首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Drosophila melanogaster is attracted to chemicals produced by fermentation and it is abundantly found in rotten fruits. Considering its habitat, the fruit fly is reported to be tolerant to environmental chemicals. Quantitative real‐time polymerase chain reaction was employed to investigate the expression pattern and physiological function of genes putatively involved in chemical detoxification. In quantitative real‐time polymerase chain reaction assays, normalization of target gene expression with internal reference genes is required. These reference genes should be stably expressed during chemical exposure and in chemical‐free conditions. In this study, therefore, we used two programs (geNorm and BestKeeper) to evaluate the expression stability of five reference genes (nd, rpL18, ef1β, hsp22 and tbp) in female adult flies exposed to various concentrations of methanol and ethyl acetate. Four genes (nd, rpL18, ef1β and tbp) were found to be suitable for use as reference genes in methanol‐treated flies and three genes (ef1β, nd, tbp) were found to be suitable for use as reference genes in ethyl acetate‐treated flies. These results suggested that a combination of two genes among these stably expressed genes can be used for accurate normalization of target gene expression in quantitative real‐time polymerase chain reaction‐based determination of gene expression profiles in D. melanogaster treated with both chemicals.  相似文献   

3.
Microalgae are promising feedstock for biofuels yet mechanistic probing of their cellular network and industrial strain development have been hindered by lack of genome‐editing tools. Nannochloropsis spp. are emerging model microalgae for scalable oil production and carbon sequestration. Here we established a CRISPR/Cas9‐based precise genome‐editing approach for the industrial oleaginous microalga Nannochloropsis oceanica, using nitrate reductase (NR; g7988) as example. A new screening procedure that compares between restriction enzyme‐digested nested PCR (nPCR) products derived from enzyme‐digested and not‐digested genomic DNA of transformant pools was developed to quickly, yet reliably, detect genome‐engineered mutants. Deep sequencing of nPCR products directly amplified from pooled genomic DNA revealed over an 1% proportion of 5‐bp deletion mutants and a lower frequency of 12‐bp deletion mutants, with both types of editing precisely located at the targeted site. The isolated mutants, in which precise deletion of five bases caused a frameshift in NR translation, grow normally under NH4Cl but fail to grow under NaNO3, and thus represent a valuable chassis strain for transgenic‐strain development. This demonstration of CRISPR/Cas9‐based genome editing in industrial microalgae opens many doors for microalgae‐based biotechnological applications.  相似文献   

4.
Manipulation of viral genomes is essential for studying viral gene function and utilizing viruses for therapy. Several techniques for viral genome engineering have been developed. Homologous recombination in virus‐infected cells has traditionally been used to edit viral genomes; however, the frequency of the expected recombination is quite low. Alternatively, large viral genomes have been edited using a bacterial artificial chromosome (BAC) plasmid system. However, cloning of large viral genomes into BAC plasmids is both laborious and time‐consuming. In addition, because it is possible for insertion into the viral genome of drug selection markers or parts of BAC plasmids to affect viral function, artificial genes sometimes need to be removed from edited viruses. Herpes simplex virus (HSV), a common DNA virus with a genome length of 152 kbp, causes labialis, genital herpes and encephalitis. Mutant HSV is a candidate for oncotherapy, in which HSV is used to kill tumor cells. In this study, the clustered regularly interspaced short palindromic repeat‐Cas9 system was used to very efficiently engineer HSV without inserting artificial genes into viral genomes. Not only gene‐ablated HSV but also gene knock‐in HSV were generated using this method. Furthermore, selection with phenotypes of edited genes promotes the isolation efficiencies of expectedly mutated viral clones. Because our method can be applied to other DNA viruses such as Epstein–Barr virus, cytomegaloviruses, vaccinia virus and baculovirus, our system will be useful for studying various types of viruses, including clinical isolates.  相似文献   

5.
6.
7.
Recanalization therapy by intravenous thrombolysis or endovascular therapy is critical for the treatment of cerebral infarction. However, the recanalization treatment will also exacerbate acute brain injury and even severely threatens human life due to the reperfusion injury. So far, the underlying mechanisms for cerebral ischaemia‐reperfusion injury are poorly understood and effective therapeutic interventions are yet to be discovered. Therefore, in the research, we subjected SK‐N‐BE(2) cells to oxygen‐glucose deprivation/reperfusion (OGDR) insult and performed a pooled genome‐wide CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR‐associated protein 9) knockout screen to discover new potential therapeutic targets for cerebral ischaemia‐reperfusion injury. We used Metascape to identify candidate genes which might involve in OGDR resistance. We found that the genes contributed to OGDR resistance were primarily involved in neutrophil degranulation, mitochondrial translation, and regulation of cysteine‐type endopeptidase activity involved in apoptotic process and response to oxidative stress. We then knocked down some of the identified candidate genes individually. We demonstrated that MRPL19, MRPL32, MRPL52 and MRPL51 inhibition increased cell viability and attenuated OGDR‐induced apoptosis. We also demonstrated that OGDR down‐regulated the expression of MRPL19 and MRPL51 protein. Taken together, our data suggest that genome‐scale screening with Cas9 is a reliable tool to analyse the cellular systems that respond to OGDR injury. MRPL19 and MRPL51 contribute to OGDR resistance and are supposed to be promising targets for the treatment of cerebral ischaemia‐reperfusion damage.  相似文献   

8.
9.
The green peach aphid, Myzus persicae Sulzer (Hemiptera, Aphididae), is an important cosmopolitan pest. Real time qRT‐PCR has been used for target gene expression analysis on M. persicae. Using real time qRT‐PCR, the expression levels are normalized on the basis of the reliable reference genes. However, to date, the stability of available reference genes has been insufficient. In this study, we evaluated nine candidate reference genes from M. persicae under diverse experimental conditions. The tested candidate genes were comprehensively ranked based on five alternative methods (RefFinder, geNorm, Normfinder, BestKeeper and the comparative ΔCt method). 18s, Actin and ribosomal protein L27 (L27) were recommended as the most stable reference genes for M. persicae, whereas ribosomal protein L27 (L27) was found to be the least stable reference genes for abiotic studies (photoperiod, temperature and insecticide susceptibility). Our finding not only sheds light on establishing an accurate and reliable normalization of real time qRT‐PCR data in M. persicae but also lays a solid foundation for further studies of M. persicae involving RNA interference and functional gene research.  相似文献   

10.
RNA editing in plants, animals, and humans modifies genomically encoded cytidine or adenosine nucleotides to uridine or inosine, respectively, in mRNAs. We customized the MassARRAY System (Sequenom Inc., San Diego, CA, USA, www.sequenom.com ) to assay multiplex PCR‐amplified single‐stranded cDNAs and easily analyse and display the captured data. By using appropriate oligonucleotide probes, the method can be tailored to any organism and gene where RNA editing occurs. Editing extent of up to 40 different nucleotides in each of either 94 or 382 different samples (3760 or 15 280 editing targets, respectively) can be examined by assaying a single plate and by performing one repetition. We have established this mass spectrometric method as a dependable, cost‐effective and time‐saving technique to examine the RNA editing efficiency at 37 Arabidopsis thaliana chloroplast editing sites at a high level of multiplexing. The high‐throughput editing assay, named Multiplex RT‐PCR Mass Spectrometry (MRMS), is ideal for large‐scale experiments such as identifying population variation, examining tissue‐specific changes in editing extent, or screening a mutant or transgenic collection. Moreover, the required amount of starting material is so low that RNA from fewer than 50 cells can be examined without amplification. We demonstrate the use of the method to identify natural variation in editing extent of chloroplast C targets in a collection of Arabidopsis accessions.  相似文献   

11.
12.

Background

The aims of this study were to develop and validate a multiplex real‐time polymerase chain reaction (q‐PCR) assay of Helicobacter pylori in stool samples of healthy children. Additionally, we determined the prevalence of clarithromycin resistance and cagA gene in H. pylori‐positive samples.

Materials and methods

Archived stool samples from 188 children aged 6‐9 years and 272 samples of 92 infants aged 2‐18 months were tested for H. pylori antigens using enzyme immunoassay (EIA). A multiplex q‐PCR assay was designed to detect H. pylori 16S rRNA and urease and the human RNase P gene as an internal control. Kappa coefficient was calculated to assess the agreement between q‐PCR and EIA.

Results

Laboratory validation of the q‐PCR assay using quantitated H. pylori ATCC 43504 extracted DNA showed S‐shaped amplification curves for all genes; the limit of detection was 1 CFU/reaction. No cross‐reactivity with other bacterial pathogens was noted. Applying the multiplex q‐PCR to DNA extracted from fecal samples showed clear amplification curves for urease gene, but not for 16S rRNA. The prevalence of H. pylori infection was 50% (95% CI 43%‐57%) by q‐PCR (urease cycle threshold <44) vs 59% (95% CI 52%‐66%) by EIA. Kappa coefficient was .80 (P < .001) and .44 (P < .001) for children aged 6‐9 years and 2‐18 months, respectively. Sixteen samples were positive for cagA and three were positive for clarithromycin resistance mutation (A2143G) as confirmed by sequencing.

Conclusions

The developed q‐PCR can be used as a cotechnique to enhance the accuracy of H. pylori detection in epidemiological studies and in clinical settings.  相似文献   

13.
In this study, Streptococcus gordonii‐specific quantitative real‐time polymerase chain reaction (qPCR) primers, RTSgo‐F2/RTSgo‐R2, were developed based on the nucleotide sequences of RNA polymerase β‐subunit gene (rpoB). The specificity of the RTSgo‐F2/RTSgo‐R2 primers was assessed by conventional PCR on 99 strains comprising 63 oral bacterial species, including the type strain and eight clinical isolates of S. gordonii. PCR products were amplified from the genomic DNAs of only S. gordonii strains. The qPCR primers were able to detect as little as 40 fg of S. gordonii genomic DNA at a cycle threshold value of 33. These findings suggest that these qPCR primers detect S. gordonii with high specificity and sensitivity.  相似文献   

14.
Viruses are essentially composed of a nucleic acid (segmented or not, DNA, or RNA) and a protein coat. Despite their simplicity, these small pathogens are responsible for significant economic and humanitarian losses that have had dramatic consequences in the course of human history. Since their discovery, scientists have developed different strategies to efficiently detect viruses, using all possible viral features. Viruses shape, proteins, and nucleic acid are used in viral detection. In this review, the development of these techniques, especially for plant and mammalian viruses, their strengths and weaknesses as well as the latest cutting‐edge technologies that may be playing important roles in the years to come are described.  相似文献   

15.
16.
  • 1 Neodiprion sertifer nucleopolyhedrovirus (NeseNPV) is widely used as a viral bio‐insecticide against larvae of the European pine sawfly N. sertifer (Geoff.) (Hymenoptera: Diprionidae), which is one of the most harmful defoliators of pines in Northern Europe. A major obstacle to studying this pathogenic virus in nature is the difficulty of confirming and quantifying the presence of NeseNPV.
  • 2 In the present study, we developed real‐time polymerase chain reaction (PCR) primers, based on the caspid gene 39 sequence, for the specific and quantitative detection of NeseNPV. The quantitative real‐time PCR (qPCR) assay can detect virus from any substrate tested, including different insect life stages (egg, larval, adult), pine foliage, and litter or ground vegetation. The reproducible detection limit for the real‐time assay is 0.013 pg of viral DNA (0.013×10?12 g), corresponding to 136 viral genomes or approximately one to seven virus occlusion bodies per sample.
  • 3 qPCR is a specific, quantitative, sensitive, reliable and flexible procedure, and is a good supplement to conventional microscopy‐ or bioassay‐based methods for detection of the virus. We have used qPCR to quantify the level of NeseNPV in samples collected in the field after aerial application of the virus, and demonstrated significantly higher virus levels in sawfly larvae from sprayed areas compared with unsprayed control areas 4 weeks after spraying.
  • 4 This qPCR assay can be used to determine important aspects of the biology of NeseNPV (e.g. virus levels in different insect life stages and in their microhabitats on pine foliage and in forest litter).
  相似文献   

17.
18.
益生菌已经在临床和食品领域应用多年,其安全性和有效性已经获得人们的认可。随着分子生物学技术的发展,采用益生菌作为载体进行基因导入或基因编辑,这些遗传改造的益生菌一部分已经作为新的药品或疫苗进入到临床应用阶段。携带功能基因的益生菌定殖于肠道进行表达和缓慢释放,这类益生菌作为活体药物获得益生菌和功能基因的双重功效,可用于治疗某些疑难病症。携带蛋白质抗原基因的益生菌定殖于肠道进行表达,可诱导肠道黏膜免疫、细胞免疫和体液免疫,这是一条更安全的口服疫苗途径。成簇的规则间隔短回文重复序列(clustered regularly interspaced short palindromic repeats, CRISPR)及其相关蛋白(CRISPR-associated protein, Cas)以其高效与便捷性推动了益生菌基因编辑的发展。这篇综述介绍了CRISPR-Cas9操作系统在益生菌方面的应用。对传统遗传操作较难的益生菌采用CRISPR-Cas9技术进行基因编辑,使其基因敲除和基因突变,基因敲入和基因调控等更为简单、高效和易操作。这些CRISPR/Cas9、CRISPRa和CRISPRi技术在...  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号