首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 0 毫秒
1.
2.
Microcephaly genes are amongst the most intensively studied genes with candidate roles in brain evolution. Early controversies surrounded the suggestion that they experienced differential selection pressures in different human populations, but several association studies failed to find any link between variation in microcephaly genes and brain size in humans. Recently, however, sex‐dependent associations were found between variation in three microcephaly genes and human brain size, suggesting that these genes could contribute to the evolution of sexually dimorphic traits in the brain. Here, we test the hypothesis that microcephaly genes contribute to the evolution of sexual dimorphism in brain mass across anthropoid primates using a comparative approach. The results suggest a link between selection pressures acting on MCPH1 and CENPJ and different scores of sexual dimorphism.  相似文献   

3.
4.
Eusocial insects offer a unique opportunity to analyze the evolution of body size differences between sexes in relation to social environment. The workers, being sterile females, are not subject to selection for reproductive function providing a natural control for parsing the effects of selection on reproductive function (i.e., sexual and fecundity selection) from other kinds of natural selection. Patterns of sexual size dimorphism (SSD) and testing of Rensch's rule controlling for phylogenetic effects were analyzed in the Meliponini or stingless bees. Theory predicts that queens may exhibit higher selection for fecundity in eusocial taxa, but contrary to this, we found mixed patterns of SSD in Meliponini. Non‐Melipona species generally have a female‐biased SSD, while all analyzed species of Melipona showed a male‐biased SSD, indicating that the direction and magnitude of the selective pressures do not operate in the same way for all members of this taxon. The phylogenetic regressions revealed that the rate of divergence has not differed between the two castes of females and the males, that is, stingless bees do not seem to follow Rensch's rule (a slope >1), adding this highly eusocial taxon to the various solitary insect taxa not conforming with it. Noteworthy, when Melipona was removed from the analysis, the phylogenetic regressions for the thorax width of males on queens had a slope significantly smaller than 1, suggesting that the evolutionary divergence has been larger in queens than males, and could be explained by stronger selection on female fecundity only in non‐Melipona species. Our results in the stingless bees question the classical explanation of female‐biased SSD via fecundity and provide a first evidence of a more complex determination of SSD in highly eusocial species. We suggest that in highly eusocial taxa, additional selection mechanisms, possibly related to individual and colonial interests, could influence the evolution of environmentally determined traits such as body size.  相似文献   

5.
Analyses of the mitochondrial cox1, the nuclear‐encoded large subunit (LSU), and the internal transcribed spacer 2 (ITS2) RNA coding region of Pseudo‐nitzschia revealed that the P. pseudodelicatissima complex can be phylogenetically grouped into three distinct clades (Groups I–III), while the P. delicatissima complex forms another distinct clade (Group IV) in both the LSU and ITS2 phylogenetic trees. It was elucidated that comprehensive taxon sampling (sampling of sequences), selection of appropriate target genes and outgroup, and alignment strategies influenced the phylogenetic accuracy. Based on the genetic divergence, ITS2 resulted in the most resolved trees, followed by cox1 and LSU. The morphological characters available for Pseudo‐nitzschia, although limited in number, were overall in agreement with the phylogenies when mapped onto the ITS2 tree. Information on the presence/absence of a central nodule, number of rows of poroids in each stria, and of sectors dividing the poroids mapped onto the ITS2 tree revealed the evolution of the recently diverged species. The morphologically based species complexes showed evolutionary relevance in agreement with molecular phylogeny inferred from ITS2 sequence–structure data. The data set of the hypervariable region of ITS2 improved the phylogenetic inference compared to the cox1 and LSU data sets. The taxonomic status of P. cuspidata and P. pseudodelicatissima requires further elucidation.  相似文献   

6.
Sexual size dimorphism (SSD) evolves because body size is usually related to reproductive success through different pathways in females and males. Female body size is strongly correlated with fecundity, while in males, body size is correlated with mating success. In many lizard species, males are larger than females, whereas in others, females are the larger sex, suggesting that selection on fecundity has been stronger than sexual selection on males. As placental development or egg retention requires more space within the abdominal cavity, it has been suggested that females of viviparous lizards have larger abdomens or body size than their oviparous relatives. Thus, it would be expected that females of viviparous species attain larger sizes than their oviparous relatives, generating more biased patterns of SSD. We test these predictions using lizards of the genus Sceloporus. After controlling for phylogenetic effects, our results confirm a strong relationship between female body size and fecundity, suggesting that selection for higher fecundity has had a main role in the evolution of female body size. However, oviparous and viviparous females exhibit similar sizes and allometric relationships. Even though there is a strong effect of body size on female fecundity, once phylogenetic effects are considered, we find that the slope of male on female body size is significantly larger than one, providing evidence of greater evolutionary divergence of male body size. These results suggest that the relative impact of sexual selection acting on males has been stronger than fecundity selection acting on females within Sceloporus lizards.  相似文献   

7.
We used molecular characters to infer the phylogenetic position of the Western Mediterranean bushcricket genus Odontura and to trace its high karyotype diversity. Analysis of 1391 base pairs of two mitochondrial genes (COI and ND1) and one nuclear sequence (ITS2) was conducted. Phylogenetic topologies were estimated using maximum parsimony, maximum likelihood and likelihood‐based Bayesian inference. The genus Odontura is a phylogenetic outlier in respect of all other European Phaneropterinae genera and has been proposed to have originated from a hitherto unknown ancestor. Our results support the monophyly of the genus Odontura and the recognition of two subgenera: Odontura and Odonturella. We found that both Sicilian taxa of the subgenus Odontura have a completely identical morphology and song patterns. Combining these results, we proposed that both should be treated as subspecies: O. (Odontura) stenoxypha stenoxypha and O. (O.) st. arcuata. Bioacoustic data also proved to support independent markers, with song characteristics reflecting the molecular topology. Mapping the karyotypic characters onto the phylogenetic tree allows a reconstruction of the directions and transitional stages of chromosome differentiation. The number of autosomes within the genus Odontura ranges from 26 to 30. In addition to the ancestral X0 sex determination mechanism, neo‐XY and neo‐X1X2Y sex chromosomes have evolved independently.  相似文献   

8.
Central pattern generators play a critical role in the neural control of rhythmic behaviors. One of their characteristic features is the ability to modulate the oscillatory output. An important yet little‐studied type of modulation involves the generation of oscillations that are sexually dimorphic in frequency. In the weakly electric fish Apteronotus leptorhynchus, the pacemaker nucleus serves as a central pattern generator that drives the electric organ discharge of the fish in a one‐to‐one fashion. Males discharge at higher frequencies than females—a sexual dimorphism that develops under the influence of steroid hormones. The two principal neurons that constitute the oscillatory network of the pacemaker nucleus are the pacemaker and relay cells. Whereas the number and size of the pacemaker and relay cells are sexually monomorphic, pronounced sex‐dependent differences exist in the morphology, and subcellular properties of astrocytes, which form a syncytium closely associated with these neurons. In females, compared to males, the astrocytic syncytium covers a larger area surrounding the pacemaker and relay cells and exhibits higher levels of expression of connexin‐43 expression. The latter indicates a strong gap‐junction coupling of the individual cells within the syncytium. It is hypothesized that these sex‐specific differences result in an increased capacity for buffering of extracellular potassium ions, thereby lowering the potassium equilibrium potential, which, in turn, leads to a decrease in the oscillation frequency. This hypothesis has received strong support from simulations based on computational models of individual neurons and the whole neural network of the pacemaker nucleus.  相似文献   

9.
Sexual selection can drive rapid evolutionary change in reproductive behaviour, morphology and physiology. This often leads to the evolution of sexual dimorphism, and continued exaggerated expression of dimorphic sexual characteristics, although a variety of other alternative selection scenarios exist. Here, we examined the evolutionary significance of a rapidly evolving, sexually dimorphic trait, sex comb tooth number, in two Drosophila species. The presence of the sex comb in both D. melanogaster and D. pseudoobscura is known to be positively related to mating success, although little is yet known about the sexually selected benefits of sex comb structure. In this study, we used experimental evolution to test the idea that enhancing or eliminating sexual selection would lead to variation in sex comb tooth number. However, the results showed no effect of either enforced monogamy or elevated promiscuity on this trait. We discuss several hypotheses to explain the lack of divergence, focussing on sexually antagonistic coevolution, stabilizing selection via species recognition and nonlinear selection. We discuss how these are important, but relatively ignored, alternatives in understanding the evolution of rapidly evolving sexually dimorphic traits.  相似文献   

10.
The availability of fruits is critical for tropical forests, where the majority of plant species rely upon animal vectors for seed dispersal. However, we do not know how fruit production is temporally distributed over species and families. Two plant families are particularly important in floristic inventories of Atlantic rain forests: Arecaceae, a few species of which are highly abundant; and Myrtaceae, which is abundant and displays outstanding species diversity. In this context, we asked whether hyperdominance occurs in fruit production in the Atlantic rain forest, and whether it occurs in the abundant species of Arecaceae and Myrtaceae. We investigated whether the temporal fruit production patterns differ between Myrtaceae, Arecaceae, and the plant community as a whole. We also applied a functional dispersion index to assess the temporal fruit diversity over a 2‐yr period, with regard to morphological and phenological traits. We found that the phenomenon of hyperdominance occurs in fruit production: five species accounted for more than half of the pulp biomass. Arecaceae fruit biomass peaked at the end of wet season, overlapping with the community peak; whereas Myrtaceae species fruited throughout the year and were an important resource during periods of food scarcity. Myrtaceae filled more of the fruit morphospace over time because their fruits exhibit a large range of morphologies and phenological strategies. Our results demonstrated the importance of combining phenology and fruit morphology in the evaluation of resource availability, which revealed periods of high fruit diversity that could support a range of frugivore sizes and maintain overall ecosystem functionality.  相似文献   

11.
β‐Glucosidases (BG) are present in many plant tissues. Among these, abscisic acid (ABA) β‐glucosidases are thought to take part in the adjustment of cellular ABA levels, however the role of ABA‐BG in fruits is still unclear. In this study, through RNA‐seq analysis of persimmon fruit, 10 full‐length DkBG genes were isolated and were all found to be expressed. In particular, DkBG1 was highly expressed in persimmon fruits with a maximum expression 95 days after full bloom (DAFD). We verified that, in vitro, DkBG1 protein can hydrolyze ABA‐glucose ester (ABA‐GE) to release free ABA. Compared with wild‐type, tomato plants that overexpressed DkBG1 significantly upregulated the expression of ABA receptor PYL3/7 genes and showed typical symptoms of ABA hypersensitivity in fruits. DkBG1 overexpression (DkBG1‐OE) accelerated fruit ripening onset by 3–4 days by increasing ABA levels at the pre‐breaker stage and induced early ethylene release compared with wild‐type fruits. DkBG1‐OE altered the expression of ripening regulator NON‐RIPENING (NOR) and its target genes; this in turn altered fruit quality traits such as coloration. Our results demonstrated that DkBG1 plays an important role in fruit ripening and quality by adjusting ABA levels via hydrolysis of ABA‐GE.  相似文献   

12.
13.
14.
Recently, Schroeder et al. (2010, Ibis 152: 368–377) suggested that intronic variation in the CHD1‐Z gene of Black‐tailed Godwits breeding in southwest Friesland, The Netherlands, correlated with fitness components. Here we re‐examine this surprising result using an expanded dataset (2088 birds sampled from 2004 to 2010 vs. 284 birds from 2004 to 2007). We find that the presence of the Z* allele (9% of the birds) is not associated with breeding habitat type, egg size, adult survival, adult body mass or adult body condition. The results presented here, when used in synergy with the previously reported results by Schroeder et al., suggest that there might be a tendency towards female adults with the Z* allele laying earlier clutches than adult females without the Z* allele. The occurrence of the Z* allele was also associated with a higher chick body mass and return rate. Chicks with the Z* allele that had hatched early in the breeding season were heavier at birth than chicks without the Z* allele and chicks with the Z* allele that had hatched late. Collectively, the results suggest that variation in the CHD1‐Z gene may indeed have arisen as a byproduct of selection acting on females during the egg fase and on chicks during the rearing stages of the reproductive cycle.  相似文献   

15.
16.
Photosynthetic assimilation of CO2 in plants results in the balance between the photochemical energy developed by light in chloroplasts, and the consumption of that energy by the oxygenation processes, mainly the photorespiration in C3 plants. The analysis of classical biological models shows the difficulties to bring to fore the oxygenation rate due to the photorespiration pathway. As for other parameters, the most important key point is the estimation of the electron transport rate (ETR or J), i.e. the flux of biochemical energy, which is shared between the reductive and oxidative cycles of carbon. The only reliable method to quantify the linear electron flux responsible for the production of reductive energy is to directly measure the O2 evolution by 18O2 labelling and mass spectrometry. The hypothesis that the respective rates of reductive and oxidative cycles of carbon are only determined by the kinetic parameters of Rubisco, the respective concentrations of CO2 and O2 at the Rubisco site and the available electron transport rate, ultimately leads to propose new expressions of biochemical model equations. The modelling of 18O2 and 16O2 unidirectional fluxes in plants shows that a simple model can fit the photosynthetic and photorespiration exchanges for a wide range of environmental conditions. Its originality is to express the carboxylation and the oxygenation as a function of external gas concentrations, by the definition of a plant specificity factor Sp that mimics the internal reactions of Rubisco in plants. The difference between the specificity factors of plant (Sp) and of Rubisco (Sr) is directly related to the conductance values to CO2 transfer between the atmosphere and the Rubisco site. This clearly illustrates that the values and the variation of conductance are much more important, in higher C3 plants, than the small variations of the Rubisco specificity factor. The simple model systematically expresses the reciprocal variations of carboxylation and oxygenation exchanges illustrated by a “mirror effect”. It explains the protective sink effect of photorespiration, e.g. during water stress. The importance of the CO2 compensation point, in classical models, is reduced at the benefit of the crossing points Cx and Ox, concentration values where carboxylation and oxygenation are equal or where the gross O2 uptake is half of the gross O2 evolution. This concept is useful to illustrate the feedback effects of photorespiration in the atmosphere regulation. The constancy of Sp and of Cx for a great variation of P under several irradiance levels shows that the regulation of the conductance maintains constant the internal CO2 and the ratio of photorespiration to photosynthesis (PR/P). The maintenance of the ratio PR/P, in conditions of which PR could be reduced and the carboxylation increased, reinforces the hypothesis of a positive role of photorespiration and its involvement in the plant-atmosphere co-evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号