首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MicroRNAs (miRNAs) are known to fine‐tune growth, development, and stress‐induced responses. Osa‐miR1873 is a rice‐specific miRNA targeting LOC_Os05g01790. Here, we show that Osa‐miR1873 fine‐tunes rice immunity against Magnaporthe oryzae and yield traits via LOC_Os05g01790. Osa‐miR1873 was significantly upregulated in a susceptible accession but downregulated in a resistance accession at 24 h post‐inoculation (hpi) of M. oryzae. Overexpressing Osa‐miR1873 enhanced susceptibility to M. oryzae and compromised induction of defense responses. In contrast, blocking Osa‐miR1873 through target mimicry compromised susceptibility to M. oryzae and enhanced induction of defense responses. Altered expression of Osa‐miR1873 also resulted in some defects in yield traits, including grain numbers and seed setting rate. Moreover, overexpression of the target gene LOC_Os05g01790 increased rice blast disease resistance but severely penalized growth and yield. Taken together, we demonstrate that Osa‐miR1873 fine‐tunes the rice immunity‐growth trade‐off via LOC_Os05g01790, and blocking Osa‐miR1873 could improve blast disease resistance without significant yield penalty. Thus, the Osa‐miR1873‐LOC_Os05g01790 regulatory module is valuable in balancing yield traits and blast resistance.  相似文献   

2.
Plants have evolved diverse mechanism to recognize pathogen attack and triggers defense responses. These defense responses alter host cellular function regulated by endogenous, small, non-coding miRNAs. To understand the mechanism of miRNAs regulated cellular functions during stem rust infection in wheat, we investigated eight different miRNAs viz. miR159, miR164, miR167, miR171, miR444, miR408, miR1129 and miR1138, involved in three different independent cellular defense response to infection. The investigation reveals that at the initiation of disease, accumulation of miRNAs might be playing a key role in hypersensitive response (HR) from host, which diminishes at the maturation stage. This suggests a possible host-fungal synergistic relation leading to susceptibility. Differential expression of these miRNAs in presence and absence of R gene provides a probable explanation of miRNA regulated R gene mediated independent pathways.  相似文献   

3.
Identification of microRNAs (miRNAs), target genes and regulatory networks associated with innate immune and inflammatory responses and tissue damage is essential to elucidate the molecular and genetic mechanisms for resistance to mastitis. In this study, a combination of Solexa sequencing and custom miRNA chip approaches was used to profile the expression of miRNAs in bovine mammary gland at the late stage of natural infection with Staphylococcus aureus, a widespread mastitis pathogen. We found 383 loci corresponding to 277 known and 49 putative novel miRNAs, two potential mitrons and 266 differentially expressed miRNAs in the healthy and mastitic cows’ mammary glands. Several interaction networks and regulators involved in mastitis susceptibility, such as ALCAM, COL1A1, APOP4, ITIH4, CRP and fibrinogen alpha (FGA), were highlighted. Significant down‐regulation and location of bta‐miR‐26a, which targets FGA in the mastitic mammary glands, were validated using quantitative real‐time PCR, in situ hybridization and dual‐luciferase reporter assays. We propose that the observed miRNA variations in mammary glands of mastitic cows are related to the maintenance of immune and defense responses, cell proliferation and apoptosis, and tissue injury and healing during the late stage of infection. Furthermore, the effect of bta‐miR‐26a in mastitis, mediated at least in part by enhancing FGA expression, involves host defense, inflammation and tissue damage.  相似文献   

4.
Accumulating data have suggested that small RNAs (sRNAs) have important functions in plant responses to pathogen invasion. However, it is largely unknown whether and how sRNAs are involved in the regulation of rice responses to the invasion of Xanthomonas oryzae pv. oryzae (Xoo), which causes bacterial blight, the most devastating bacterial disease of rice worldwide. We performed simultaneous genome-wide analyses of the expression of sRNAs and genes during early defense responses of rice to Xoo mediated by a major disease resistance gene, Xa3/Xa26, which confers durable and race-specific qualitative resistance. A large number of sRNAs and genes showed differential expression in Xa3/Xa26-mediated resistance. These differentially expressed sRNAs include known microRNAs (miRNAs), unreported miRNAs, and small interfering RNAs. The candidate genes, with expression that was negatively correlated with the expression of sRNAs, were identified, indicating that these genes may be regulated by sRNAs in disease resistance in rice. These results provide a new perspective regarding the putative roles of sRNA candidates and their putative target genes in durable disease resistance in rice.  相似文献   

5.
6.
7.
The genus Phytophthora consists of many notorious pathogens of crops and forestry trees. At present, battling Phytophthora diseases is challenging due to a lack of understanding of their pathogenesis. We investigated the role of small RNAs in regulating soybean defense in response to infection by Phytophthora sojae, the second most destructive pathogen of soybean. Small RNAs, including microRNAs (miRNAs) and small interfering RNAs (siRNAs), are universal regulators that repress target gene expression in eukaryotes. We identified known and novel small RNAs that differentially accumulated during P. sojae infection in soybean roots. Among them, miR393 and miR166 were induced by heat‐inactivated P. sojae hyphae, indicating that they may be involved in soybean basal defense. Indeed, knocking down the level of mature miR393 led to enhanced susceptibility of soybean to P. sojae; furthermore, the expression of isoflavonoid biosynthetic genes was drastically reduced in miR393 knockdown roots. These data suggest that miR393 promotes soybean defense against P. sojae. In addition to miRNAs, P. sojae infection also resulted in increased accumulation of phased siRNAs (phasiRNAs) that are predominantly generated from canonical resistance genes encoding nucleotide binding‐leucine rich repeat proteins and genes encoding pentatricopeptide repeat‐containing proteins. This work identifies specific miRNAs and phasiRNAs that regulate defense‐associated genes in soybean during Phytophthora infection.  相似文献   

8.
MicroRNAs (miRNAs) play important roles in rice response to Magnaporthe oryzae, the causative agent of rice blast disease. Studying the roles of rice miRNAs is of great significance for the disease control. Osa‐miR167d belongs to a conserved miRNA family targeting auxin responsive factor (ARF) genes that act in developmental and stress‐induced responses. Here, we show that Osa‐miR167d plays a negative role in rice immunity against M. oryzae by suppressing its target gene. The expression of Osa‐miR167d was significantly suppressed in a resistant accession at and after 24 h post inoculation (hpi), however, its expression was significantly increased at 24 hpi in the susceptible accession upon M. oryzae infection. Transgenic rice lines over‐expressing Osa‐miR167d were highly susceptible to multiple blast fungal strains. By contrast, transgenic lines expressing a target mimicry to block Osa‐miR167d enhanced resistance to rice blast disease. In addition, knocking out the target gene ARF12 led to hyper‐susceptibility to multiple blast fungal strains. Taken together, our results indicate that Osa‐miR167d negatively regulate rice immunity to facilitate the infection of M. oryzae by downregulating ARF12. Thus, Osa‐miR167d‐ARF12 regulatory module could be valuable in improvement of blast‐disease resistance.  相似文献   

9.
10.
Yuan B  Shen X  Li X  Xu C  Wang S 《Planta》2007,226(4):953-960
Mitogen-activated protein kinase (MAPK) cascades play important roles in diverse developmental and physiological processes of plants, including pathogen-induced defense responses. Although at least 17 rice MAPKs have been identified and more than half of these MAPK genes have been shown to be pathogen or elicitor responsive, the exact role of most of the MAPKs in host-pathogen interaction is unknown. Here we report that OsMPK6 is an important regulator in rice disease resistance. Suppressing OsMPK6 or knocking out of OsMPK6 enhanced rice resistance to different races of Xanthomonas oryzae pv. oryzae, causing bacterial blight, one of the most devastating diseases of rice worldwide. The resistant plants showed increased expression of a subset of defense-responsive genes functioning in the NH1 (an Arabidopsis NPR1 orthologue)-involved defense signal transduction pathway. These results suggest that OsMPK6 functions as a repressor to regulate rice defense responses upon bacterial invasion. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
Blast, caused by the fungus Magnaporthe oryzae, is one of the most devastating diseases of rice worldwide. Phenylalanine ammonia lyase (PAL) is a key enzyme in the phenylpropanoid pathway, which leads to the biosynthesis of defense‐related phytohormone salicylic acid (SA) and flavonoid‐type phytoalexins sakuranetin and naringenin. However, the roles and biochemical features of individual rice PALs in defense responses to pathogens remain unclear. Here, we report that rice OsPAL06, which can catalyze the formation of trans‐cinnamate using l ‐phenylalanine, is involved in rice root–M. oryzae interaction. OsPAL06‐knockout mutant showed increased susceptibility to M. oryzae invaded from roots and developed typical leaf blast symptoms, accompanied by nearly complete disappearance of sakuranetin and naringenin and a two‐third reduction of the SA level in roots. This mutant also showed compensatively induced expression of chalcone synthase, which is involved in flavonoid biosynthesis, isochorismate synthase 1, which is putatively involved in SA synthesis via another pathway, reduced jasmonate content and increased ethylene content. These results suggest that OsPAL06 is a positive regulator in preventing M. oryzae infection from roots. It may regulate defense by promoting both phytoalexin accumulation and SA signaling that synergistically and antagonistically interacts with jasmonate‐ and ethylene‐dependent signaling, respectively.  相似文献   

12.
Peripheral induction of regulatory T (Treg) cells provides essential protection from inappropriate immune responses. CD4+ T cells that lack endogenous miRNAs are impaired to differentiate into Treg cells, but the relevant miRNAs are unknown. We performed an overexpression screen with T‐cell‐expressed miRNAs in naive mouse CD4+ T cells undergoing Treg differentiation. Among 130 candidates, the screen identified 29 miRNAs with a negative and 10 miRNAs with a positive effect. Testing reciprocal Th17 differentiation revealed specific functions for miR‐100, miR‐99a and miR‐10b, since all of these promoted the Treg and inhibited the Th17 program without impacting on viability, proliferation and activation. miR‐99a cooperated with miR‐150 to repress the expression of the Th17‐promoting factor mTOR. The comparably low expression of miR‐99a was strongly increased by the Treg cell inducer “retinoic acid”, and the abundantly expressed miR‐150 could only repress Mtor in the presence of miR‐99a. Our data suggest that induction of Treg cell differentiation is regulated by a miRNA network, which involves cooperation of constitutively expressed as well as inducible miRNAs.  相似文献   

13.
As important signal molecules, jasmonates (JAs) and green leaf volatiles (GLVs) play diverse roles in plant defense responses against insect pests and pathogens. However, how plants employ their specific defense responses by modulating the levels of JA and GLVs remains unclear. Here, we describe identification of a role for the rice HPL3 gene, which encodes a hydroperoxide lyase (HPL), OsHPL3/CYP74B2, in mediating plant‐specific defense responses. The loss‐of‐function mutant hpl3‐1 produced disease‐resembling lesions spreading through the whole leaves. A biochemical assay revealed that OsHPL3 possesses intrinsic HPL activity, hydrolyzing hydroperoxylinolenic acid to produce GLVs. The hpl3‐1 plants exhibited enhanced induction of JA, trypsin proteinase inhibitors and other volatiles, but decreased levels of GLVs including (Z)‐3‐hexen‐1‐ol. OsHPL3 positively modulates resistance to the rice brown planthopper [BPH, Nilaparvata lugens (Stål)] but negatively modulates resistance to the rice striped stem borer [SSB, Chilo suppressalis (Walker)]. Moreover, hpl3‐1 plants were more attractive to a BPH egg parasitoid, Anagrus nilaparvatae, than the wild‐type, most likely as a result of increased release of BPH‐induced volatiles. Interestingly, hpl3‐1 plants also showed increased resistance to bacterial blight (Xanthomonas oryzae pv. oryzae). Collectively, these results indicate that OsHPL3, by affecting the levels of JA, GLVs and other volatiles, modulates rice‐specific defense responses against different invaders.  相似文献   

14.
MicroRNAs (miRNAs) play very important roles in plant defense responses. However, little is known about their roles in the susceptibility interaction between wheat and Puccinia striiformis f. sp. tritici (Pst). In this study, two miRNA libraries were constructed from the leaves of the cultivar Xingzi 9104 inoculated with the virulent Pst race CYR32 and sterile water, respectively. A total of 1316 miRNA candidates, including 173 known miRNAs that were generated from 98 pre‐miRNAs, were obtained. The remaining 1143 miRNA candidates included 145 conserved and 998 wheat‐specific miRNAs that were generated from 87 and 1088 pre‐miRNAs, respectively. The 173 known and 145 conserved miRNAs were sub‐classified into 63 miRNA families. The target genes of wheat miRNAs were also confirmed using degradome sequencing technology. Most of the annotated target genes were related to signal transduction or energy metabolism. Additionally, we found that miRNAs and their target genes form complicated regulation networks. The expression profiles of miRNAs and their corresponding target genes were further analyzed by quantitative real‐time polymerase chain reaction (qRT‐PCR), and the results indicate that some miRNAs are involved in the compatible wheat‐Pst susceptibility interaction. Importantly, tae‐miR1432 was highly expressed when wheat was challenged with CYR32, and the corresponding target gene, predicted to be a calcium ion‐binding protein, also exhibited upregulated expression but a divergent expression trend. PC‐3P‐7484, a specific wheat miRNA, was highly expressed in the wheat response to Pst infection, while the expression of the corresponding target gene ubiquillin was dramatically downregulated. These data provide the foundation for evaluating the important regulatory roles of miRNAs in wheat‐Pst susceptibility interaction.  相似文献   

15.
Chitin is a component of fungal cell walls, and its fragments act as elicitors in many plants. The plasma membrane glycoprotein CEBiP, which possesses LysM domains, is a receptor for the chitin elicitor (CE) in rice. Here, we report that the perception of CE by CEBiP contributes to disease resistance against the rice blast fungus, Magnaporthe oryzae, and that enhanced responses to CE by engineering CEBiP increase disease tolerance. Knockdown of CEBiP expression allowed increased spread of the infection hyphae. To enhance defense responses to CE, we constructed chimeric genes composed of CEBiP and Xa21, which mediate resistance to rice bacterial leaf blight. The expression of either CRXa1 or CRXa3, each of which contains the whole extracellular portion of CEBiP, the whole intracellular domain of XA21, and the transmembrane domain from either CEBiP or XA21, induced cell death accompanied by an increased production of reactive oxygen and nitrogen species after treatment with CE. Rice plants expressing the chimeric receptor exhibited necrotic lesions in response to CE and became more resistant to M. oryzae. Deletion of the first LysM domain in CRXA1 abolished these cellular responses. These results suggest that CEs are produced and recognized through the LysM domain of CEBiP during the interaction between rice and M. oryzae and imply that engineering pattern recognition receptors represents a new strategy for crop protection against fungal diseases.  相似文献   

16.
The rice XA21 receptor kinase confers robust resistance to bacterial blight disease caused by Xanthomonas oryzae pv. oryzae (Xoo). A tyrosine‐sulfated peptide from Xoo, called RaxX, triggers XA21‐mediated immune responses, including the production of ethylene and reactive oxygen species and the induction of defence gene expression. It has not been tested previously whether these responses confer effective resistance to Xoo. Here, we describe a newly established post‐inoculation treatment assay that facilitates investigations into the effect of the sulfated RaxX peptide in planta. In this assay, rice plants were inoculated with a virulent strain of Xoo and then treated with the RaxX peptide 2 days after inoculation. We found that post‐inoculation treatment of XA21 plants with the sulfated RaxX peptide suppresses the development of Xoo infection in XA21 rice plants. The treated plants display restricted lesion development and reduced bacterial growth. Our findings demonstrate that exogenous application of sulfated RaxX activates XA21‐mediated immunity in planta, and provides a potential strategy for the control of bacterial disease in the field.  相似文献   

17.
18.
19.
MicroRNA319 (miR319) family is one of the conserved microRNA (miRNA) families among diverse plant species. It has been reported that miR319 regulates plant development in dicotyledons, but little is known at present about its functions in monocotyledons. In rice (Oryza sativa L.), the MIR319 gene family comprises two members, OsaMIR319a and OsaMIR319b. Here, we report an expression pattern analysis and a functional characterization of the two OsaMIR319 genes in rice. We found that overexpressing OsaMIR319a and OsaMIR319b in rice both resulted in wider leaf blades. Leaves of osa‐miR319 overexpression transgenic plants showed an increased number of longitudinal small veins, which probably accounted for the increased leaf blade width. In addition, we observed that overexpressing osa‐miR319 led to enhanced cold tolerance (4 °C) after chilling acclimation (12 °C) in transgenic rice seedlings. Notably, under both 4 and 12 °C low temperatures, OsaMIR319a and OsaMIR319b were down‐regulated while the expression of miR319‐targeted genes was induced. Furthermore, genetically down‐regulating the expression of either of the two miR319‐targeted genes, OsPCF5 and OsPCF8, in RNA interference (RNAi) plants also resulted in enhanced cold tolerance after chilling acclimation. Our findings in this study demonstrate that miR319 plays important roles in leaf morphogenesis and cold tolerance in rice.  相似文献   

20.
Os2H16, a rice gene of unknown function, has been previously reported to be upregulated in response to infection by Xanthomonas oryzae pv. oryzae. In this study, expression patterns of Os2H16 were analyzed, demonstrating that expression of Os2H16 was dramatically induced by both bacterial and fungal infection as well as by drought stress, but repressed by salt treatment. To further investigate the role of Os2H16 in plant defense responses to abiotic and biotic stresses, transgenic lines of rice were developed. In comparison with wild-type rice, transgenic lines overexpressing Os2H16 show enhanced tolerance to bacterial blight and sheath blight disease, respectively caused by Xanthomonas oryzae pv. oryzae and Rhizoctonia solani. On the contrary, Os2H16 knockdown lines were more susceptible to both pathogens. Consistent with their individual phenotypes, upon inoculation, the expression of defense-related marker genes were elevated in Os2H16 overexpression individuals than in wild-type, while they were significantly reduced in Os2H16 knockdown lines. We also show that Os2H16 overexpression lines display enhanced tolerance to drought stress and elevated induction of drought-related genes, compared to wild-type rice. Os2H16 knockdown lines were more sensitive to drought stress and exhibited reduced induction of drought-related genes. Our study provides the first functional characterization of the rice Os2H16 gene, and suggests that Os2H16 positively modulate plant defense to abiotic and biotic stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号