首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The CRISPR/Cas nuclease is becoming a major tool for targeted mutagenesis in eukaryotes by inducing double‐strand breaks (DSBs) at pre‐selected genomic sites that are repaired by non‐homologous end joining (NHEJ) in an error‐prone way. In plants, it could be demonstrated that the Cas9 nuclease is able to induce heritable mutations in Arabidopsis thaliana and rice. Gene targeting (GT) by homologous recombination (HR) can also be induced by DSBs. Using a natural nuclease and marker genes, we previously developed an in planta GT strategy in which both a targeting vector and targeting locus are activated simultaneously via DSB induction during plant development. Here, we demonstrate that this strategy can be used for natural genes by CRISPR/Cas‐mediated DSB induction. We were able to integrate a resistance cassette into the ADH1 locus of A. thaliana via HR. Heritable events were identified using a PCR‐based genotyping approach, characterised by Southern blotting and confirmed on the sequence level. A major concern is the specificity of the CRISPR/Cas nucleases. Off‐target effects might be avoided using two adjacent sgRNA target sequences to guide the Cas9 nickase to each of the two DNA strands, resulting in the formation of a DSB. By amplicon deep sequencing, we demonstrate that this Cas9 paired nickase strategy has a mutagenic potential comparable with that of the nuclease, while the resulting mutations are mostly deletions. We also demonstrate the stable inheritance of such mutations in A. thaliana.  相似文献   

2.
The controlled change of plant genomes by homologous recombination (HR) is still difficult to achieve. We previously developed the in planta gene targeting (ipGT) technology which depends on the simultaneous activation of the target locus by a double‐strand break and the excision of the target vector. Whereas the use of SpCas9 resulted in low ipGT frequencies in Arabidopsis, we were recently able to improve the efficiency by using egg cell‐specific expression of the potent but less broadly applicable SaCas9 nuclease. In this study, we now tested whether we could improve ipGT further, by either performing it in cells with enhanced intrachromosomal HR efficiencies or by the use of Cas12a, a different kind of CRISPR/Cas nuclease with an alternative cutting mechanism. We could show before that plants possess three kinds of DNA ATPase complexes, which all lead to instabilities of homologous genomic repeats if lost by mutation. As these proteins act in independent pathways, we tested ipGT in double mutants in which intrachromosomal HR is enhanced 20–80‐fold. However, we were not able to obtain higher ipGT frequencies, indicating that mechanisms for gene targeting (GT) and chromosomal repeat‐induced HR differ. However, using LbCas12a, the GT frequencies were higher than with SaCas9, despite a lower non‐homologous end‐joining (NHEJ) induction efficiency, demonstrating the particular suitability of Cas12a to induce HR. As SaCas9 has substantial restrictions due to its longer GC rich PAM sequence, the use of LbCas12a with its AT‐rich PAM broadens the range of ipGT drastically, particularly when targeting in CG‐deserts like promoters and introns.  相似文献   

3.
Engineered nucleases can be used to induce site‐specific double‐strand breaks (DSBs) in plant genomes. Thus, homologous recombination (HR) can be enhanced and targeted mutagenesis can be achieved by error‐prone non‐homologous end‐joining (NHEJ). Recently, the bacterial CRISPR/Cas9 system was used for DSB induction in plants to promote HR and NHEJ. Cas9 can also be engineered to work as a nickase inducing single‐strand breaks (SSBs). Here we show that only the nuclease but not the nickase is an efficient tool for NHEJ‐mediated mutagenesis in plants. We demonstrate the stable inheritance of nuclease‐induced targeted mutagenesis events in the ADH1 and TT4 genes of Arabidopsis thaliana at frequencies from 2.5 up to 70.0%. Deep sequencing analysis revealed NHEJ‐mediated DSB repair in about a third of all reads in T1 plants. In contrast, applying the nickase resulted in the reduction of mutation frequency by at least 740‐fold. Nevertheless, the nickase is able to induce HR at similar efficiencies as the nuclease or the homing endonuclease I–SceI. Two different types of somatic HR mechanisms, recombination between tandemly arranged direct repeats as well as gene conversion using the information on an inverted repeat could be enhanced by the nickase to a similar extent as by DSB‐inducing enzymes. Thus, the Cas9 nickase has the potential to become an important tool for genome engineering in plants. It should not only be applicable for HR‐mediated gene targeting systems but also by the combined action of two nickases as DSB‐inducing agents excluding off‐target effects in homologous genomic regions.  相似文献   

4.
AtRad52 homologs are involved in DNA recombination and repair, but their precise functions in different homologous recombination (HR) pathways or in gene‐targeting have not been analyzed. In order to facilitate our analyses, we generated an AtRad52‐1A variant that had a stronger nuclear localization than the native gene thanks to the removal of the transit peptide for mitochondrial localization and to the addition of a nuclear localization signal. Over‐expression of this variant increased HR in the nucleus, compared with the native AtRad52‐1A: it increased intra‐chromosomal recombination and synthesis‐dependent strand‐annealing HR repair rates; but conversely, it repressed the single‐strand annealing pathway. The effect of AtRad52‐1A over‐expression on gene‐targeting was tested with and without the expression of small RNAs generated from an RNAi construct containing homology to the target and donor sequences. True gene‐targeting events at the Arabidopsis Cruciferin locus were obtained only when combining AtRad52‐1A over‐expression and target/donor‐specific RNAi. This suggests that sequence‐specific small RNAs might be involved in AtRad52‐1A‐mediated HR.  相似文献   

5.
During the evolution of plant genomes, sequence inversions occurred repeatedly making the respective regions inaccessible for meiotic recombination and thus for breeding. Therefore, it is important to develop technologies that allow the induction of inversions within chromosomes in a directed and efficient manner. Using the Cas9 nuclease from Staphylococcus aureus (SaCas9), we were able to obtain scarless heritable inversions with high efficiency in the model plant Arabidopsis thaliana. Via deep sequencing, we defined the patterns of junction formation in wild‐type and in the non‐homologous end‐joining (NHEJ) mutant ku70‐1. Surprisingly, in plants deficient of KU70, inversion induction is enhanced, indicating that KU70 is required for tethering the local broken ends together during repair. However, in contrast to wild‐type, most junctions are formed by microhomology‐mediated NHEJ and thus are imperfect with mainly deletions, making this approach unsuitable for practical applications. Using egg‐cell‐specific expression of Cas9, we were able to induce heritable inversions at different genomic loci and at intervals between 3 and 18 kb, in the percentage range, in the T1 generation. By screening individual lines, inversion frequencies of up to the 10% range were found in T2. Most of these inversions had scarless junctions and were without any sequence change within the inverted region, making the technology attractive for use in crop plants. Applying our approach, it should be possible to reverse natural inversions and induce artificial ones to break or fix linkages between traits at will.  相似文献   

6.
7.
8.
The ability to edit plant genomes through gene targeting (GT) requires efficient methods to deliver both sequence‐specific nucleases (SSNs) and repair templates to plant cells. This is typically achieved using Agrobacterium T‐DNA, biolistics or by stably integrating nuclease‐encoding cassettes and repair templates into the plant genome. In dicotyledonous plants, such as Nicotinana tabacum (tobacco) and Solanum lycopersicum (tomato), greater than 10‐fold enhancements in GT frequencies have been achieved using DNA virus‐based replicons. These replicons transiently amplify to high copy numbers in plant cells to deliver abundant SSNs and repair templates to achieve targeted gene modification. In the present work, we developed a replicon‐based system for genome engineering of cereal crops using a deconstructed version of the wheat dwarf virus (WDV). In wheat cells, the replicons achieve a 110‐fold increase in expression of a reporter gene relative to non‐replicating controls. Furthermore, replicons carrying CRISPR/Cas9 nucleases and repair templates achieved GT at an endogenous ubiquitin locus at frequencies 12‐fold greater than non‐viral delivery methods. The use of a strong promoter to express Cas9 was critical to attain these high GT frequencies. We also demonstrate gene‐targeted integration by homologous recombination (HR) in all three of the homoeoalleles (A, B and D) of the hexaploid wheat genome, and we show that with the WDV replicons, multiplexed GT within the same wheat cell can be achieved at frequencies of ~1%. In conclusion, high frequencies of GT using WDV‐based DNA replicons will make it possible to edit complex cereal genomes without the need to integrate GT reagents into the genome.  相似文献   

9.
Homologous recombination (HR) of nuclear DNA occurs within the context of a highly complex chromatin structure. Despite extensive studies of HR in diverse organisms, mechanisms regulating HR within the chromatin context remain poorly elucidated. Here we investigate the role and interplay of the histone chaperones NUCLEOSOME ASSEMBLY PROTEIN1 (NAP1) and NAP1‐RELATED PROTEIN (NRP) and the ATP‐dependent chromatin‐remodeling factor INOSITOL AUXOTROPHY80 (INO80) in regulating somatic HR in Arabidopsis thaliana. We show that simultaneous knockout of the four AtNAP1 genes and the two NRP genes in the sextuple mutant m123456‐1 barely affects normal plant growth and development. Interestingly, compared with the respective AtNAP1 (m123‐1 and m1234‐1) or NRP (m56‐1) loss‐of‐function mutants, the sextuple mutant m123456‐1 displays an enhanced plant hypersensitivity to UV or bleomycin treatments. Using HR reporter constructs, we show that AtNAP1 and NRP act in parallel to synergistically promote somatic HR. Distinctively, the AtINO80 loss‐of‐function mutation (atino80‐5) is epistatic to m56‐1 in plant phenotype and telomere length but hypostatic to m56‐1 in HR determinacy. Further analyses show that expression of HR machinery genes and phosphorylation of H2A.X (γ‐H2A.X) are not impaired in the mutants. Collectively, our study indicates that NRP and AtNAP1 synergistically promote HR upstream of AtINO80‐mediated chromatin remodeling after the formation of γ‐H2A.X foci during DNA damage repair.  相似文献   

10.
Previously, we showed that ZFN‐mediated induction of double‐strand breaks (DSBs) at the intended recombination site enhanced the frequency of gene targeting (GT) at an artificial target locus using Agrobacterium‐mediated floral dip transformation. Here, we designed zinc finger nucleases (ZFNs) for induction of DSBs in the natural protoporphyrinogen oxidase (PPO) gene, which can be conveniently utilized for GT experiments. Wild‐type Arabidopsis plants and plants expressing the ZFNs were transformed via floral dip transformation with a repair T‐DNA with an incomplete PPO gene, missing the 5′ coding region but containing two mutations rendering the enzyme insensitive to the herbicide butafenacil as well as an extra KpnI site for molecular analysis of GT events. Selection on butafenacil yielded 2 GT events for the wild type with a frequency of 0.8 × 10?3 per transformation event and 8 GT events for the ZFNs expressing plant line with a frequency of 3.1 × 10?3 per transformation event. Molecular analysis using PCR and Southern blot analysis showed that 9 of the GT events were so‐called true GT events, repaired via homologous recombination (HR) at the 5′ and the 3′ end of the gene. One plant line contained a PPO gene repaired only at the 5′ end via HR. Most plant lines contained extra randomly integrated T‐DNA copies. Two plant lines did not contain extra T‐DNAs, and the repaired PPO genes in these lines were transmitted to the next generation in a Mendelian fashion.  相似文献   

11.
Lysine decarboxylase converts l ‐lysine to cadaverine as a branching point for the biosynthesis of plant Lys‐derived alkaloids. Although cadaverine contributes towards the biosynthesis of Lys‐derived alkaloids, its catabolism, including metabolic intermediates and the enzymes involved, is not known. Here, we generated transgenic Arabidopsis lines by expressing an exogenous lysine/ornithine decarboxylase gene from Lupinus angustifolius (La‐L/ODC) and identified cadaverine‐derived metabolites as the products of the emerged biosynthetic pathway. Through untargeted metabolic profiling, we observed the upregulation of polyamine metabolism, phenylpropanoid biosynthesis and the biosynthesis of several Lys‐derived alkaloids in the transgenic lines. Moreover, we found several cadaverine‐derived metabolites specifically detected in the transgenic lines compared with the non‐transformed control. Among these, three specific metabolites were identified and confirmed as 5‐aminopentanal, 5‐aminopentanoate and δ‐valerolactam. Cadaverine catabolism in a representative transgenic line (DC29) was traced by feeding stable isotope‐labeled [α‐15N]‐ or [ε‐15N]‐l ‐lysine. Our results show similar 15N incorporation ratios from both isotopomers for the specific metabolite features identified, indicating that these metabolites were synthesized via the symmetric structure of cadaverine. We propose biosynthetic pathways for the metabolites on the basis of metabolite chemistry and enzymes known or identified through catalyzing specific biochemical reactions in this study. Our study shows that this pool of enzymes with promiscuous activities is the driving force for metabolite diversification in plants. Thus, this study not only provides valuable information for understanding the catabolic mechanism of cadaverine but also demonstrates that cadaverine accumulation is one of the factors to expand plant chemodiversity, which may lead to the emergence of Lys‐derived alkaloid biosynthesis.  相似文献   

12.
Agrobacterium tumefaciens-mediated transformation has been for decades the preferred tool to generate transgenic plants. During this process, a T-DNA carrying transgenes is transferred from the bacterium to plant cells, where it randomly integrates into the genome via polymerase theta (Polθ)-mediated end joining (TMEJ). Targeting of the T-DNA to a specific genomic locus via homologous recombination (HR) is also possible, but such gene targeting (GT) events occur at low frequency and are almost invariably accompanied by random integration events. An additional complexity is that the product of recombination between T-DNA and target locus may not only map to the target locus (true GT), but also to random positions in the genome (ectopic GT). In this study, we have investigated how TMEJ functionality affects the biology of GT in plants, by using Arabidopsis thaliana mutated for the TEBICHI gene, which encodes for Polθ. Whereas in TMEJ-proficient plants we predominantly found GT events accompanied by random T-DNA integrations, GT events obtained in the teb mutant background lacked additional T-DNA copies, corroborating the essential role of Polθ in T-DNA integration. Polθ deficiency also prevented ectopic GT events, suggesting that the sequence of events leading up to this outcome requires TMEJ. Our findings provide insights that can be used for the development of strategies to obtain high-quality GT events in crop plants.  相似文献   

13.
CRISPR/Cas9 is a powerful genome editing tool in many organisms, including a number of monocots and dicots. Although the design and application of CRISPR/Cas9 is simpler compared to other nuclease‐based genome editing tools, optimization requires the consideration of the DNA delivery and tissue regeneration methods for a particular species to achieve accuracy and efficiency. Here, we describe a public sector system, ISU Maize CRISPR, utilizing Agrobacterium‐delivered CRISPR/Cas9 for high‐frequency targeted mutagenesis in maize. This system consists of an Escherichia coli cloning vector and an Agrobacterium binary vector. It can be used to clone up to four guide RNAs for single or multiplex gene targeting. We evaluated this system for its mutagenesis frequency and heritability using four maize genes in two duplicated pairs: Argonaute 18 (ZmAgo18a and ZmAgo18b) and dihydroflavonol 4‐reductase or anthocyaninless genes (a1 and a4). T0 transgenic events carrying mono‐ or diallelic mutations of one locus and various combinations of allelic mutations of two loci occurred at rates over 70% mutants per transgenic events in both Hi‐II and B104 genotypes. Through genetic segregation, null segregants carrying only the desired mutant alleles without the CRISPR transgene could be generated in T1 progeny. Inheritance of an active CRISPR/Cas9 transgene leads to additional target‐specific mutations in subsequent generations. Duplex infection of immature embryos by mixing two individual Agrobacterium strains harbouring different Cas9/gRNA modules can be performed for improved cost efficiency. Together, the findings demonstrate that the ISU Maize CRISPR platform is an effective and robust tool to targeted mutagenesis in maize.  相似文献   

14.
Mitogen‐activated protein kinase cascades are conserved in all eukaryotes. In Arabidopsis thaliana there are approximately 80 genes encoding MAP kinase kinase kinases (MAP3K), 10 genes encoding MAP kinase kinases (MAP2K), and 20 genes encoding MAP kinases (MAPK). Reverse genetic analysis has failed to reveal abnormal phenotypes for a majority of these genes. One strategy for uncovering gene function when single‐mutant lines do not produce an informative phenotype is to perform a systematic genetic interaction screen whereby double‐mutants are created from a large library of single‐mutant lines. Here we describe a new collection of 275 double‐mutant lines derived from a library of single‐mutants targeting genes related to MAP kinase signaling. To facilitate this study, we developed a high‐throughput double‐mutant generating pipeline using a system for growing Arabidopsis seedlings in 96‐well plates. A quantitative root growth assay was used to screen for evidence of genetic interactions in this double‐mutant collection. Our screen revealed four genetic interactions, all of which caused synthetic enhancement of the root growth defects observed in a MAP kinase 4 (MPK4) single‐mutant line. Seeds for this double‐mutant collection are publicly available through the Arabidopsis Biological Resource Center. Scientists interested in diverse biological processes can now screen this double‐mutant collection under a wide range of growth conditions in order to search for additional genetic interactions that may provide new insights into MAP kinase signaling.  相似文献   

15.
Replication factor C1 (RFC1), which is conserved in eukaryotes, is involved in DNA replication and checkpoint control. However, a RFC1 product participating in DNA repair at meiosis has not been reported in Arabidopsis. Here, we report functional characterization of AtRFC1 through analysis of the rfc1–2 mutant. The rfc1–2 mutant displayed normal vegetative growth but showed silique sterility because the male gametophyte was arrested at the uninucleus microspore stage and the female at the functional megaspore stage. Expression of AtRFC1 was concentrated in the reproductive organ primordia, meiocytes and developing gametes. Chromosome spreads showed that pairing and synapsis were normal, and the chromosomes were broken when desynapsis began at late prophase I, and chromosome fragments remained in the subsequent stages. For this reason, homologous chromosomes and sister chromatids segregated unequally, leading to pollen sterility. Immunolocalization revealed that the AtRFC1 protein localized to the chromosomes during zygotene and pachytene in wild‐type but were absent in the spo11–1 mutant. The chromosome fragmentation of rfc1–2 was suppressed by spo11–1, indicating that AtRFC1 acted downstream of AtSPO11‐1. The similar chromosome behavior of rad51 rfc1–2 and rad51 suggests that AtRFC1 may act with AtRAD51 in the same pathway. In summary, AtRFC1 is required for DNA double‐strand break repair during meiotic homologous recombination of Arabidopsis.  相似文献   

16.
The CRISPR/Cas9 system has greatly improved our ability to engineer targeted mutations in eukaryotic genomes. While CRISPR/Cas9 appears to work universally, the efficiency of targeted mutagenesis and the adverse generation of off‐target mutations vary greatly between different organisms. In this study, we report that Arabidopsis plants subjected to heat stress at 37°C show much higher frequencies of CRISPR‐induced mutations compared to plants grown continuously at the standard temperature (22°C). Using quantitative assays relying on green fluorescent protein (GFP) reporter genes, we found that targeted mutagenesis by CRISPR/Cas9 in Arabidopsis is increased by approximately 5‐fold in somatic tissues and up to 100‐fold in the germline upon heat treatment. This effect of temperature on the mutation rate is not limited to Arabidopsis, as we observed a similar increase in targeted mutations by CRISPR/Cas9 in Citrus plants exposed to heat stress at 37°C. In vitro assays demonstrate that Cas9 from Streptococcus pyogenes (SpCas9) is more active in creating double‐stranded DNA breaks at 37°C than at 22°C, thus indicating a potential contributing mechanism for the in vivo effect of temperature on CRISPR/Cas9. This study reveals the importance of temperature in modulating SpCas9 activity in eukaryotes, and provides a simple method to increase on‐target mutagenesis in plants using CRISPR/Cas9.  相似文献   

17.
The unicellular green alga Chlamydomonas reinhardtii is a versatile model for fundamental and biotechnological research. A wide range of tools for genetic manipulation have been developed for this alga, but specific modification of nuclear genes is still not routinely possible. Here, we present a nuclear gene targeting strategy for Chlamydomonas that is based on the application of zinc‐finger nucleases (ZFNs). Our approach includes (i) design of gene‐specific ZFNs using available online tools, (ii) evaluation of the designed ZFNs in a Chlamydomonas in situ model system, (iii) optimization of ZFN activity by modification of the nuclease domain, and (iv) application of the most suitable enzymes for mutagenesis of an endogenous gene. Initially, we designed a set of ZFNs to target the COP3 gene that encodes the light‐activated ion channel channelrhodopsin‐1. To evaluate the designed ZFNs, we constructed a model strain by inserting a non‐functional aminoglycoside 3′‐phosphotransferase VIII (aphVIII) selection marker interspaced with a short COP3 target sequence into the nuclear genome. Upon co‐transformation of this recipient strain with the engineered ZFNs and an aphVIII DNA template, we were able to restore marker activity and select paromomycin‐resistant (Pm‐R) clones with expressing nucleases. Of these Pm‐R clones, 1% also contained a modified COP3 locus. In cases where cells were co‐transformed with a modified COP3 template, the COP3 locus was specifically modified by homologous recombination between COP3 and the supplied template DNA. We anticipate that this ZFN technology will be useful for studying the functions of individual genes in Chlamydomonas.  相似文献   

18.
The ability to address the CRISPR‐Cas9 nuclease complex to any target DNA using customizable single‐guide RNAs has now permitted genome engineering in many species. Here, we report its first successful use in a nonvascular plant, the moss Physcomitrella patens. Single‐guide RNAs (sgRNAs) were designed to target an endogenous reporter gene, PpAPT, whose inactivation confers resistance to 2‐fluoroadenine. Transformation of moss protoplasts with these sgRNAs and the Cas9 coding sequence from Streptococcus pyogenes triggered mutagenesis at the PpAPT target in about 2% of the regenerated plants. Mainly, deletions were observed, most of them resulting from alternative end‐joining (alt‐EJ)‐driven repair. We further demonstrate that, in the presence of a donor DNA sharing sequence homology with the PpAPT gene, most transgene integration events occur by homology‐driven repair (HDR) at the target locus but also that Cas9‐induced double‐strand breaks are repaired with almost equal frequencies by mutagenic illegitimate recombination. Finally, we establish that a significant fraction of HDR‐mediated gene targeting events (30%) is still possible in the absence of PpRAD51 protein, indicating that CRISPR‐induced HDR is only partially mediated by the classical homologous recombination pathway.  相似文献   

19.
Aging is characterized by genome instability, which contributes to cancer formation and cell lethality leading to organismal decline. The high levels of DNA double‐strand breaks (DSBs) observed in old cells and premature aging syndromes are likely a primary source of genome instability, but the underlying cause of their formation is still unclear. DSBs might result from higher levels of damage or repair defects emerging with advancing age, but repair pathways in old organisms are still poorly understood. Here, we show that premeiotic germline cells of young and old flies have distinct differences in their ability to repair DSBs by the error‐free pathway homologous recombination (HR). Repair of DSBs induced by either ionizing radiation (IR) or the endonuclease I‐SceI is markedly defective in older flies. This correlates with a remarkable reduction in HR repair measured with the DR‐white DSB repair reporter assay. Strikingly, most of this repair defect is already present at 8 days of age. Finally, HR defects correlate with increased expression of early HR components and increased recruitment of Rad51 to damage in older organisms. Thus, we propose that the defect in the HR pathway for germ cells in older flies occurs following Rad51 recruitment. These data reveal that DSB repair defects arise early in the aging process and suggest that HR deficiencies are a leading cause of genome instability in germ cells of older animals.  相似文献   

20.
The plant hormone auxin is believed to influence almost every aspect of plant growth and development. Auxin transport, biosynthesis and degradation combine to form gradients of the hormone that influence a range of key developmental and environmental response processes. There is abundant genetic evidence for the existence of multiple pathways for auxin biosynthesis and degradation. The complexity of these pathways makes it difficult to obtain a clear picture of the relative importance of specific metabolic pathways during development. We have developed a sensitive mass spectrometry‐based method to simultaneously profile the majority of known auxin precursors and conjugates/catabolites in small amounts of Arabidopsis tissue. The method includes a new derivatization technique for quantification of the most labile of the auxin precursors. We validated the method by profiling the auxin metabolome in root and shoot tissues from various Arabidopsis thaliana ecotypes and auxin over‐producing mutant lines. Substantial differences were shown in metabolite patterns between the lines and tissues. We also found differences of several orders of magnitude in the abundance of auxin metabolites, potentially indicating the relative importance of these compounds in the maintenance of auxin levels and activity. The method that we have established will enable researchers to obtain a better understanding of the dynamics of auxin metabolism and activity during plant growth and development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号