首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endosperm is an angiosperm innovation central to their reproduction whose development, and thus seed viability, is controlled by genomic imprinting, where expression from certain genes is parent-specific. Unsuccessful imprinting has been linked to failed inter-specific and inter-ploidy hybridization. Despite their importance in plant speciation, the underlying mechanisms behind these endosperm-based barriers remain poorly understood. Here, we describe one such barrier between diploid Mimulus guttatus and tetraploid Mimulus luteus. The two parents differ in endosperm DNA methylation, expression dynamics, and imprinted genes. Hybrid seeds suffer from underdeveloped endosperm, reducing viability, or arrested endosperm and seed abortion when M. guttatus or M. luteus is seed parent, respectively, and transgressive methylation and expression patterns emerge. The two inherited M. luteus subgenomes, genetically distinct but epigenetically similar, are expressionally dominant over the M. guttatus genome in hybrid embryos and especially their endosperm, where paternal imprints are perturbed. In aborted seeds, de novo methylation is inhibited, potentially owing to incompatible paternal instructions of imbalanced dosage from M. guttatus imprints. We suggest that diverged epigenetic/regulatory landscapes between parental genomes induce epigenetic repatterning and global shifts in expression, which, in endosperm, may uniquely facilitate incompatible interactions between divergent imprinting schemes, potentially driving rapid barriers.

Diverged epigenetic/regulatory landscapes between parental genomes result in epigenetic repatterning in hybrids that drive global shifts in endosperm gene expression patterns.  相似文献   

2.
Imprinting is an epigenetic phenomenon referring to allele‐biased expression of certain genes depending on their parent of origin. Accumulated evidence suggests that, while imprinting is a conserved mechanism across kingdoms, the identities of the imprinted genes are largely species‐specific. Using deep RNA sequencing of endosperm 14 days after pollination in sorghum, 5683 genes (29.27% of the total 19 418 expressed genes) were found to harbor diagnostic single nucleotide polymorphisms between two parental lines. The analysis of parent‐of‐origin expression patterns in the endosperm of a pair of reciprocal F1 hybrids between the two sorghum lines led to identification of 101 genes with ≥ fivefold allelic expression difference in both hybrids, including 85 maternal expressed genes (MEGs) and 16 paternal expressed genes (PEGs). Thirty of these genes were previously identified as imprinted in endosperm of maize (Zea mays), rice (Oryza sativa) or Arabidopsis, while the remaining 71 genes are sorghum‐specific imprinted genes relative to these three plant species. Allele‐biased expression of virtually all of the 14 tested imprinted genes (nine MEGs and five PEGs) was validated by pyrosequencing using independent sources of RNA from various developmental stages and dissected parts of endosperm. Forty‐six imprinted genes (30 MEGs and 16 PEGs) were assayed by quantitative RT–PCR, and the majority of them showed endosperm‐specific or preferential expression relative to embryo and other tissues. DNA methylation analysis of the 5’ upstream region and gene body for seven imprinted genes indicated that, while three of the four PEGs were associated with hypomethylation of maternal alleles, no MEG was associated with allele‐differential methylation.  相似文献   

3.
Epigenetic Resetting of a Gene Imprinted in Plant Embryos   总被引:1,自引:0,他引:1  
Genomic imprinting resulting in the differential expression of maternal and paternal alleles in the fertilization products has evolved independently in placental mammals and flowering plants. In most cases, silenced alleles carry DNA methylation [1]. Whereas these methylation marks of imprinted genes are generally erased and reestablished in each generation in mammals [2], imprinting marks persist in endosperms [3], the sole tissue of reported imprinted gene expression in plants. Here we show that the maternally expressed in embryo 1 (mee1) gene of maize is imprinted in both the embryo and endosperm and that parent-of-origin-specific expression correlates with differential allelic methylation. This epigenetic asymmetry is maintained in the endosperm, whereas the embryonic maternal allele is demethylated on fertilization and remethylated later in embryogenesis. This report of imprinting in the plant embryo confirms that, as in mammals, epigenetic mechanisms operate to regulate allelic gene expression in both embryonic and extraembryonic structures. The embryonic methylation profile demonstrates that plants evolved a mechanism for resetting parent-specific imprinting marks, a necessary prerequisite for parent-of-origin-dependent gene expression in consecutive generations. The striking difference between the regulation of imprinting in the embryo and endosperm suggests that imprinting mechanisms might have evolved independently in both fertilization products of flowering plants.  相似文献   

4.
The genome‐wide characterization of long non‐coding RNA (lncRNA) in insects demonstrates their importance in fundamental biological processes. Essentially, an in‐depth understanding of the functional repertoire of lncRNA in insects is pivotal to insect resources utilization and sustainable pest control. Using a custom bioinformatics pipeline, we identified 1861 lncRNAs encoded by 1852 loci in the Sogatella furcifera genome. We profiled lncRNA expression in different developmental stages and observed that the expression of lncRNAs is more highly temporally restricted compared to protein‐coding genes. More up‐regulated Sogatella furcifera lncRNA expressed in the embryo, 4th and 5th instars, suggesting that increased lncRNA levels may play a role in these developmental stages. We compared the relationship between the expression of Sogatella furcifera lncRNA and its nearest protein gene and found that lncRNAs were more correlated to their downstream coding neighbors on the opposite strand. Our genome‐wide profiling of lncRNAs in Sogatella furcifera identifies exciting candidates for characterization of lncRNAs, and also provides information on lncRNA regulation during insect development.  相似文献   

5.
张美善  刘宝 《植物学报》2012,47(2):101-110
被子植物的种子发育从双受精开始, 产生二倍体的胚和三倍体的胚乳。在种子发育和萌发过程中, 胚乳向胚组织提供营养物质, 因此胚乳对胚和种子的正常生长发育至关重要。开花植物发生基因组印迹的主要器官是胚乳。印迹基因的表达受表观遗传学机制的调控, 包括DNA甲基化和组蛋白H3K27甲基化修饰以及依赖于PolIV的siRNAs (p4-siRNAs)调控。基因组印迹的表观遗传学调控对胚乳的正常发育和种子育性具有不可或缺的重要作用。最新研究显示, 胚乳的整个基因组DNA甲基化水平降低, 而且去甲基化作用可能源于雌配子体的中央细胞。该文综述了种子发育的表观遗传学调控机制, 包括基因组印迹机制以及胚乳基因组DNA甲基化变化研究的最新进展。  相似文献   

6.
7.
The endosperm is a seed tissue unique to flowering plants. Due to its central role in nourishing and protecting the embryo, endosperm development is subject to parental conflicts and adaptive processes, which led to the evolution of parent-of-origin-dependent gene regulation. The role of higher-order chromatin organization in regulating the endosperm genome was long ignored due to technical hindrance. We developed a combination of approaches to analyze nuclear structure and chromatin organization in Arabidopsis thaliana endosperm. Endosperm nuclei showed a less condensed chromatin than other types of nuclei and a peculiar heterochromatin organization, with smaller chromocenters and additional heterochromatic foci interspersed in euchromatin. This is accompanied by a redistribution of the heterochromatin mark H3K9me1 from chromocenters toward euchromatin and interspersed heterochromatin. Thus, endosperm nuclei have a specific nuclear architecture and organization, which we interpret as a relaxed chromocenter-loop model. The analysis of endosperm with altered parental genome dosage indicated that the additional heterochromatin may be predominantly of maternal origin, suggesting differential regulation of maternal and paternal genomes, possibly linked to genome dosage regulation.  相似文献   

8.
9.
10.
11.
Polyploidization, as a significant evolution force, has been considered to facilitate plant diversity. The expression levels of lncRNAs and how they control the expression of protein‐coding genes in allopolyploids remain largely unknown. In this study, lncRNA expression profiles were compared between Brassica hexaploid and its parents using a high‐throughput sequencing approach. A total of 2,725, 1,672, and 2,810 lncRNAs were discovered in Brassica rapa, Brassica carinata, and Brassica hexaploid, respectively. It was also discovered that 725 lncRNAs were differentially expressed between Brassica hexaploid and its parents, and 379 lncRNAs were nonadditively expressed in this hexaploid. LncRNAs have multiple expression patterns between Brassica hexaploid and its parents and show paternal parent‐biased expression. These lncRNAs were found to implement regulatory functions directly in the long‐chain form, and acted as precursors or targets of miRNAs. According to the prediction of the targets of differentially expressed lncRNAs, 109 lncRNAs were annotated, and their target genes were involved in the metabolic process, pigmentation, reproduction, exposure to stimulus, biological regulation, and so on. Compared with the paternal parent, differentially expressed lncRNAs between Brassica hexaploid and its maternal parent participated in more regulation pathways. Additionally, 61 lncRNAs were identified as putative targets of known miRNAs, and 15 other lncRNAs worked as precursors of miRNAs. Some conservative motifs of lncRNAs from different groups were detected, which indicated that these motifs could be responsible for their regulatory roles. Our findings may provide a reference for the further study of the function and action mechanisms of lncRNAs during plant evolution.  相似文献   

12.
GATA proteins are considered to be broadly involved in yield associated biological process, such as photoresponse, chlorophyll biosynthesis, and carbon and nitrogen metabolism. Based on castor bean genome database, a total of 19 GATA genes were identified and classified into 4 subfamilies according to gene structure, protein structure and their phylogenetic relationships. Results exhibited that GATA factors were hydrophilic proteins. Analysis of gene structure and protein structure revealed the conserved structural features of GATA factors between castor bean and Arabidopsis thaliana. The high throughput RNA seq data were used to define the expressional profiles of GATA genes among tissues. The results showed that most of the castor GATA genes preferentially expressed in leaf and root in contrast to their expression in developing seeds. In particular, the expression of GATA genes responding to darkness treatment in leaves was detected using semi quantitative RT PCR. It was shown that expression of three genes was down regulated under darkness treatment, which suggests a role for GATA genes of castor bean in light mediated regulation. These results provide important theoretical basis to the functions identification of castor GATA genes and increase castor yields.  相似文献   

13.
14.
Sokolov VA 《Genetika》2006,42(9):1250-1260
This review discusses the modern issues in epigenetic regulation in plants related to the imprinting at the levels of genome, locus, and gene. The data described follow the historical order: from the beginning of research into non-crossability of plant forms with different ploidies to the recent communications about allelic imprinting at r1 locus of maize and the control of synthesis of storage proteins with a high forage value. The classical experiments of Kermicle and Lin on the cytogenetic confirmation of the role of parental genome ratio in the endosperm in a successful development of viable caryopses are described in detail. Uniqueness of the experimental technique used by these authors is emphasized. The variants for overcoming the effect of imprinted signal in apomicts and plants with a tetrasporic embryo sac are considered. A considerable attention is paid to the imprinting in the species with polyploid series and to the hypothesis of endosperm balance number. The issues of potential practical application of imprinting in breeding practice are discussed. The results obtained in this direction demonstrate the ways to increase the forage value of maize zeins.  相似文献   

15.
16.
Genomic imprinting affects a subset of genes in mammals and results in a monoallelic, parental-specific expression pattern. Most of these genes are located in clusters that are regulated through the use of insulators or long noncoding RNAs (lncRNAs). To distinguish the parental alleles, imprinted genes are epigenetically marked in gametes at imprinting control elements through the use of DNA methylation at the very least. Imprinted gene expression is subsequently conferred through lncRNAs, histone modifications, insulators, and higher-order chromatin structure. Such imprints are maintained after fertilization through these mechanisms despite extensive reprogramming of the mammalian genome. Genomic imprinting is an excellent model for understanding mammalian epigenetic regulation.  相似文献   

17.
Some genes in mammals and flowering plants are subject to parental imprinting, a process by which differential epigenetic marks are imposed on male and female gametes so that one set of alleles is silenced on chromosomes contributed by the mother while another is silenced on paternal chromosomes. Therefore, each genome contributes a different set of active alleles to the offspring, which develop abnormally if the parental genome balance is disturbed. In Arabidopsis, seeds inheriting extra maternal genomes show distinctive phenotypes such as low weight and inhibition of mitosis in the endosperm, while extra paternal genomes result in reciprocal phenotypes such as high weight and endosperm overproliferation. DNA methylation is known to be an essential component of the parental imprinting mechanism in mammals, but there is less evidence for this in plants. For the present study, seed development was examined in crosses using a transgenic Arabidopsis line with reduced DNA methylation. Crosses between hypomethylated and wild-type diploid plants produced similar seed phenotypes to crosses between plants with normal methylation but different ploidies. This is consistent with a model in which hypomethylation of one parental genome prevents silencing of alleles that would normally be active only when inherited from the other parent - thus phenocopying the effects of extra genomes. These results suggest an important role for methylation in parent-of-origin effects, and by inference parental imprinting, in plants. The phenotype of biparentally hypomethylated seeds is less extreme than the reciprocal phenotypes of uniparentally hypomethylated seeds. The observation that development is less severely affected if gametes of both sexes (rather than just one) are 'neutralized' with respect to parent-of-origin effects supports the hypothesis that parental imprinting is not necessary to regulate development.  相似文献   

18.
DNA甲基化在动植物遗传育种中的研究进展   总被引:1,自引:0,他引:1  
DNA甲基化是真核生物表观遗传学重要的机制之一,对基因转录水平的表达具有重要的调控作用。近年来,DNA甲基化在动植物遗传育种领域的研究引起了人们广泛的关注。我们从DNA甲基化与基因的表达调控、动植物基因组的甲基化状态、甲基敏感扩增片段多态性方法、DNA甲基化与杂种优势,以及DNA甲基化与分子标记等方面,简要综述了国内外有关DNA甲基化在动植物遗传育种研究中的进展,着重于全基因组DNA甲基化模式在动植物遗传育种中的相关研究和应用。  相似文献   

19.
20.
Genomic imprinting causes the expression of an allele depending on its parental origin. In plants, most imprinted genes have been identified in Arabidopsis endosperm, a transient structure consumed by the embryo during seed formation. We identified imprinted genes in rice seed where both the endosperm and embryo are present at seed maturity. RNA was extracted from embryos and endosperm of seeds obtained from reciprocal crosses between two subspecies Nipponbare (Japonica rice) and 93-11 (Indica rice). Sequenced reads from cDNA libraries were aligned to their respective parental genomes using single-nucleotide polymorphisms (SNPs). Reads across SNPs enabled derivation of parental expression bias ratios. A continuum of parental expression bias states was observed. Statistical analyses indicated 262 candidate imprinted loci in the endosperm and three in the embryo (168 genic and 97 non-genic). Fifty-six of the 67 loci investigated were confirmed to be imprinted in the seed. Imprinted loci are not clustered in the rice genome as found in mammals. All of these imprinted loci were expressed in the endosperm, and one of these was also imprinted in the embryo, confirming that in both rice and Arabidopsis imprinted expression is primarily confined to the endosperm. Some rice imprinted genes were also expressed in vegetative tissues, indicating that they have additional roles in plant growth. Comparison of candidate imprinted genes found in rice with imprinted candidate loci obtained from genome-wide surveys of imprinted genes in Arabidopsis to date shows a low degree of conservation, suggesting that imprinting has evolved independently in eudicots and monocots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号