共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
N. Neves J. S. Heslop-Harrison W. Viegas 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1995,91(3):529-533
Ribosomal RNA genes originating from one parent are often suppressed in interspecific hybrids. We show that treatments during germination with the cytosine analogue 5-azacytidine stably reactivate the expression of the suppressed rRNA genes of rye origin in the wheat x rye amphiploid, triticale, by preventing methylation of sites in the rye rDNA. When 5-azacytidine is applied to embryos of triticale and wheat x rye F1 hybrids nine, or more, days after fertilization, rye rRNA gene expression is stably reactivated in the resulting seedling. Earlier treatments have no effect on rye rRNA gene expression, indicating that undermethylation of DNA early in embryo development is reversible. After 9 days, the methylation status of rRNA genes in maintained throughout development. Since the change in expression follows a methylation change at particular restriction-enzyme sites, the data establish a clear correlation between gene activity and methylation in plants. 相似文献
4.
5.
6.
7.
8.
Andrea Jurisicova Keith E. Latham Robert F. Casper Susannah L. Varmuza 《Molecular reproduction and development》1998,51(3):243-253
The newly fertilized preimplantation embryo depends entirely on maternal mRNAs and proteins deposited and stored in the oocyte prior to its ovulation. If the oocyte is not sufficiently equipped with maternally stored products, or if zygotic gene expression does not commence at the correct time, the embryo will die. One of the major abnormalities observed during early development is cellular fragmentation. We showed previously that cellular fragmentation in human embryos can be attributed to programmed cell death (PCD). Here, we demonstrate that the PCD that occurs during the 1-cell stage of mouse embryogenesis is likely to be regulated by many cell death genes either maternally inherited or transcribed from the embryonic genome. We have demonstrated for the first time the temporal expression patterns of nine cell death regulatory genes, and our preliminary experiments show that the expression of these genes is altered in embryos undergoing fragmentation. The expression of genes involved in cell death (MA-3, p53, Bad, and Bcl-xS) seems to be elevated, whereas the expression of genes involved in cell survival (Bcl-2) is reduced. We propose that PCD may occur by default in embryos that fail to execute essential developmental events during the first cell cycle. Mol. Reprod. Dev. 51:243–253, 1998. © 1998 Wiley-Liss, Inc. 相似文献
9.
Disruption of imprinting and aberrant embryo development in completely inbred embryonic stem cell-derived mice 总被引:3,自引:0,他引:3
Deng T Kuang Y Zhang D Wang L Sun R Xu G Wang Z Fei J 《Development, growth & differentiation》2007,49(7):603-610
The completely embryonic stem (ES) cell-derived mice (ES mice) produced by tetraploid embryo complementation provide us with a rapid and powerful approach for functional genome analysis. However, inbred ES cell lines often fail to generate ES mice. The genome of mouse ES cells is extremely unstable during in vitro culture and passage, and the expression of the imprinted genes is most likely to be affected. Whether the ES mice retain or repair the abnormalities of the donor ES cells has still to be determined. Here we report that the inbred ES mice were efficiently produced with the inbred ES cell line (SCR012). The ES fetuses grew more slowly before day 17.5 after mating, but had an excessive growth from day 17.5 to birth. Five imprinted genes examined (H19, Igf2, Igf2r, Peg1, Peg3) were expressed abnormally in ES fetuses. Most remarkably, the expression of H19 was dramatically repressed in the ES fetuses through the embryo developmental stage, and this repression was associated with abnormal biallelic methylation of the H19 upstream region. The altered methylation pattern of H19 was further demonstrated to have arisen in the donor ES cells and persisted on in vivo differentiation to the fetal stage. These results indicate that the ES fetuses did retain the epigenetic alterations in imprinted genes from the donor ES cells. 相似文献
10.
We are using DNA microarray-based gene expression profiling to classify temporal patterns of gene expression during the development
of maize embryos, to understand mRNA-level control of embryogenesis and to dissect metabolic pathways and their interactions
in the maize embryo. Genes involved in carbohydrate, fatty acid, and amino acid metabolism, the tricarboxylic acid (TCA) cycle,
glycolysis, the pentose phosphate pathway, embryogenesis, membrane transport, signal transduction, cofactor biosynthesis,
photosynthesis, oxidative phosphorylation and electron transfer, as well as 600 random complementary DNA (cDNA) clones from
maize embryos, were arrayed on glass slides. DNA arrays were hybridized with fluorescent dye-labeled cDNA probes synthesized
from kernel and embryo poly(A)+RNA from different stages of maize seed development. Several characteristic developmental patterns of expression were identified
and correlated with gene function. Patterns of coordinated gene expression in the TCA cycle and glycolysis were analyzed in
detail. The steady state level of poly(A)+ RNA for many genes varies dramatically during maize embryo development. Expression patterns of genes coding for enzymes of
fatty acid biosynthesis and glycolysis are coordinately regulated during development. Genes of unknown function may by assigned
a hypothetical role based on their patterns of expression resembling well characterized genes. Electronic supplementary material
to this paper can be obtained by using the Springer LINK server located at http://dx.doi.org/10.1007/s10142-002-0046-6.
Electronic Publication 相似文献
11.
12.
Dynamic epigenetic regulation is critical for proper oogenesis and early embryo development. During oogenesis, fully grown germinal vesicle oocytes develop to mature Metaphase II oocytes which are ready for fertilization. Fertilized oocyte proliferates mitotically until blastocyst formation and the process is called early embryo development. Throughout oogenesis and early embryo development, spatio-temporal gene expression takes place, and this dynamic gene expression is controlled with the aid of epigenetics. Epigenetic means that gene expression can be altered without changing DNA itself. Epigenome is regulated through DNA methylation and histone modifications. While DNA methylation generally ends up with repression of gene expression, histone modifications can result in expression or repression depending on type of modification, type of histone protein and its specific residue. One of the modifications is histone acetylation which generally ends up with gene expression. Histone acetylation occurs through the addition of acetyl group onto amino terminal of the core histone proteins by histone acetyltransferases (HATs). Contrarily, histone deacetylation is associated with repression of gene expression, and it is catalyzed by histone deacetylases (HDACs). This review article focuses on what is known about alterations in the expression of HATs and HDACs and emphasizes importance of HATs and HDACs during oogenesis and early embryo development. 相似文献
13.
14.
15.
Embryos aggregation improves development and imprinting gene expression in mouse parthenogenesis 下载免费PDF全文
Guang‐Yu Bai Si‐Hang Song Zhen‐Dong Wang Zhi‐Yan Shan Rui‐Zhen Sun Chun‐Jia Liu Yan‐Shuang Wu Tong Li Lei Lei 《Development, growth & differentiation》2016,58(3):270-279
Mouse parthenogenetic embryonic stem cells (PgESCs) could be applied to study imprinting genes and are used in cell therapy. Our previous study found that stem cells established by aggregation of two parthenogenetic embryos at 8‐cell stage (named as a2PgESCs) had a higher efficiency than that of PgESCs, and the paternal expressed imprinting genes were observably upregulated. Therefore, we propose that increasing the number of parthenogenetic embryos in aggregation may improve the development of parthenogenetic mouse and imprinting gene expression of PgESCs. To verify this hypothesis, we aggregated four embryos together at the 4‐cell stage and cultured to the blastocyst stage (named as 4aPgB). qPCR detection showed that the expression of imprinting genes Igf2, Mest, Snrpn, Igf2r, H19, Gtl2 in 4aPgB were more similar to that of fertilized blastocyst (named as fB) compared to 2aPgB (derived from two 4‐cell stage parthenogenetic embryos aggregation) or PgB (single parthenogenetic blastocyst). Post‐implantation development of 4aPgB extended to 11 days of gestation. The establishment efficiency of GFP‐a4PgESCs which derived from GFP‐4aPgB is 62.5%. Moreover, expression of imprinting genes Igf2, Mest, Snrpn, notably downregulated and approached the level of that in fertilized embryonic stem cells (fESCs). In addition, we acquired a 13.5‐day fetus totally derived from GFP‐a4PgESCs with germline contribution by 8‐cell under zona pellucida (ZP) injection. In conclusion, four embryos aggregation improves parthenogenetic development, and compensates imprinting genes expression in PgESCs. It implied that a4PgESCs could serve as a better scientific model applied in translational medicine and imprinting gene study. 相似文献
16.
A mutation in the nuclear-encoded plastid ribosomal protein S9 leads to early embryo lethality in maize 总被引:1,自引:0,他引:1
Seeds of the lethal embryo 1 (lem1) mutant in maize (Zea mays) display a non-concordant lethal phenotype: whereas the embryo aborts very early, before the transition stage, the endosperm develops almost normally. The mutant was identified in a collection of maize lines that carried the transposon Activation (Ac) at different locations in the genome. Co-segregation and reversion analysis showed that lem1 was tagged by Ac. The lem1 gene encodes a protein that is highly similar to the rice plastid 30S ribosomal protein S9 (PRPS9). lem1 maps to chromosome 1L and appears to be the only copy of prps9 in the maize genome. Green fluorescent protein (GFP) fusion constructs containing only the putative transit peptide (TP) of LEM1 localize exclusively to the plastids, confirming that the LEM1 protein is a PRP. In contrast, GFP fusion constructs containing the entire LEM1 protein co-localize to the plastids and to the nucleus, suggesting a possible dual function for this protein. Two alternative, although not mutually exclusive, explanations are considered for the lem phenotype of the lem1 mutant: (i) functional plastids are required for normal embryo development; and (ii) the PRPS9 has an extra-ribosomal function required for embryogenesis. 相似文献
17.
18.
19.
20.
Phenotypic analysis and molecular cloning of discolored-1 (dsc1), a maize gene required for early kernel development 总被引:4,自引:0,他引:4
Recessive mutations in the maize dsc1 locus prevent normal kernel development. Solidification of the endosperm in homozygous dsc1– mutant kernels was undetectable 12 days after pollination, at which time the tissue was apparently completely solidified in wild-type kernels. At later times endosperm did solidify in homozygous dsc1– mutant kernels, but there was a marked reduction in the volume of the tissue. Embryo growth in homozygous dsc1– kernels was delayed compared to wild-type kernels, but proceeded to an apparently normal stage 1 in which the scutellum, coleoptile, and shoot apex were clearly defined. Embryo growth then ceased and the embryonic tissues degraded. Late in kernel development no tissue distinctions were obvious in dsc1– mutant embryos. Immature mutant embryos germinated when transplanted from kernels to tissue culture medium prior to embryonic degeneration, but only coleoptile proliferation was observed. The dsc1 gene was isolated by transposon tagging. Analysis of the two different dsc1– mutations confirmed that transposon insertion into the cloned genomic locus was responsible for the observed phenotype. Dsc1 mRNA was detected specifically in kernels 5–7 days after pollination. These data indicate Dsc1 function is required for progression of embryo development beyond a specific stage, and also is required for endosperm development. 相似文献