首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell migration involves dynamic regulation of the actin cytoskeleton, which exhibits rapid actin polymerization at the leading edge of migrating cells. This process relies on regulated recruitment of actin nucleators and actin-binding proteins to the leading edge to polymerize new actin filaments. Many of these proteins have been identified, including the actin-related protein (Arp) 2/3 complex, which has emerged as the core player in the initiation of actin polymerization. However, the functional coordination of these proteins is unclear. Previously, we have demonstrated that the 14-kDa phosphohistidine phosphatase (PHP14) is involved in cell migration regulation and affects actin cytoskeleton reorganization. Here, we show that PHP14 may regulate actin remodeling directly and play an important role in dynamic regulation of the actin cytoskeleton. We observed a colocalization of PHP14 with Arp3 and F-actin at the leading edge of migrating cells. Moreover, PHP14 was recruited to the actin remodeling sites in parallel with Arp3 during lamellipodia formation. Furthermore, PHP14 knockdown impaired Arp3 localization at the leading edge of lamellipodia, as well as lamellipodia formation. Most importantly, we found that PHP14 was a novel F-actin-binding protein, displaying an Arp2/3-dependent localization to the leading edge. Collectively, our results indicated a crucial role for PHP14 in the dynamic regulation of the actin cytoskeleton and cell migration.  相似文献   

2.
Myristoylated alanine‐rich C kinase substrate (MARCKS) is considered to participate in formation of F‐actin‐based lamellipodia, which represents the first stage of neurite formation. However, the mechanism of how MARCKS is involved in lamellipodia formation is not precisely unknown. Using SH‐SY5Y cells, we demonstrated here that MARCKS was translocated from cytosol to detergent‐resistant membrane microdomains, known as lipid rafts, within 30 min after insulin‐like growth factor‐I (IGF‐I) stimulation, which was accompanied by MARCKS dephosphorylation, β‐actin accumulation in lipid rafts, and lamellipodia formation. The protein kinase C inhibitor, Ro‐31‐8220, and Rho‐kinase inhibitors, HA1077 and Y27632, themselves decreased basal phosphorylation levels of MARCKS and coincidently elicited translocation of MARCKS to lipid rafts. On the other hand, the phosphoinositide 3‐kinase inhibitor, LY294002, abolished IGF‐I‐induced dephosphorylation, translocation of MARCKS to lipid rafts, and lamellipodia formation. Treatment of cells with neomycin, a PIP2‐masking reagent, attenuated the translocation of MARCKS to lipid rafts and the lamellipodia formation induced by IGF‐I, although dephosphorylation of MARCKS was not affected. Immunocytochemical and immunoprecipitation analysis indicated that IGF‐I stimulation induced the translocation of MARCKS to lipid rafts in the edge of lamellipodia and formation of the complex with PIP2. Moreover, we demonstrated that knockdown of endogenous MARCKS resulted in significant attenuation of IGF‐I‐induced β‐actin accumulation in the lipid rafts and lamellipodia formation. These results suggest a novel role for MARCKS in lamellipodia formation induced by IGF‐I via the translocation of MARCKS, association with PIP2, and accumulation of β‐actin in the membrane microdomains. J. Cell. Physiol. 220: 748–755, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
4.
Cancer metastasis occurs via a progress involving abnormal cell migration. Cell migration, a dynamic physical process, is controlled by the cytoskeletal system, which includes the dynamics of actin organization and cellular adhesive organelles, focal adhesions (FAs). However, it is not known whether the organization of actin cytoskeletal system has a regulatory role in the physiologically relevant aspects of cancer metastasis. In the present studies, it was found that lung adenocarcinoma cells isolated from the secondary lung cancer of the lymph nodes, H1299 cells, show specific dynamics in terms of the actin cytoskeleton and FAs. This results in a higher level of mobility and this is regulated by an immature FA component, β‐PIX (PAK‐interacting exchange factor‐β). In H1299 cells, β‐PIX's activity was found not to be down‐regulated by sequestration onto stress fibres, as the cells did not bundle actin filaments into stress fibres. Thus, β‐PIX mainly remained localized at FAs, which allowed maturation of nascent adhesions into focal complexes; this resulted in actin polymerization, increased actin network integrity, changes in the intracellular microrheology at the peripheral of the cell, and cell polarity, which in turn regulated cell migration. Perturbation of β‐PIX caused an inhibition of cell migration, including migration velocity, accumulated distance and directional persistence. Our results demonstrate the importance of β‐PIX to the regulation of high mobility of lung adenocarcinoma cell line H1299 and that this occurs via regulation of FA dynamics, changes in actin cytoskeleton organization and cell polarity.  相似文献   

5.
alpha-crystallin (alphaA and alphaB) is a major lens protein, which belongs to the small heat-shock family of proteins and binds to various cytoskeletal proteins including actin, vimentin and desmin. In this study, we investigated the cellular localization of alphaA and alphaB-crystallins in migrating epithelial cells isolated from porcine lens. Immunofluorescence localization and confocal imaging of alphaB-crystallin in confluent and in migrating subconfluent cell cultures revealed a distinct pattern of subcellular distribution. While alphaB-crystallin localization was predominantly cytoplasmic in confluent cultures, it was strongly localized to the leading edges of cell membrane or the lamellipodia in migrating cells. In accordance with this pattern, we found abundant levels of alphaB-crystallin in membrane fractions compared to cytosolic and nuclear fractions in migrating lens epithelial cells. alphaA-crystallin, which has 60% sequence identity to alphaB-crystallin, also exhibited a distribution profile localizing to the leading edge of the cell membrane in migrating lens epithelial cells. Localization of alphaB-crystallin to the lamellipodia appears to be dependent on phosphorylation of residue serine-59. An inhibitor of p38 MAP kinase (SB202190), but not the ERK kinase inhibitor PD98059, was found to diminish localization of alphaB-crystallin to the lamellipodia, and this effect was found to be associated with reduced levels of Serine-59 phosphorylated alphaB-crystallin in SB202190-treated migrating lens epithelial cells. alphaB-crystallin localization to the lamellipodia was also altered by the treatment with RGD (Arg-Ala-Asp) peptide, dominant negative N17 Rac1 GTPase, cytochalasin D and Src kinase inhibitor (PP2), but not by the Rho kinase inhibitor Y-27632 or the myosin II inhibitor, blebbistatin. Additionally, in migrating lens epithelial cells, alphaB-crystallin exhibited a clear co-localization with the actin meshwork, beta-catenin, WAVE-1, a promoter of actin nucleation, Abi-2, a component of WAVE-1 protein complex and Arp3, a protein of the actin nucleation complex, suggesting potential interactions between alphaB-crystallin and regulatory proteins involved in actin dynamics and cell adhesion. This is the first report demonstrating specific localization of alphaA and alphaB-crystallins to the lamellipodia in migrating lens epithelial cells and our findings indicate a potential role for alpha-crystallin in actin dynamics during cell migration.  相似文献   

6.
The Arp2/3 complex nucleates the formation of the dendritic actin network at the leading edge of motile cells, but it is still unclear if the Arp2/3 complex plays a critical role in lamellipodia protrusion and cell motility. Here, we differentiated motile fibroblast cells from isogenic mouse embryonic stem cells with or without disruption of the ARPC3 gene, which encodes the p21 subunit of the Arp2/3 complex. ARPC3(-/-) fibroblasts were unable to extend lamellipodia but generated dynamic leading edges composed primarily of filopodia-like protrusions, with formin proteins (mDia1 and mDia2) concentrated near their tips. The speed of cell migration, as well as the rates of leading edge protrusion and retraction, were comparable between genotypes; however, ARPC3(-/-) cells exhibited a strong defect in persistent directional migration. This deficiency correlated with a lack of coordination of the protrusive activities at the leading edge of ARPC3(-/-) fibroblasts. These results provide insights into the Arp2/3 complex's critical role in lamellipodia extension and directional fibroblast migration.  相似文献   

7.
In comparison to our knowledge of the recycling of adhesion receptors and actin assembly, exactly how the cell controls its surface membrane to form a lamellipodium during migration is poorly understood. Here, we show the recycling endosome membrane is incorporated into the leading edge of a migrating cell to expand lamellipodia membrane. We have identified the SNARE complex that is necessary for fusion of the recycling endosome with the cell surface, as consisting of the R‐SNARE VAMP3 on the recycling endosome partnering with the surface Q‐SNARE Stx4/SNAP23, which was found to translocate and accumulate on the leading edge of migrating cells. Increasing VAMP3‐mediated fusion of the recycling endosome with the surface increased membrane ruffling, while inhibition of VAMP3‐mediated fusion showed that incorporation of the recycling endosome is necessary for efficient lamellipodia formation. At the same time, insertion of this recycling endosome membrane also delivers its cargo integrin α5β1 to the cell surface. The loss of this extra membrane for lamellipodia expansion and delivery of cargo in cells resulted in macrophages with a diminished capacity to effectively migrate. Thus, the recycling endosome membrane is incorporated into the leading edge and this aids expansion of the lamellipodia and simultaneously delivers integrins necessary for efficient cell migration.  相似文献   

8.
Wound healing in Swiss 3T3 cultures was investigated with video-enhanced contrast (VEC) microscopy. The formation of protrusions at the leading edge of cells along wound was investigated in detail during the spreading stage, which usually lasted from 1 to 4 hr postwounding. Lamellipodia exhibited a continuous rearward, or centripetal, transport of a variety of cellular constituents at rates of approximately 0.26 microns/sec from the leading edge. The lamellipodia were also the sites of lateral migration as well as extension and retraction of actin microspikes. Actin fibers oriented transversely to the direction of movement were also observed to transport centripetally at similar rates. These fibers may in part give rise to large actin fibers forming at the interface between the base of the lamellipodia and the lamellae. Beads 0.5 microns in diameter attached to the dorsal surfaces of lamellipodia also transported centripetally at rates of approximately 0.21 microns/sec. Thus there is an apparent correlation between transport of a variety of structures within lamellipodia and with surface movements of lamellipodia.  相似文献   

9.
Monolayers of endothelial cells respond to physical denudation with a characteristic sequence of lamellipodia extrusion, cell migration, and cell proliferation. Basic fibroblast growth factor (bFGF) has been implicated as a necessary component of this process: addition of exogenous bFGF enhances monolayer regeneration both in vitro and in vivo, and monolayer regeneration can be inhibited in vitro by treatment with neutralizing antibodies raised against bFGF. Centrosome reorientation from a random location to one preferentially situated between the nucleus and the denudation edge has been postulated as a mechanism essential for cell polarization and subsequent migration. This present study examined the effects of a polyclonal antibody to bFGF and suramin on monolayer regeneration, actin microfilament staining, and centrosome orientation at the wound edge of partially denuded bovine large vessel endothelial monolayers. Treatment with anti-bFGF or suramin abolished monolayer repair in these cultures. Cells at the denudation edge showed altered actin staining patterns and reduced lamellipodia extrusion, and there was complete inhibition of centrosome reorientation in treated cultures. Monolayer repair and centrosome reorientation could be restored by addition of exogenous bFGF in antibody but not suramin treated cultures. Recent evidence suggests that preferential centrosome location in migrating cells may be a consequence of lamellipodia protrusion and cell spreading, rather than an indication of cell polarization. However, these results indicate that agents which interfere with bFGF availability prevent endothelial monolayer regeneration via mechanisms involving cell spreading and/or centrosome reorientation.  相似文献   

10.
Cell migration is driven by actin polymerization at the leading edge of lamellipodia, where WASP family verprolin-homologous proteins (WAVEs) activate Arp2/3 complex. When fibroblasts are stimulated with PDGF, formation of peripheral ruffles precedes that of dorsal ruffles in lamellipodia. Here, we show that WAVE2 deficiency impairs peripheral ruffle formation and WAVE1 deficiency impairs dorsal ruffle formation. During directed cell migration in the absence of extracellular matrix (ECM), cells migrate with peripheral ruffles at the leading edge and WAVE2, but not WAVE1, is essential. In contrast, both WAVE1 and WAVE2 are essential for invading migration into ECM, suggesting that the leading edge in ECM has characteristics of both ruffles. WAVE1 is colocalized with ECM-degrading enzyme MMP-2 in dorsal ruffles, and WAVE1-, but not WAVE2-, dependent migration requires MMP activity. Thus, WAVE2 is essential for leading edge extension for directed migration in general and WAVE1 is essential in MMP-dependent migration in ECM.  相似文献   

11.
Although many previous reports have examined the function of prostaglandin E2 (PGE2) in the migration and proliferation of various cell types, the role of the actin cytoskeleton in human mesenchymal stem cells (hMSCs) migration and proliferation has not been reported. The present study examined the involvement of profilin‐1 (Pfn‐1) and filamentous‐actin (F‐actin) in PGE2‐induced hMSC migration and proliferation and its related signal pathways. PGE2 (10?6 M) increased both cell migration and proliferation, and also increased E‐type prostaglandin receptor 2 (EP2) mRNA expression, β‐arrestin‐1 phosphorylation, and c‐Jun N‐terminal kinase (JNK) phosphorylation. Small interfering RNA (siRNA)‐mediated knockdown of β‐arrestin‐1 and JNK (‐1, ‐2, ‐3) inhibited PGE2‐induced growth of hMSCs. PGE2 also activated Pfn‐1, which was blocked by JNK siRNA, and induced F‐actin level and organization. Downregulation of Pfn‐1 by siRNA decreased the level and organization of F‐actin. In addition, specific siRNA for TRIO and F‐actin‐binding protein (TRIOBP) reduced the PGE2‐induced increase in hMSC migration and proliferation. Together, these experimental data demonstrate that PGE2 partially stimulates hMSCs migration and proliferation by interaction of Pfn‐1 and F‐actin via EP2 receptor‐dependent β‐arrestin‐1/JNK signaling pathways. J. Cell. Physiol. 226: 559–571, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
Actin filament pointed-end dynamics are thought to play a critical role in cell motility, yet regulation of this process remains poorly understood. We describe here a previously uncharacterized tropomodulin (Tmod) isoform, Tmod3, which is widely expressed in human tissues and is present in human microvascular endothelial cells (HMEC-1). Tmod3 is present in sufficient quantity to cap pointed ends of actin filaments, localizes to actin filament structures in HMEC-1 cells, and appears enriched in leading edge ruffles and lamellipodia. Transient overexpression of GFP-Tmod3 leads to a depolarized cell morphology and decreased cell motility. A fivefold increase in Tmod3 results in an equivalent decrease in free pointed ends in the cells. Unexpectedly, a decrease in the relative amounts of F-actin, free barbed ends, and actin-related protein 2/3 (Arp2/3) complex in lamellipodia are also observed. Conversely, decreased expression of Tmod3 by RNA interference leads to faster average cell migration, along with increases in free pointed and barbed ends in lamellipodial actin filaments. These data collectively demonstrate that capping of actin filament pointed ends by Tmod3 inhibits cell migration and reveal a novel control mechanism for regulation of actin filaments in lamellipodia.  相似文献   

13.
To understand the role of microtubules and microfilaments in regulating endothelial monolayer integrity and repair, and since microtubules and microfilaments show some co-alignment in endothelial cells, we tested the hypothesis that microtubules organize microfilament distribution. Disruption of microtubules with colchicine in resting confluent aortic endothelial monolayers resulted in disruption of microfilament distribution with a loss of dense peripheral bands, an increase in actin microfilament bundles, and an associated increase of focal adhesion proteins at the periphery of the cells. However, when microfilaments were disrupted with cytochalasin B, microtubule distribution did not change. During the early stages of wound repair of aortic endothelial monolayers, microtubules and microfilaments undergo a sequential series of changes in distribution prior to cell migration. They are initially distributed randomly relative to the wound edge, then align parallel to the wound edge and then elongate perpendicular to the wound edge. When microtubules in wounded cultures were disrupted, dense peripheral bands and lamellipodia formation were lost with increases in central stress fibers. However, following microfilament disruption, microtubule redistribution was not disrupted and the microtubules elongated perpendicular to the wound edge similar to non-treated cultures. Microtubules may organize independently of microfilaments while microfilaments require microtubules to maintain normal organization in confluent and repairing aortic endothelial monolayers.  相似文献   

14.
The serine/threonine kinase Akt (also called protein kinase B) is well known as an important regulator of cell survival and growth and has also been shown to be required for cell migration in different organisms. However, the mechanism by which Akt functions to promote cell migration is not understood. Here, we identify an Akt substrate, designated Girdin/APE (Akt-phosphorylation enhancer), which is an actin binding protein. Girdin expresses ubiquitously and plays a crucial role in the formation of stress fibers and lamellipodia. Akt phosphorylates serine at position 1416 in Girdin, and phosphorylated Girdin accumulates at the leading edge of migrating cells. Cells expressing mutant Girdin, in which serine 1416 was replaced with alanine, formed abnormal elongated shapes and exhibited limited migration and lamellipodia formation. These findings suggest that Girdin is essential for the integrity of the actin cytoskeleton and cell migration and provide a direct link between Akt and cell motility.  相似文献   

15.
Arp2/3 complex nucleates dendritic actin networks and plays a pivotal role in the formation of lamellipodia at the leading edge of motile cells. Mouse fibroblasts lacking functional Arp2/3 complex have the characteristic smooth, veil-like lamellipodial leading edge of wild-type cells replaced by a massive, bifurcating filopodia-like protrusions (FLPs) with fractal geometry. The nanometer-scale actin-network organization of these FLPs can be linked to the fractal geometry of the cell boundary by a self-organized criticality through the bifurcation behavior of cross-linked actin bundles. Despite the pivotal role of the Arp2/3 complex in cell migration, the cells lacking functional Arp2/3 complex migrate at rates similar to wild-type cells. However, these cells display defects in the persistence of a directional movement. We suggest that Arp2/3 complex suppresses the formation of FLPs by locally fine-tuning actin networks and favoring dendritic geometry over bifurcating bundles, giving cells a distinct evolutionary edge by providing the means for a directed movement.  相似文献   

16.
Changes in mechanical properties of the cytoplasm have been implicated in cell motility, but there is little information about these properties in specific regions of the cell at specific stages of the cell migration process. Fish epidermal keratocytes with their stable shape and steady motion represent an ideal system to elucidate temporal and spatial dynamics of the mechanical state of the cytoplasm. As the shape of the cell does not change during motion and actin network in the lamellipodia is nearly stationary with respect to the substrate, the spatial changes in the direction from the front to the rear of the cell reflect temporal changes in the actin network after its assembly at the leading edge. We have utilized atomic force microscopy to determine the rigidity of fish keratocyte lamellipodia as a function of time/distance from the leading edge. Although vertical thickness remained nearly constant throughout the lamellipodia, the rigidity exhibited a gradual but significant decrease from the front to the rear of the lamellipodia. The rigidity profile resembled closely the actin density profile, suggesting that the dynamics of rigidity are due to actin depolymerization. The decrease of rigidity may play a role in facilitating the contraction of the actin-myosin network at the lamellipodium/cell body transition zone.  相似文献   

17.
Rab5 is a regulatory GTPase of vesicle docking and fusion that is involved in receptor-mediated endocytosis and pinocytosis. Introduction of active Rab5 in cells stimulates the rate of endocytosis and vesicle fusion, resulting in the formation of large endocytic vesicles, whereas dominant negative Rab5 inhibits vesicle fusion. Here we show that introduction of active Rab5 in fibroblasts also induced reorganization of the actin cytoskeleton but not of microtubule filaments, resulting in prominent lamellipodia formation. The Rab5-induced lamellipodia formation did not require activation of PI3-K or the GTPases Ras, Rac, Cdc42, or Rho, which are all strongly implicated in cytoskeletal reorganization. Furthermore, lamellipodia formation by insulin, Ras, or Rac was not affected by expression of dominant negative Rab5. In addition, cells expressing active Rab5 displayed a dramatic stimulation of cell migration, with the lamellipodia serving as the leading edge. Both lamellipodia formation and cell migration were dependent on actin polymerization but not on microtubules. These results demonstrate that Rab5 induces lamellipodia formation and cell migration and that the Rab5-induced lamellipodia formation occurs by a novel mechanism independent of, and distinct from, PI3-K, Ras, or Rho-family GTPases. Thus, Rab5 can control not only endocytosis but also actin cytoskeleton reorganization and cell migration, which provides strong support for an intricate relationship between these processes.  相似文献   

18.
Cofilin mediates lamellipodium extension and polarized cell migration by stimulating actin filament dynamics at the leading edge of migrating cells. Cofilin is inactivated by phosphorylation at Ser-3 and reactivated by cofilin-phosphatase Slingshot-1L (SSH1L). Little is known of signaling mechanisms of cofilin activation and how this activation is spatially regulated. Here, we show that cofilin-phosphatase activity of SSH1L increases approximately 10-fold by association with actin filaments, which indicates that actin assembly at the leading edge per se triggers local activation of SSH1L and thereby stimulates cofilin-mediated actin turnover in lamellipodia. We also provide evidence that 14-3-3 proteins inhibit SSH1L activity, dependent on the phosphorylation of Ser-937 and Ser-978 of SSH1L. Stimulation of cells with neuregulin-1beta induced Ser-978 dephosphorylation, translocation of SSH1L onto F-actin-rich lamellipodia, and cofilin dephosphorylation. These findings suggest that SSH1L is locally activated by translocation to and association with F-actin in lamellipodia in response to neuregulin-1beta and 14-3-3 proteins negatively regulate SSH1L activity by sequestering it in the cytoplasm.  相似文献   

19.
We used immunofluorescence microscopy to study the organization of actin, myosin and vinculin in confluent endothelial cells and in cells migrating into an experimental wound and interference reflection microscopy to assess the cell-substratum adhesion pattern in these cells. In confluent stationary endothelial cell monolayers actin showed a distinct cell-to-cell organization. Myosin, on the other hand, was diffusely distributed and was clearly absent from cell peripheries. Vinculin was confined as linear arrays to cell-cell contact areas. Interference reflection microscopy revealed areas of close and distant adhesion but no focal adhesion sites in these cultures. Twelve hours after experimental wounding a distinct zone of advancing cells was seen at the wound edge. These cells showed a spreadout morphology and, in contrast to stationary cells, had a stress fibre-type organization of both actin and myosin. Vinculin was in the migrating cells seen as plaques at the ventral cell surface. In interference reflection microscopy numerous focal adhesions were seen. The results indicate that the actomyosin system forms the structural basis for monolayer organization of endothelial cells and responds by reorganization upon cell migration.  相似文献   

20.
Post-translational arginylation consists of the covalent union of an arginine residue to a Glu, Asp, or Cys amino acid at the N-terminal position of proteins. This reaction is catalyzed by the enzyme arginyl-tRNA protein transferase. Using mass spectrometry, we have recently demonstrated in vitro the post-translational incorporation of arginine into the calcium-binding protein calreticulin (CRT). To further study arginylated CRT we raised an antibody against the peptide (RDPAIYFK) that contains an arginine followed by the first 7 N-terminal amino acids of mature rat CRT. This antibody specifically recognizes CRT obtained from rat soluble fraction that was arginylated in vitro and also recognizes endogenous arginylated CRT from NIH 3T3 cells in culture, indicating that CRT arginylation takes place in living cells. Using this antibody we found that arginylation of CRT is Ca2+-regulated. In vitro and in NIH 3T3 cells in culture, the level of arginylated CRT increased with the addition of a Ca2+ chelator to the medium, whereas a decreased arginine incorporation into CRT was found in the presence of Ca2+. The arginylated CRT was observed in the cytosol, in contrast to the non-arginylated CRT that is in the endoplasmic reticulum. Under stress conditions, arginylated CRT was found associated to stress granules. These results suggest that CRT arginylation occurs in the cytosolic pool of mature CRT (defined by an Asp acid N-terminal) that is probably retrotranslocated from the endoplasmic reticulum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号