successful species identification: BRONX (Barcode Recognition Obtained with Nucleotide eXposés) and the least inclusive clade. We generated 77 sequences for matK and 88 for rbcL. The matK region had higher haplotype diversity and nucleotide diversity (Π), including six indels. The analysis of 77 specimens with complete sequences (matK + rbcL) resulted in 21 nonspecies-specific unique haplotypes for the 25 conifer species. Higher sequence quality and linguistic complexity were observed in rbcL than in matK. Every diagnosable species had a barcode gap. Ninety-seven specimens were assigned unambiguously to family and genus, regardless of the marker or method employed. The analysis of matK with BRONX produced the highest species level identification success (44%). Despite the low specimen identification success at the specific level, it will be possible to establish local management, conservation, and monitoring projects for at least half of the threatened species even when specimens do not exhibit diagnostic morphological characters. The low divergence between closely related species may result from the slow rate of molecular evolution of the core barcoding markers or from hybridization or incomplete lineage sorting. Similar identification success is expected for groups with comparable life history traits under similar conditions as this study. A reduction in the geographic area will not necessarily translate into higher identification success, especially for high-diversity regions and centres of diversification.  相似文献   

12.
Apiaceae (Umbelliferae) is a large angiosperm family that includes many medicinally important species. The ability to identify these species and their adulterants is important, yet difficult to do so because of their subtle fruit morphological differences and often lack of diagnostic features in preserved specimens. Moreover, dried roots are often the official medical organs, making visual identification to species almost impossible. DNA barcoding has been proposed as a powerful taxonomic tool for species identification. The Consortium for the Barcode of Life (CBOL) Plant Working Group has recommended the combination of rbcL+matK as the core plant barcode. Recently, the China Plant BOL Group proposed that the nuclear ribosomal DNA internal transcribed spacer (ITS), as well as a subset of this marker (ITS2), be incorporated alongside rbcL+matK into the core barcode for seed plants, particularly angiosperms. In this study, we assess the effectiveness of these four markers plus psbA‐trnH as Apiaceae barcodes. A total of 6032 sequences representing 1957 species in 385 diverse genera were sampled, of which 211 sequences from 50 individuals (representing seven species) were newly obtained. Of these five markers, ITS and ITS2 showed superior results in intra‐ and interspecific divergence and DNA barcoding gap assessments. For the matched data set (173 samples representing 45 species in five genera), the ITS locus had the highest identification efficiency (73.3%), yet ITS2 also performed relatively well with 66.7% identification efficiency. The identification efficiency increased to 82.2% when using an ITS+psbA‐trnH marker combination (ITS2+psbA‐trnH was 80%), which was significantly higher than that of rbcL+matK (40%). For the full sample data set (3052 ITS sequences, 3732 ITS2 sequences, 1011 psbA‐trnH sequences, 567 matK sequences and 566 rbcL sequences), ITS, ITS2, psbA‐trnH, matK and rbcL had 70.0%, 64.3%, 49.5%, 38.6% and 32.1% discrimination abilities, respectively. These results confirm that ITS or its subset ITS2 be incorporated into the core barcode for Apiaceae and that the combination of ITS/ITS2+psbA‐trnH has much potential value as a powerful, standard DNA barcode for Apiaceae identification.  相似文献   

13.
Species of Orchidaceae are under severe threat of extinction mainly due to overcollection and habitat destruction; accurate identification of orchid species is critical in conservation biology and sustainable utilization of orchids as plant resources. We examined 647 sequences of the cpDNA regions rbcL, matK, atpFatpH IGS, psbKpsbI IGS and trnHpsbA IGS from 89 orchid species (95 taxa) and four outgroup taxa to develop an efficient DNA barcode for Orchidaceae in Korea. The five cpDNA barcode regions were successfully amplified and sequenced for all chlorophyllous taxa, but the amplification and sequencing of the same regions in achlorophyllous taxa produced variable results. psbKpsbI IGS showed the highest mean interspecific K2P distance (0.1192), followed by matK (0.0803), atpFatpH IGS (0.0648), trnHpsbA IGS (0.0460) and rbcL (0.0248). The degree of species resolution for individual barcode regions ranged from 60.5% (rbcL) to 83.5% (trnH‐psbA IGS). The degree of species resolution was significantly enhanced in multiregion combinations of the five barcode regions. Of the 26 possible combinations of the five regions, six provided the highest degree of species resolution (98.8%). Among these, a combination of atpF‐atpH IGS, psbK‐psbI IGS and trnH‐psbA IGS, which comprises the least number of DNA regions, is the best option for barcoding of the Korean orchid species.  相似文献   

14.
We present the findings of a DNA barcoding study of the UK tree flora, implemented as part of an innovative, research‐based science education programme called ‘Tree School’. The UK tree flora comprises native and introduced species, and is a taxonomically diverse study group for the exploration of the potential and limitations of DNA barcoding. The children participating in the project collected voucher specimens and generated DNA barcode sequences from trees and shrubs found in the grounds and surrounding woodlands of a residential field centre in Dorset, UK. We assessed the potential of rbcL and matK markers for amplification and DNA sequencing success and for species discrimination among the 67 tree and shrub species included in this study. Although we achieved 100% PCR amplification and sequencing success for rbcL and matK, mononucleotide repeats affected sequence quality in matK for some taxonomic groups (e.g. Rosaceae). Species discrimination success ranged from 65% to 71% using tree‐based methods to 86% using BLASTN. The occurrence of known hybrids (diploid and polyploid) and their progenitors on the study site reduced the overall species discrimination success for both loci. This study demonstrates that, even in a floristic context, rbcL and matK alone are insufficient for the discrimination of UK tree species, especially where taxonomically complex groups are present. From a science education perspective, DNA barcoding represents a compelling and accessible platform for the engagement of non‐experts in ongoing research, providing an opportunity for them to contribute authentic scientific data to an international research campaign.  相似文献   

15.
Many species of Schisandraceae are used in traditional Chinese medicine and are faced with contamination and substitution risks due to inaccurate identification. Here, we investigated the discriminatory power of four commonly used DNA barcoding loci (ITS, trnH-psbA, matK, and rbcL) and corresponding multi-locus combinations for 135 individuals from 33 species of Schisandraceae, using distance-, tree-, similarity-, and character-based methods, at both the family level and the genus level. Our results showed that the two spacer regions (ITS and trnH-psbA) possess higher species-resolving power than the two coding regions (matK and rbcL). The degree of species resolution increased with most of the multi-locus combinations. Furthermore, our results implied that the best DNA barcode for the species discrimination at the family level might not always be the most suitable one at the genus level. Here we propose the combination of ITS+trnH-psbA+matK+rbcL as the most ideal DNA barcode for discriminating the medicinal plants of Schisandra and Kadsura, and the combination of ITS+trnH-psbA as the most suitable barcode for Illicium species. In addition, the closely related species Schisandra rubriflora Rehder & E. H. Wilson and Schisandra grandiflora Hook.f. & Thomson, were paraphyletic with each other on phylogenetic trees, suggesting that they should not be distinct species. Furthermore, the samples of these two species from the southern Hengduan Mountains region formed a distinct cluster that was separated from the samples of other regions, implying the presence of cryptic diversity. The feasibility of DNA barcodes for identification of geographical authenticity was also verified here. The database and paradigm that we provide in this study could be used as reference for the authentication of traditional Chinese medicinal plants utilizing DNA barcoding.  相似文献   

16.
DNA barcoding coupled high resolution melting (Bar-HRM) is an emerging method for species discrimination based on DNA dissociation kinetics. The aim of this work was to evaluate the suitability of different primer sets, derived from selected DNA regions, for Bar-HRM analysis of species in Croton (Euphorbiaceae), one of the largest genera of plants with over 1,200 species. Seven primer pairs were evaluated (matK, rbcL1, rbcL2, rbcL3, rpoC, trnL and ITS1) from four plastid regions, matK, rbcL, rpoC, and trnL, and the nuclear ribosomal marker ITS1. The primer pair derived from the ITS1 region was the single most effective region for the identification of the tested species, whereas the rbcL1 primer pair gave the lowest resolution. It was observed that the ITS1 barcode was the most useful DNA barcoding region overall for species discrimination out of all of the regions and primers assessed. Our Bar-HRM results here also provide further support for the hypothesis that both sequence and base composition affect DNA duplex stability.  相似文献   

17.
We use a comprehensive subset of Canarian angiosperms corresponding to 23 families, 35 genera and 60 Canarian endemic taxa to test whether this flora is suitable to taxonomic identification with the two proposed plant DNA barcode sequences and whether these sequences may reveal the existence of cryptic species overlooked by morphology. The rate of discrimination success between the insular congeneric samples using the rbcL+matK combination and a ‘character‐based’ approach (where we use only the combination of nucleotide positions in an alignment that allows unambiguous species identification) is higher (82.29%) than that obtained with the ‘distance‐based’ approach (80.20%) used by the CBOL Plant Working Group in 2009 and also when compared with tests conducted in other floras. This suggests that the molecular identification of the Canarian endemic flora can be achieved as successfully as in other floras where the incidence of radiation is not as relevant. The facts that (i) a distance‐based criterion was unable to discriminate between congeneric and conspecific comparisons and (ii) only the character‐based discrimination criterion resolved cases that the distance‐based criterion did not, further support the use of a character discrimination approach for a more efficient DNA barcoding of floras from oceanic islands like the Canaries. Thus, a barcoding gap seems not to be necessary for the correct molecular characterization of the Canarian flora. DNA barcodes also suggest the possible existence of cryptic taxa to be further investigated by morphology and that the current taxonomic status of some of the taxa analysed may need revision.  相似文献   

18.
Although two plastid regions have been adopted as the standard markers for plant DNA barcoding, their limited resolution has provoked the consideration of other gene regions, especially in taxonomically diverse genera. The genus Gossypium (cotton) includes eight diploid genome groups (A–G, and K) and five allotetraploid species which are difficult to discriminate morphologically. In this study, we tested the effectiveness of three widely used markers (matK, rbcL, and ITS2) in the discrimination of 20 diploid and five tetraploid species of cotton. Sequences were analysed locus‐wise and in combinations to determine the most effective strategy for species identification. Sequence recovery was high, ranging from 92% to 100% with mean pairwise interspecific distance highest for ITS2 (3.68%) and lowest for rbcL (0.43%). At a 0.5% threshold, the combination of matK+ITS2 produced the greatest number of species clusters. Based on ‘best match’ analysis, the combination of matK+ITS2 was best, while based on ‘all species barcodes’ analysis, ITS2 gave the highest percentage of correct species identifications (98.93%). The combination of sequences for all three markers produced the best resolved tree. The disparity index test based on matK+rbcL+ITS2 was significant (< 0.05) for a higher number of species pairs than the individual gene sequences. Although all three barcodes separated the species with respect to their genome type, no single combination of barcodes could differentiate all the Gossypium species, and tetraploid species were particularly difficult.  相似文献   

19.
DNA barcoding, the identification of species using one or a few short standardized DNA sequences, is an important complement to traditional taxonomy. However, there are particular challenges for barcoding plants, especially for species with complex evolutionary histories. We herein evaluated the utility of five candidate sequences — rbcL, matK, trnH-psbA, trnL-F and the internal transcribed spacer (ITS) — for barcoding Rhodiola species, a group of high-altitude plants frequently used as adaptogens, hemostatics and tonics in traditional Tibetan medicine. Rhodiola was suggested to have diversified rapidly recently. The genus is thus a good model for testing DNA barcoding strategies for recently diversified medicinal plants. This study analyzed 189 accessions, representing 47 of the 55 recognized Rhodiola species in the Flora of China treatment. Based on intraspecific and interspecific divergence and degree of monophyly statistics, ITS was the best single-locus barcode, resolving 66% of the Rhodiola species. The core combination rbcL+matK resolved only 40.4% of them. Unsurprisingly, the combined use of all five loci provided the highest discrimination power, resolving 80.9% of the species. However, this is weaker than the discrimination power generally reported in barcoding studies of other plant taxa. The observed complications may be due to the recent diversification, incomplete lineage sorting and reticulate evolution of the genus. These processes are common features of numerous plant groups in the high-altitude regions of the Qinghai-Tibetan Plateau.  相似文献   

20.
The islands of the Caribbean are considered to be a “biodiversity hotspot.” Collectively, a high level of endemism for several plant groups has been reported for this region. Biodiversity conservation should, in part, be informed by taxonomy, population status, and distribution of flora. One taxonomic impediment to species inventory and management is correct identification as conventional morphology‐based assessment is subject to several caveats. DNA barcoding can be a useful tool to quickly and accurately identify species and has the potential to prompt the discovery of new species. In this study, the ability of DNA barcoding to confirm the identities of 14 endangered endemic vascular plant species in Trinidad was assessed using three DNA barcodes (matK, rbcL, and rpoC1). Herbarium identifications were previously made for all species under study. matK, rbcL, and rpoC1 markers were successful in amplifying target regions for seven of the 14 species. rpoC1 sequences required extensive editing and were unusable. rbcL primers resulted in cleanest reads, however, matK appeared to be superior to rbcL based on a number of parameters assessed including level of DNA polymorphism in the sequences, genetic distance, reference library coverage based on BLASTN statistics, direct sequence comparisons within “best match” and “best close match” criteria, and finally, degree of clustering with moderate to strong bootstrap support (>60%) in neighbor‐joining tree‐based comparisons. The performance of both markers seemed to be species‐specific based on the parameters examined. Overall, the Trinidad sequences were accurately identified to the genus level for all endemic plant species successfully amplified and sequenced using both matK and rbcL markers. DNA barcoding can contribute to taxonomic and biodiversity research and will complement efforts to select taxa for various molecular ecology and population genetics studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号