首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Populations of widespread marine organisms are typically characterized by a low degree of genetic differentiation in neutral genetic markers, but much less is known about differentiation in genes whose functional roles are associated with specific selection regimes. To uncover possible adaptive population divergence and heterogeneous genomic differentiation in marine three‐spined sticklebacks (Gasterosteus aculeatus), we used a candidate gene‐based genome‐scan approach to analyse variability in 138 microsatellite loci located within/close to (<6 kb) functionally important genes in samples collected from ten geographic locations. The degree of genetic differentiation in markers classified as neutral or under balancing selection—as determined with several outlier detection methods—was low (FST = 0.033 or 0.011, respectively), whereas average FST for directionally selected markers was significantly higher (FST = 0.097). Clustering analyses provided support for genomic and geographic heterogeneity in selection: six genetic clusters were identified based on allele frequency differences in the directionally selected loci, whereas four were identified with the neutral loci. Allelic variation in several loci exhibited significant associations with environmental variables, supporting the conjecture that temperature and salinity, but not optic conditions, are important drivers of adaptive divergence among populations. In general, these results suggest that in spite of the high degree of physical connectivity and gene flow as inferred from neutral marker genes, marine stickleback populations are strongly genetically structured in loci associated with functionally relevant genes.  相似文献   

2.
Pupation site choice of Drosophila third‐instar larvae is critical for the survival of individuals, as pupae are exposed to various biotic and abiotic dangers while immobilized during the 3–4 days of metamorphosis. This singular behavioural choice is sensitive to both environmental and genetic factors. Here, we developed a high‐throughput phenotyping approach to assay the variation in pupation height in Drosophila melanogaster, while controlling for possibly confounding factors. We find substantial variation of mean pupation height among sampled natural stocks and we show that the Drosophila Genetic Reference Panel (DGRP) reflects this variation. Using the DGRP stocks for genome‐wide association (GWA) mapping, 16 loci involved in determining pupation height could be resolved. The candidate genes in these loci are enriched for high expression in the larval central nervous system. A genetic network could be constructed from the candidate loci, which places scribble (scrib) at the centre, plus other genes known to be involved in nervous system development, such as Epidermal growth factor receptor (Egfr) and p53. Using gene disruption lines, we could functionally validate several of the initially identified loci, as well as additional loci predicted from network analysis. Our study shows that the combination of high‐throughput phenotyping with a genetic analysis of variation captured from the wild can be used to approach the genetic dissection of an environmentally relevant behavioural phenotype.  相似文献   

3.
Modern plant breeding can benefit from the allelic variation that exists in natural populations of crop wild relatives that evolved under natural selection in varying pedoclimatic conditions. In this study, next‐generation sequencing was used to generate 1.3 million genome‐wide single nucleotide polymorphisms (SNPs) on ex situ collections of Triticum urartu L., the wild donor of the Au subgenome of modern wheat. A set of 75 511 high‐quality SNPs were retained to describe 298 T. urartu accessions collected throughout the Fertile Crescent. Triticum urartu showed a complex pattern of genetic diversity, with two main genetic groups distributed sequentially from west to east. The incorporation of geographical information on sampling points showed that genetic diversity was correlated to the geographical distance (R2 = 0.19) separating samples from Jordan and Lebanon, from Syria and southern Turkey, and from eastern Turkey, Iran and Iraq. The wild emmer genome was used to derive the physical positions of SNPs on the seven chromosomes of the Au subgenome, allowing us to describe a relatively slow decay of linkage disequilibrium in the collection. Outlier loci were described on the basis of the geographic distribution of the T. urartu accessions, identifying a hotspot of directional selection on chromosome 4A. Bioclimatic variation was derived from grid data and related to allelic variation using a genome‐wide association approach, identifying several marker–environment associations (MEAs). Fifty‐seven MEAs were associated with altitude and temperature measures while 358 were associated with rainfall measures. The most significant MEAs and outlier loci were used to identify genomic loci with adaptive potential (some already reported in wheat), including dormancy and frost resistance loci. We advocate the application of genomics and landscape genomics on ex situ collections of crop wild relatives to efficiently identify promising alleles and genetic materials for incorporation into modern crop breeding.  相似文献   

4.
Winter hardiness is important for the adaptation of wheat to the harsh winter conditions in temperate regions and is thus also an important breeding goal. Here, we employed a panel of 407 European winter wheat cultivars to dissect the genetic architecture of winter hardiness. We show that copy number variation (CNV) of CBF (C‐repeat Binding Factor) genes at the Fr‐A2 locus is the essential component for winter survival, with CBF‐A14 CNV being the most likely causal polymorphism, accounting for 24.3% of the genotypic variance. Genome‐wide association mapping identified several markers in the Fr‐A2 chromosomal region, which even after accounting for the effects of CBF‐A14 copy number explained approximately 15% of the genotypic variance. This suggests that additional, as yet undiscovered, polymorphisms are present at the Fr‐A2 locus. Furthermore, CNV of Vrn‐A1 explained an additional 3.0% of the genotypic variance. The allele frequencies of all loci associated with winter hardiness were found to show geographic patterns consistent with their role in adaptation. Collectively, our results from the candidate gene analysis, association mapping and genome‐wide prediction show that winter hardiness in wheat is a quantitative trait, but with a major contribution of the Fr‐A2 locus.  相似文献   

5.
CRISPR/Cas9 is a powerful genome editing tool in many organisms, including a number of monocots and dicots. Although the design and application of CRISPR/Cas9 is simpler compared to other nuclease‐based genome editing tools, optimization requires the consideration of the DNA delivery and tissue regeneration methods for a particular species to achieve accuracy and efficiency. Here, we describe a public sector system, ISU Maize CRISPR, utilizing Agrobacterium‐delivered CRISPR/Cas9 for high‐frequency targeted mutagenesis in maize. This system consists of an Escherichia coli cloning vector and an Agrobacterium binary vector. It can be used to clone up to four guide RNAs for single or multiplex gene targeting. We evaluated this system for its mutagenesis frequency and heritability using four maize genes in two duplicated pairs: Argonaute 18 (ZmAgo18a and ZmAgo18b) and dihydroflavonol 4‐reductase or anthocyaninless genes (a1 and a4). T0 transgenic events carrying mono‐ or diallelic mutations of one locus and various combinations of allelic mutations of two loci occurred at rates over 70% mutants per transgenic events in both Hi‐II and B104 genotypes. Through genetic segregation, null segregants carrying only the desired mutant alleles without the CRISPR transgene could be generated in T1 progeny. Inheritance of an active CRISPR/Cas9 transgene leads to additional target‐specific mutations in subsequent generations. Duplex infection of immature embryos by mixing two individual Agrobacterium strains harbouring different Cas9/gRNA modules can be performed for improved cost efficiency. Together, the findings demonstrate that the ISU Maize CRISPR platform is an effective and robust tool to targeted mutagenesis in maize.  相似文献   

6.
Limber pine ( Pinus flexilis ) is a keystone species of high‐elevation forest ecosystems of western North America, but some parts of the geographic range have high infection and mortality from the non‐native white pine blister rust caused by Cronartium ribicola . Genetic maps can provide essential knowledge for understanding genetic disease resistance as well as local adaptation to changing climates. Exome‐seq was performed to construct high‐density genetic maps in two seed families. Composite maps positioned 9612 unigenes across 12 linkage groups ( LG s). Syntenic analysis of genome structure revealed that the majority of orthologs were positional orthologous genes ( POG s) with localization on homologous LG s among conifer species. Gene ontology ( GO) enrichment analysis showed relatively fewer constraints for POG s with putative roles in adaptation to environments and relatively more conservation for POG s with roles in basic cell function and maintenance. The mapped genes included 639 nucleotide‐binding site leucine‐rich repeat genes ( NBS LRR s) , 290 receptor‐like protein kinase genes ( RLK s), and 1014 genes with potential roles in the defense response and induced systemic resistance to attack by pathogens. Orthologous loci for resistance to rust pathogens were identified and were co‐positioned with multiple members of the R gene family, revealing the evolutionary pressure acting upon them. This high‐density genetic map provides a genomic resource and practical tool for breeding and genetic conservation programs, with applications in genome‐wide association studies ( GWASs ), the characterization of functional genes underlying complex traits, and the sequencing and assembly of the full‐length genomes of limber pine and related Pinus species.  相似文献   

7.
Genome‐wide association studies have successfully identified over 70 loci associated with the risk of type 2 diabetes mellitus (T2DM) in multiple populations of European ancestry. However, the risk attributable to an individual variant is modest and does not yet provide convincing evidence for clinical utility. Association between these established genetic variants and T2DM in general populations is hitherto understudied in the isolated populations, such as the Uyghurs, resident in Hetian, far southern Xinjiang Uyghur Autonomous Region, China. In this case–control study, we genotyped 13 single‐nucleotide polymorphisms (SNPs) at 10 genes associated with diabetes in 130 cases with T2DM and 135 healthy controls of Uyghur, a Chinese minority ethnic group. Three of the 13 SNPs demonstrated significant association with T2DM in the Uyghur population. There were significant differences between the T2DM patients and controls in the risk allele distributions of rs3792267 (CAPN10) (P = 0.002), rs1501299 (APM1) (P = 0.017), and rs3760776 (FUT6) (P = 0.031). Allelic carriers of rs3792267‐A, rs1501299‐T, and rs3760776‐T had a 2.24‐fold [OR (95% CI): 1.35–3.71], 0.59‐fold [OR (95% CI): 0.39–0.91], 0.57‐fold [OR (95% CI): 0.34–0.95] increased risk for T2DM respectively. We further confirmed that the cumulative risk allelic scores calculated from the 13 susceptibility loci for T2DM differed significantly between the T2DM patients and controls (P = 0.001), and the effect of obesity/overweight on T2DM was only observed in the subjects with a combined risk allelic score under a value of 17. This study observed that the SNPs rs3792267 in CAPN10, rs1501299 in APM1, and rs3760776 in FUT6 might serve as potential susceptible biomarkers for T2DM in Uyghurs. The cumulative risk allelic scores of multiple loci with modest individual effects are also significant risk factors in Uyghurs for T2DM, particularly among non‐obese individuals. This is the first investigation having observed/found genetic variations on genetic loci functionally linked with glycosylation associated with the risk of T2DM in a Uyghur population.  相似文献   

8.
Cultivated soybean (Glycine max) suffers from a narrow germplasm relative to other crop species, probably because of under‐use of wild soybean (Glycine soja) as a breeding resource. Use of a single nucleotide polymorphism (SNP) genotyping array is a promising method for dissecting cultivated and wild germplasms to identify important adaptive genes through high‐density genetic mapping and genome‐wide association studies. Here we describe a large soybean SNP array for use in diversity analyses, linkage mapping and genome‐wide association analyses. More than four million high‐quality SNPs identified from high‐depth genome re‐sequencing of 16 soybean accessions and low‐depth genome re‐sequencing of 31 soybean accessions were used to select 180 961 SNPs for creation of the Axiom® SoyaSNP array. Validation analysis for a set of 222 diverse soybean lines showed that 170 223 markers were of good quality for genotyping. Phylogenetic and allele frequency analyses of the validation set data indicated that accessions showing an intermediate morphology between cultivated and wild soybeans collected in Korea were natural hybrids. More than 90 unanchored scaffolds in the current soybean reference sequence were assigned to chromosomes using this array. Finally, dense average spacing and preferential distribution of the SNPs in gene‐rich chromosomal regions suggest that this array may be suitable for genome‐wide association studies of soybean germplasm. Taken together, these results suggest that use of this array may be a powerful method for soybean genetic analyses relating to many aspects of soybean breeding.  相似文献   

9.
Single sequence repeats (SSR) developed for Sorghum bicolor were used to characterize the genetic distance of 46 different Sorghum halepense (Johnsongrass) accessions from Argentina some of which have evolved toward glyphosate resistance. Since Johnsongrass is an allotetraploid and only one subgenome is homologous to cultivated sorghum, some SSR loci amplified up to two alleles while others (presumably more conserved loci) amplified up to four alleles. Twelve SSR providing information of 24 loci representative of Johnsongrass genome were selected for genetic distance characterization. All of them were highly polymorphic, which was evidenced by the number of different alleles found in the samples studied, in some of them up to 20. UPGMA and Mantel analysis showed that Johnsongrass glyphosate‐resistant accessions that belong to different geographic regions do not share similar genetic backgrounds. In contrast, they show closer similarity to their neighboring susceptible counterparts. Discriminant Analysis of Principal Components using the clusters identified by K‐means support the lack of a clear pattern of association among samples and resistance status or province of origin. Consequently, these results do not support a single genetic origin of glyphosate resistance. Nucleotide sequencing of the 5‐enolpyruvylshikimate‐3‐phosphate synthase (EPSPS) encoding gene from glyphosate‐resistant and susceptible accessions collected from different geographic origins showed that none presented expected mutations in aminoacid positions 101 and 106 which are diagnostic of target‐site resistance mechanism.  相似文献   

10.
11.
Recently, we reported the chloroplast genome‐wide association of oligonucleotide repeats, indels and nucleotide substitutions in aroid chloroplast genomes. We hypothesized that the distribution of oligonucleotide repeat sequences in a single representative genome can be used to identify mutational hotspots and loci suitable for population genetic, phylogenetic and phylogeographic studies. Using information on the location of oligonucleotide repeats in the chloroplast genome of taro (Colocasia esculenta), we designed 30 primer pairs to amplify and sequence polymorphic loci. The primers have been tested in a range of intra‐specific to intergeneric comparisons, including ten taro samples (Colocasia esculenta) from diverse geographical locations, four other Colocasia species (C. affinis, C. fallax, C. formosana, C. gigantea) and three other aroid genera (represented by Remusatia vivipara, Alocasia brisbanensis and Amorphophallus konjac). Multiple sequence alignments for the intra‐specific comparison revealed nucleotide substitutions (point mutations) at all 30 loci and microsatellite polymorphisms at 14 loci. The primer pairs reported here reveal levels of genetic variation suitable for high‐resolution phylogeographic and evolutionary studies of taro and other closely related aroids. Our results confirm that information on repeat distribution can be used to identify loci suitable for such studies, and we expect that this approach can be used in other plant groups.  相似文献   

12.
13.
Selection processes are believed to be an important evolutionary driver behind the successful establishment of nonindigenous species, for instance through adaptation for invasiveness (e.g. dispersal mechanisms and reproductive allocation). However, evidence supporting this assumption is still scarce. Genome scans have often identified loci with atypical patterns of genetic differentiation (i.e. outliers) indicative of selection processes. Using microsatellite‐ and AFLP‐based genome scans, we looked for evidence of selection following the introduction of the mollusc Crepidula fornicata. Native to the northwestern Atlantic, this gastropod has become an emblematic invader since its introduction during the 19th and 20th centuries in the northeastern Atlantic and northeastern Pacific. We examined 683 individuals from seven native and 15 introduced populations spanning the latitudinal introduction and native ranges of the species. Our results confirmed the previously documented high genetic diversity in native and introduced populations with little genetic structure between the two ranges, a pattern typical of marine invaders. Analysing 344 loci, no outliers were detected between the introduced and native populations or in the introduced range. The genomic sampling may have been insufficient to reveal selection especially if it acts on traits determined by a few genes. Eight outliers were, however, identified within the native range, underlining a genetic singularity congruent with a well‐known biogeographical break along the Florida. Our results call into question the relevance of AFLP genome scans in detecting adaptation on the timescale of biological invasions: genome scans often reveal long‐term adaptation involving numerous genes throughout the genome but seem less effective in detecting recent adaptation from pre‐existing variation on polygenic traits. This study advocates other methods to detect selection effects during biological invasions—for example on phenotypic traits, although genome scans may remain useful for elucidating introduction histories.  相似文献   

14.
Although tocopherols play an important role in plants and animals, the genetic architecture of tocopherol content in maize kernels has remained largely unknown. In this study, linkage and association analyses were conducted to examine the genetic architecture of tocopherol content in maize kernels. Forty‐one unique quantitative trait loci (QTLs) were identified by linkage mapping in six populations of recombinant inbred lines (RILs). In addition, 32 significant loci were detected via genome‐wide association study (GWAS), 18 of which colocalized with the QTLs identified by linkage mapping. Fine mapping of a major QTL validated the accuracy of GWAS and QTL mapping results and suggested a role for nontocopherol pathway genes in the modulation of natural tocopherol variation. We provided genome‐wide evidence that genes involved in fatty acid metabolism, chlorophyll metabolism and chloroplast function may affect natural variation in tocopherols. These findings were confirmed through mutant analysis of a particular gene from the fatty acid pathway. In addition, the favourable alleles for many of the significant SNPs/QTLs represented rare alleles in natural populations. Together, our results revealed many novel genes that are potentially involved in the variation of tocopherol content in maize kernels. Pyramiding of the favourable alleles of the newly elucidated genes and the well‐known tocopherol pathway genes would greatly improve tocopherol content in maize.  相似文献   

15.
16.
The taxonomically diverse phyllosphere fungi inhabit leaves of plants. Thus, apart from the fungi's dispersal capacities and environmental factors, the assembly of the phyllosphere community associated with a given host plant depends on factors encoded by the host's genome. The host genetic factors and their influence on the assembly of phyllosphere communities under natural conditions are poorly understood, especially in trees. Recent work indicates that Norway spruce (Picea abies) vegetative buds harbour active fungal communities, but these are hitherto largely uncharacterized. This study combines internal transcribed spacer sequencing of the fungal communities associated with dormant vegetative buds with a genome‐wide association study (GWAS) in 478 unrelated Norway spruce trees. The aim was to detect host loci associated with variation in the fungal communities across the population, and to identify loci correlating with the presence of specific, latent, pathogens. The fungal communities were dominated by known Norway spruce phyllosphere endophytes and pathogens. We identified six quantitative trait loci (QTLs) associated with the relative abundance of the dominating taxa (i.e., top 1% most abundant taxa). Three additional QTLs associated with colonization by the spruce needle cast pathogen Lirula macrospora or the cherry spruce rust (Thekopsora areolata) in asymptomatic tissues were detected. The identification of the nine QTLs shows that the genetic variation in Norway spruce influences the fungal community in dormant buds and that mechanisms underlying the assembly of the communities and the colonization of latent pathogens in trees may be uncovered by combining molecular identification of fungi with GWAS.  相似文献   

17.
Theory predicts that speciation‐with‐gene‐flow is more likely when the consequences of selection for population divergence transitions from mainly direct effects of selection acting on individual genes to a collective property of all selected genes in the genome. Thus, understanding the direct impacts of ecologically based selection, as well as the indirect effects due to correlations among loci, is critical to understanding speciation. Here, we measure the genome‐wide impacts of host‐associated selection between hawthorn and apple host races of Rhagoletis pomonella (Diptera: Tephritidae), a model for contemporary speciation‐with‐gene‐flow. Allele frequency shifts of 32 455 SNPs induced in a selection experiment based on host phenology were genome wide and highly concordant with genetic divergence between co‐occurring apple and hawthorn flies in nature. This striking genome‐wide similarity between experimental and natural populations of R. pomonella underscores the importance of ecological selection at early stages of divergence and calls for further integration of studies of eco‐evolutionary dynamics and genome divergence.  相似文献   

18.
Sequence elimination is one of the main mechanisms that increases the divergence among homoeologous chromosomes after allopolyploidization to enhance the stability of recently established lineages, but it can cause a loss of some economically important genes. Synthetic hexaploid wheat (SHW) is an important source of genetic variation to the natural hexaploid wheat (NHW) genepool that has low genetic diversity. Here, we investigated the change between SHW and NHW genomes by utilizing a large germplasm set of primary synthetics and synthetic derivatives. Reproducible segment elimination (RSE) was declared if a large chromosomal chunk (>5 cM) produced no aligned reads in more than five SHWs. RSE in five genomic regions was the major source of variation between SHW and NHW. One RSE eliminated almost the complete short arm of chromosome 1B, which contains major genes for flour quality, disease resistance and different enzymes. The occurrence of RSE was highly dependent on the choice of diploid and tetraploid parental lines, their ancestral subpopulation and admixture, e.g. SHWs derived from Triticum dicoccon or from one of two Aegilops tauschii subpopulations were almost free of RSE, while highly admixed parents had higher RSE rates. The rate of RSE in synthetic derivatives was almost double that in primary synthetics. Genome‐wide association analysis detected four loci with minor effects on the occurrence of RSE, indicating that both parental lines and genetic factors were affecting the occurrence of RSE. Therefore, pre‐pre‐breeding strategies should be applied before introducing SHW into pre‐breeding programs to ensure genomic stability and avoid undesirable gene loss.  相似文献   

19.
L. Shi  L. Liu  Z. Ma  X. Lv  C. Li  L. Xu  B. Han  Y. Li  F. Zhao  Y. Yang  D. Sun 《Animal genetics》2019,50(5):430-438
Our previous genome‐wide association study identified 83 genome‐wide significant SNPs and 20 novel promising candidate genes for milk fatty acids in Chinese Holstein. Among them, the enoyl‐CoA hydratase, short chain 1 (ECHS1) and enoyl‐CoA hydratase and 3‐hydroxyacyl CoA dehydrogenase (EHHADH) genes were located near two SNPs and one SNP respectively, and they play important roles in fatty acid metabolism pathways. We herein validated whether the two genes have genetic effects on milk fatty acid traits in dairy cattle. By re‐sequencing the full‐length coding region, partially adjacent introns and 3000 bp up/downstream flanking sequences, we identified 12 SNPs in ECHS1: two in exons, four in the 3′ flanking region and six in introns. The g.25858322C>T SNP results in an amino acid replacement from leucine to phenylalanine and changes the secondary structure of the ECHS1 protein, and single‐locus association analysis showed that it was significantly associated with three milk fatty acids (= 0.0002–0.0013). The remaining 11 SNPs were found to be significantly associated with at least one milk fatty acid (= <0.0001–0.0040). Also, we found that two haplotype blocks, consisting of nine and two SNPs respectively, were significantly associated with eight milk fatty acids (= <0.0001–0.0125). However, none of polymorphisms was observed in the EHHADH gene. In conclusion, our findings are the first to indicate that the ECHS1 gene has a significant genetic impact on long‐chain unsaturated and medium‐chain saturated fatty acid traits in dairy cattle, although the biological mechanism is still undetermined and requires further in‐depth validation.  相似文献   

20.
Cryptosporidium is an apicomplexan protozoan that lives in most vertebrates, including humans. Its gp60 gene is functionally involved in its attachment to host cells, and its high level of genetic variation has made it the reference marker for sample typing in epidemiological studies. To understand the origin of such high diversity and to determine the extent to which this classification applies to the rest of the genome, we analysed the patterns of variation at gp60 and nine other nuclear loci in isolates of three Cryptosporidium species. Most loci showed low genetic polymorphism (πS <1%) and similar levels of between‐species divergence. Contrastingly, gp60 exhibited very different characteristics: (i) it was nearly ten times more variable than the other loci; (ii) it displayed a significant excess of polymorphisms relative to between‐species differences in a maximum‐likelihood Hudson–Kreitman–Aguadé test; (iii) gp60 subtypes turned out to be much older than the species they were found in; and (iv) showed a significant excess of polymorphic variants shared across species from random expectations. These observations suggest that this locus evolves under balancing selection and specifically under negative frequency‐dependent selection (FDS). Interestingly, genetic variation at the other loci clusters very well within the groups of isolates defined by gp60 subtypes, which may provide new tools to understand the genome‐wide patterns of genetic variation of the parasite in the wild. These results suggest that gp60 plays an active and essential role in the life cycle of the parasite and that genetic variation at this locus might be essential for the parasite's long‐term success.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号