首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Plants rely on different immune receptors to recognize pathogens and defend against pathogen attacks. Nucleotide‐binding domain and leucine‐rich repeat (NLR) proteins play a major role as intracellular immune receptors. Their homeostasis must be maintained at optimal levels in order to effectively recognize pathogens without causing autoimmunity. Previous studies have shown that the activity of the ubiquitin‐proteasome system is essential to prevent excessive accumulation of NLR proteins such as Suppressor of NPR1, Constitutive 1 (SNC1). Attenuation of the ubiquitin E3 ligase SCFCPR1 (Constitutive expressor of Pathogenesis Related genes 1) or the E4 protein MUSE3 (Mutant, SNC1‐Enhancing 3) leads to NLR accumulation and autoimmunity. In the current study, we report the identification of AtCDC48A as a negative regulator of NLR‐mediated immunity. Plants carrying Atcdc48A‐4, a partial loss‐of‐function allele of AtCDC48A, exhibit dwarf morphology and enhanced disease resistance to the oomycete pathogen Hyaloperonospora arabidopsidis (H.a.) Noco2. The SNC1 level is increased in Atcdc48A‐4 plants and AtCDC48A interacts with MUSE3 in co‐immunoprecipitation experiments, supporting a role for AtCDC48A in NLR turnover. While Arabidopsis contains four other paralogs of AtCDC48A, knockout mutants of these genes do not show obvious immunity‐related phenotypes, suggesting functional divergence within this family. As an AAA‐ATPase, AtCDC48A likely serves to process the poly‐ubiquitinated NLR substrate for final protein degradation by the 26S proteasome.  相似文献   

3.
Many plants have a self‐incompatibility (SI) system in which the rejection of self‐pollen is determined by multiple haplotypes at a single locus, termed S. In the Solanaceae, each haplotype encodes a single ribonuclease (S‐RNase) and multiple S‐locus F‐box proteins (SLFs), which function as the pistil and pollen SI determinants, respectively. S‐RNase is cytotoxic to self‐pollen, whereas SLFs are thought to collaboratively recognize non‐self S‐RNases in cross‐pollen and detoxify them via the ubiquitination pathway. However, the actual mechanism of detoxification remains unknown. Here we isolate the components of a SCFSLF (SCF = SKP1‐CUL1‐F‐box‐RBX1) from Petunia pollen. The SCFSLF polyubiquitinates a subset of non‐self S‐RNases in vitro. The polyubiquitinated S‐RNases are degraded in the pollen extract, which is attenuated by a proteasome inhibitor. Our findings suggest that multiple SCFSLF complexes in cross‐pollen polyubiquitinate non‐self S‐RNases, resulting in their degradation by the proteasome.  相似文献   

4.
5.
6.
Peroxisomes are dynamic organelles crucial for a variety of metabolic processes during the development of eukaryotic organisms, and are functionally linked to other subcellular organelles, such as mitochondria and chloroplasts. Peroxisomal matrix proteins are imported by peroxins (PEX proteins), yet the modulation of peroxin functions is poorly understood. We previously reported that, besides its known function in chloroplast protein import, the Arabidopsis E3 ubiquitin ligase SP1 (suppressor of ppi1 locus1) also targets to peroxisomes and mitochondria, and promotes the destabilization of the peroxisomal receptor–cargo docking complex components PEX13 and PEX14. Here we present evidence that in Arabidopsis, SP1's closest homolog SP1‐like 1 (SPL1) plays an opposite role to SP1 in peroxisomes. In contrast to sp1, loss‐of‐function of SPL1 led to reduced peroxisomal β‐oxidation activity, and enhanced the physiological and growth defects of pex14 and pex13 mutants. Transient co‐expression of SPL1 and SP1 promoted each other's destabilization. SPL1 reduced the ability of SP1 to induce PEX13 turnover, and it is the N‐terminus of SP1 and SPL1 that determines whether the protein is able to promote PEX13 turnover. Finally, SPL1 showed prevalent targeting to mitochondria, but rather weak and partial localization to peroxisomes. Our data suggest that these two members of the same E3 protein family utilize distinct mechanisms to modulate peroxisome biogenesis, where SPL1 reduces the function of SP1. Plants and possibly other higher eukaryotes may employ this small family of E3 enzymes to differentially modulate the dynamics of several organelles essential to energy metabolism via the ubiquitin‐proteasome system.  相似文献   

7.
8.
Salinity is a deleterious abiotic stress factor that affects growth, productivity, and physiology of crop plants. Strategies for improving salinity tolerance in plants are critical for crop breeding programmes. Here, we characterized the rice (Oryza sativa) really interesting new gene (RING) H2‐type E3 ligase, OsSIRH2‐14 (previously named OsRFPH2‐14), which plays a positive role in salinity tolerance by regulating salt‐related proteins including an HKT‐type Na+ transporter (OsHKT2;1). OsSIRH2‐14 expression was induced in root and shoot tissues treated with NaCl. The OsSIRH2‐14‐EYFP fusion protein was predominately expressed in the cytoplasm, Golgi, and plasma membrane of rice protoplasts. In vitro pull‐down assays and bimolecular fluorescence complementation assays revealed that OsSIRH2‐14 interacts with salt‐related proteins, including OsHKT2;1. OsSIRH2‐14 E3 ligase regulates OsHKT2;1 via the 26S proteasome system under high NaCl concentrations but not under normal conditions. Compared with wild type plants, OsSIRH2‐14‐overexpressing rice plants showed significantly enhanced salinity tolerance and reduced Na+ accumulation in the aerial shoot and root tissues. These results suggest that the OsSIRH2‐14 RING E3 ligase positively regulates the salinity stress response by modulating the stability of salt‐related proteins.  相似文献   

9.
F‐box proteins determine substrate specificity of the ubiquitin–proteasome system. Previous work has demonstrated that the F‐box protein Fbp1, a component of the SCFFbp1 E3 ligase complex, is essential for invasive growth and virulence of the fungal plant pathogen Fusarium oxysporum. Here, we show that, in addition to invasive growth, Fbp1 also contributes to vegetative hyphal fusion and fungal adhesion to tomato roots. All of these functions have been shown previously to require the mitogen‐activated protein kinase (MAPK) Fmk1. We found that Fbp1 is required for full phosphorylation of Fmk1, indicating that Fbp1 regulates virulence and invasive growth via the Fmk1 pathway. Moreover, the Δfbp1 mutant is hypersensitive to sodium dodecylsulfate (SDS) and calcofluor white (CFW) and shows reduced phosphorylation levels of the cell wall integrity MAPK Mpk1 after SDS treatment. Collectively, these results suggest that Fbp1 contributes to both the invasive growth and cell wall integrity MAPK pathways of F. oxysporum.  相似文献   

10.
2,4‐Dichlorophenoxyacetic acid (2,4‐D), a functional analogue of auxin, is used as an exogenous source of auxin as it evokes physiological responses like the endogenous auxin, indole‐3‐acetic acid (IAA). Previous molecular analyses of the auxin response pathway revealed that IAA and 2,4‐D share a common mode of action to elicit downstream physiological responses. However, recent findings with 2,4‐D‐specific mutants suggested that 2,4‐D and IAA might also use distinct pathways to modulate root growth in Arabidopsis. Using genetic and cellular approaches, we demonstrate that the distinct effects of 2,4‐D and IAA on actin filament organization partly dictate the differential responses of roots to these two auxin analogues. 2,4‐D but not IAA altered the actin structure in long‐term and short‐term assays. Analysis of the 2,4‐D‐specific mutant aar1‐1 revealed that small acidic protein 1 (SMAP1) functions positively to facilitate the 2,4‐D‐induced depolymerization of actin. The ubiquitin proteasome mutants tir1‐1 and axr1‐12, which show enhanced resistance to 2,4‐D compared with IAA for inhibition of root growth, were also found to have less disrupted actin filament networks after 2,4‐D exposure. Consistently, a chemical inhibitor of the ubiquitin proteasome pathway mitigated the disrupting effects of 2,4‐D on the organization of actin filaments. Roots of the double mutant aar1‐1 tir1‐1 also showed enhanced resistance to 2,4‐D‐induced inhibition of root growth and actin degradation compared with their respective parental lines. Collectively, these results suggest that the effects of 2,4‐D on actin filament organization and root growth are mediated through synergistic interactions between SMAP1 and SCFTIR1 ubiquitin proteasome components.  相似文献   

11.
Endocytosis regulates many processes, including signaling pathways, nutrient uptake, and protein turnover. During clathrin‐mediated endocytosis (CME), adaptors bind to cytoplasmic regions of transmembrane cargo proteins, and many endocytic adaptors are also directly involved in the recruitment of clathrin. This clathrin‐associated sorting protein family includes the yeast epsins, Ent1/2, and AP180/PICALM homologs, Yap1801/2. Mutant strains lacking these four adaptors, but expressing an epsin N‐terminal homology (ENTH) domain necessary for viability (4Δ+ENTH), exhibit endocytic defects, such as cargo accumulation at the plasma membrane (PM). This CME‐deficient strain provides a sensitized background ideal for revealing cellular components that interact with clathrin adaptors. We performed a mutagenic screen to identify alleles that are lethal in 4Δ+ENTH cells using a colony‐sectoring reporter assay. After isolating candidate synthetic lethal genes by complementation, we confirmed that mutations in VPS4 led to inviability of a 4Δ+ENTH strain. Vps4 mediates the final step of endosomal sorting complex required for transport (ESCRT)‐dependent trafficking, and we found that multiple ESCRTs are also essential in 4Δ+ENTH cells, including Snf7, Snf8 and Vps36. Deletion of VPS4 from an end3Δ strain, another CME mutant, similarly resulted in inviability, and upregulation of a clathrin‐independent endocytosis pathway rescued 4Δ+ENTH vps4Δ cells. Loss of Vps4 from an otherwise wild‐type background caused multiple cargoes to accumulate at the PM because of an increase in Rcy1‐dependent recycling of internalized protein to the cell surface. Additionally, vps4Δ rcy1Δ mutants exhibited deleterious growth phenotypes. Together, our findings reveal previously unappreciated effects of disrupted ESCRT‐dependent trafficking on endocytic recycling and the PM.  相似文献   

12.
Bacterial pathogens often subvert the innate immune system to establish a successful infection. The direct inhibition of downstream components of innate immune pathways is particularly well documented but how bacteria interfere with receptor proximal events is far less well understood. Here, we describe a Toll/interleukin 1 receptor (TIR) domain‐containing protein (PumA) of the multi‐drug resistant Pseudomonas aeruginosa PA7 strain. We found that PumA is essential for virulence and inhibits NF‐κB, a property transferable to non‐PumA strain PA14, suggesting no additional factors are needed for PumA function. The TIR domain is able to interact with the Toll‐like receptor (TLR) adaptors TIRAP and MyD88, as well as the ubiquitin‐associated protein 1 (UBAP1), a component of the endosomal‐sorting complex required for transport I (ESCRT‐I). These interactions are not spatially exclusive as we show UBAP1 can associate with MyD88, enhancing its plasma membrane localization. Combined targeting of UBAP1 and TLR adaptors by PumA impedes both cytokine and TLR receptor signalling, highlighting a novel strategy for innate immune evasion.  相似文献   

13.
14.
Jasmonate regulates critical aspects of plant development and defense. The F-box protein CORONATINE INSENSITIVE1 (COI1) functions as a jasmonate receptor and forms Skp1/Cullin1/F-box protein COI1 (SCFCOI1) complexes with Arabidopsis thaliana Cullin1 and Arabidopsis Skp1-like1 (ASK1) to recruit its substrate jasmonate ZIM-domain proteins for ubiquitination and degradation. Here, we reveal a mechanism regulating COI1 protein levels in Arabidopsis. Genetic and biochemical analysis and in vitro degradation assays demonstrated that the COI1 protein was initially stabilized by interacting with ASK1 and further secured by assembly into SCFCOI1 complexes, suggesting a function for SCFCOI1 in the stabilization of COI1 in Arabidopsis. Furthermore, we show that dissociated COI1 is degraded through the 26S proteasome pathway, and we identified the 297th Lys residue as an active ubiquitination site in COI1. Our data suggest that the COI1 protein is strictly regulated by a dynamic balance of SCFCOI1-mediated stabilization and 26S proteasome–mediated degradation and thus maintained at a protein level essential for proper biological functions in Arabidopsis development and defense responses.  相似文献   

15.
Drosophila larval brain neuroblasts divide asymmetrically to balance between self‐renewal and differentiation. Here, we demonstrate that the SCFSlimb E3 ubiquitin ligase complex, which is composed of Cul1, SkpA, Roc1a and the F‐box protein Supernumerary limbs (Slimb), inhibits ectopic neuroblast formation and regulates asymmetric division of neuroblasts. Hyperactivation of Akt leads to similar neuroblast overgrowth and defects in asymmetric division. Slimb associates with Akt in a protein complex, and SCFSlimb acts through SAK and Akt to inhibit neuroblast overgrowth. Moreover, Beta‐transducin repeat containing, the human ortholog of Slimb, is frequently deleted in highly aggressive gliomas, suggesting a conserved tumor suppressor‐like function.  相似文献   

16.
Subversion of antigen‐specific immune responses by intracellular pathogens is pivotal for successful colonisation. Bacterial pathogens, including Shigella, deliver effectors into host cells via the type III secretion system (T3SS) in order to manipulate host innate and adaptive immune responses, thereby promoting infection. However, the strategy for subverting antigen‐specific immunity is not well understood. Here, we show that Shigella flexneri invasion plasmid antigen H (IpaH) 4.5, a member of the E3 ubiquitin ligase effector family, targets the proteasome regulatory particle non‐ATPase 13 (RPN13) and induces its degradation via the ubiquitin–proteasome system (UPS). IpaH4.5‐mediated RPN13 degradation causes dysfunction of the 19S regulatory particle (RP) in the 26S proteasome, inhibiting guidance of ubiquitinated proteins to the proteolytically active 20S core particle (CP) of 26S proteasome and thereby suppressing proteasome‐catalysed peptide splicing. This, in turn, reduces antigen cross‐presentation to CD8+ T cells via major histocompatibility complex (MHC) class I in vitro. In RPN13 knockout mouse embryonic fibroblasts (MEFs), loss of RPN13 suppressed CD8+ T cell priming during Shigella infection. Our results uncover the unique tactics employed by Shigella to dampen the antigen‐specific cytotoxic T lymphocyte (CTL) response.  相似文献   

17.
Auxin plays a pivotal role in many facets of plant development. It acts by inducing the interaction between auxin‐responsive [auxin (AUX)/indole‐3‐acetic acid (IAA)] proteins and the ubiquitin protein ligase SCFTIR to promote the degradation of the AUX/IAA proteins. Other cofactors and chaperones that participate in auxin signaling remain to be identified. Here, we characterized rice (Oryza sativa) plants with mutations in a cyclophilin gene (OsCYP2). cyp2 mutants showed defects in auxin responses and exhibited a variety of auxin‐related growth defects in the root. In cyp2 mutants, lateral root initiation was blocked after nuclear migration but before the first anticlinal division of the pericycle cell. Yeast two‐hybrid and in vitro pull‐down results revealed an association between OsCYP2 and the co‐chaperone Suppressor of G2 allele of skp1 (OsSGT1). Luciferase complementation imaging assays further supported this interaction. Similar to previous findings in an Arabidopsis thaliana SGT1 mutant (atsgt1b), degradation of AUX/IAA proteins was retarded in cyp2 mutants treated with exogenous 1‐naphthylacetic acid. Our results suggest that OsCYP2 participates in auxin signal transduction by interacting with OsSGT1.  相似文献   

18.
Dia2 is an F‐box protein, which is involved in the regulation of DNA replication in the budding yeast Saccharomyces cerevisiae. The function of Dia2, however, remains largely unknown. In this study, we report that Dia2 is associated with the replication fork and regulates replication fork progression. Using modified yeast two‐hybrid screening, we have identified components of the replisome (Mrc1, Ctf4 and Mcm2), as Dia2‐binding proteins. Mrc1 and Ctf4 were ubiquitinated by SCFDia2 both in vivo and in vitro. Domain analysis of Dia2 revealed that the leucine‐rich repeat motif was indispensable for the regulation of replisome progression, whereas the tetratricopeptide repeat (TPR) motif was involved in the interaction with replisome components. In addition, the TPR motif was shown to be involved in Dia2 stability; deleting the TPR stabilized Dia2, mimicking the effect of DNA damage. ChIP‐on‐chip analysis illustrated that Dia2 localizes to the replication fork and regulates fork progression on hydroxyurea treatment. These results demonstrate that Dia2 is involved in the regulation of replisome activity through a direct interaction with replisome components.  相似文献   

19.
Epithelial–mesenchymal transition (EMT) is associated with metastasis formation, generation and maintenance of cancer stem cells (CSCs). However, the regulatory mechanisms of CSCs have not been clarified. This study aims to investigate the role of TNF receptor‐associated factor 6 (TRAF6) on EMT and CSC regulation in squamous cell carcinoma of head and neck (SCCHN). We found TRAF6 was overexpressed in human SCCHN tissues, and high TRAF6 expression was associated with lymphatic metastasis and resulted in poor prognosis in patients with SCCHN. In addition, elevated TRAF6 expression was observed in several HNSCC cell lines, and wound healing and transwell assay results showed that TRAF6 knockdown inhibited the migration and invasion ability of the SCCHN cells. Moreover, the expression of Vimentin, Slug and N‐cadherin was down‐regulated and that of E‐cadherin was elevated after TRAF6 knockdown but decreased by transforming growth factor beta 1 (TGF‐β1) and CAL27 similar to mesenchymal cells formed after TGF‐β1 induction. In addition, the expression levels of CD44, ALDH1, KLF4 and SOX2 were inhibited after TRAF6 knockdown, and the anchor‐dependent colony formation number and sphere number were remarkably reduced. Flow cytometry showed TRAF6 knockdown reduced ALDH1‐positive cancer stem cells. We also demonstrated that TRAF6 is closely associated with EMT process and cancer stem cells using a Tgfbr1/Pten 2cKO mice SCCHN model and human SCCHN tissue microarray. Our findings indicate that TRAF6 plays a role in EMT phenotypes, the generation and maintenance of CSCs in SCCHN, suggesting that TRAF6 is a potential therapeutic target for SCCHN.  相似文献   

20.
F‐box proteins function in the recruitment of proteins for SCF ubiquitination and proteasome degradation. Here, we studied the role of Fbp1, a nonessential F‐box protein of the tomato pathogen Fusarium oxysporum f. sp. lycopersici. The Δfbp1 mutant showed a significant delay in the production of wilt symptoms on tomato plants and was impaired in invasive growth on cellophane membranes and on living plant tissue. To search for target proteins recruited by Fbp1, a combination of sodium dodecylsulphate‐polyacrylamide gel electrophoresis (SDS‐PAGE) and matrix‐assisted laser desorption/ionization time‐of‐flight/time‐of‐flight (MALDI‐TOF/TOF) was used to compare proteins in mycelia of the wild‐type and Δfbp1 mutant. The proteomic approach identified 41 proteins differing significantly in abundance between the two strains, 17 of which were more abundant in the Δfbp1 mutant, suggesting a possible regulation by proteasome degradation. Interestingly, several of the identified proteins were related to vesicle trafficking. Microscopic analysis revealed an impairment of the Δfbp1 strain in directional growth and in the structure of the Spitzenkörper, suggesting a role of Fbp1 in hyphal orientation. Our results indicate that Fbp1 regulates protein turnover and pathogenicity in F. oxysporum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号