首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ESCRT & Co     
Components of the ESCRT (endosomal sorting complex required for transport) machinery mediate endosomal sorting of ubiquitinated membrane proteins. They are key regulators of biological processes important for cell growth and survival, such as growth‐factor‐mediated signalling and cytokinesis. In addition, enveloped viruses, such as HIV‐1, hijack and utilize the ESCRTs for budding during virus release and infection. Obviously, the ESCRT‐facilitated pathways require tight regulation, which is partly mediated by a group of interacting proteins, for which our knowledge is growing. In this review we discuss the different ESCRT‐modulating proteins and how they influence ESCRT‐dependent processes, for example, by acting as positive or negative regulators or by providing temporal and spatial control. A number of the interactors influence the classical ESCRT‐mediated process of endosomal cargo sorting, for example, by modulating the interaction between ubiquitinated cargo and the ESCRTs. Certain accessory proteins have been implicated in regulating the activity or steady‐state expression levels of the ESCRT components, whereas other interactors control the cellular localization of the ESCRTs, for example, by inducing shuttling between cytosol and nucleus or endosomes. In conclusion, the discovery of novel interactors has and will extend our knowledge of the biological roles of ESCRTs.  相似文献   

2.
The ESCRT (endosomal sorting complex required for transport) machinery is known to sort ubiquitinated transmembrane proteins into vesicles that bud into the lumen of multivesicular bodies (MVBs). Although the ESCRTs themselves are ubiquitinated they are excluded from the intraluminal vesicles and recycle back to the cytoplasm for further rounds of sorting. To obtain insights into the rules that distinguish ESCRT machinery from cargo we analyzed the trafficking of artificial ESCRT‐like protein fusions. These studies showed that lowering ESCRT‐binding affinity converts a protein from behaving like ESCRT machinery into cargo of the MVB pathway, highlighting the close relationship between machinery and the cargoes they sort. Furthermore, our findings give insights into the targeting of soluble proteins into the MVB pathway and show that binding to any of the ESCRTs can mediate ubiquitin‐independent MVB sorting.  相似文献   

3.
Ubiquitin is covalently attached to substrate proteins in the form of a single ubiquitin moiety or polyubiquitin chains and has been generally linked to protein degradation, however, distinct types of ubiquitin linkages are also used to control other critical cellular processes like cell signaling. Over forty mammalian G protein‐coupled receptors (GPCRs) have been reported to be ubiquitinated, but despite the diverse and rich complexity of GPCR signaling, ubiquitin has been largely ascribed to receptor degradation. Indeed, GPCR ubiquitination targets the receptors for degradation by lysosome, which is mediated by the Endosomal Sorting Complexes Required for Transport (ESCRT) machinery, and the proteasome. This has led to the view that ubiquitin and ESCRTs primarily function as the signal to target GPCRs for destruction. Contrary to this conventional view, studies indicate that ubiquitination of certain GPCRs and canonical ubiquitin‐binding ESCRTs are not required for receptor degradation and revealed that diverse and complex pathways exist to regulate endo‐lysosomal sorting of GPCRs. In other studies, GPCR ubiquitination has been shown to drive signaling and not receptor degradation and further revealed novel insight into the mechanisms by which GPCRs trigger the activity of the ubiquitination machinery. Here, we discuss the diverse pathways by which ubiquitin controls GPCR endo‐lysosomal sorting and beyond.   相似文献   

4.
The endosomal sorting complex required for transport (ESCRT) protein complexes function at the endosome in the formation of intraluminal vesicles (ILVs) containing cargo proteins destined for the vacuolar/lysosomal lumen. The early ESCRTs (ESCRT-0 and -I) are likely involved in cargo sorting, whereas ESCRT-III and Vps4 function to sever the neck of the forming ILVs. ESCRT-II links these functions by initiating ESCRT-III formation in an ESCRT-I–regulated manner. We identify a constitutively active mutant of ESCRT-II that partially suppresses the phenotype of an ESCRT-I or ESCRT-0 deletion strain, suggesting that these early ESCRTs are not essential and have redundant functions. However, the ESCRT-III/Vps4 system alone is not sufficient for ILV formation but requires cargo sorting mediated by one of the early ESCRTs.  相似文献   

5.
As a mechanism of signal attenuation, receptors for growth factors, peptide hormones and cytokines are internalized in response to ligand binding, followed by degradation in lysosomes. Receptor ubiquitination is a key signal for such downregulation, and four protein complexes known as endosomal sorting complex required for transport (ESCRT)-0, -I, -II and -III have been identified as the machinery required for degradative endosomal sorting of ubiquitinated membrane proteins in yeast and metazoans. Three of these complexes contain ubiquitin-binding domains whereas ESCRT-III instead recruits deubiquitinating enzymes. The concerted action of the ESCRTs not only serves to sort ubiquitinated cargo but is also thought to cause inward vesiculation of endosomal membranes, thereby mediating biogenesis of multivesicular endosomes (MVEs). Because ligand-mediated receptor downregulation plays an important role in signal attenuation, it is not surprising that dysfunction of ESCRT components is associated with disease. In this review we discuss the possible roles of ESCRTs in protection against cancer, neurodegenerative diseases and bacterial infections, and we highlight the fact that many RNA viruses exploit the ESCRT machinery for the final abscission step of their budding from cells. We also review the additional functions of ESCRT proteins in cytokinesis and discuss how these may be related to ESCRT-associated pathologies.  相似文献   

6.
Endocytosis of cell surface receptors mediates cellular homeostasis by coordinating receptor distribution with downstream signal transduction and attenuation. Post-translational modification with ubiquitin of these receptors, as well as the proteins that comprise the endocytic machinery, modulates cargo progression along the endocytic pathway. The interplay between ubiquitination states of cargo and sorting proteins drives trafficking outcomes by directing endocytosed material toward either lysosomal degradation or recycling. Deubiquitination by specific proteinases creates a reversible system that promotes spatial and temporal organization of endosomal sorting complexes required for transport (ESCRTs) and supports regulated cargo trafficking. Two dubiquitinating enzymes--ubiquitin-specific protease 8 (USP8/Ubpy) and associated molecule with the SH3 domain of STAM (AMSH)--interact with ESCRT components to modulate the ubiquitination status of receptors and relevant sorting proteins. In doing so, these ESCRT-DUBs control receptor fate and sorting complex function through a variety of mechanisms described herein.  相似文献   

7.
《Autophagy》2013,9(2):233-236
Autophagy has recently been found to play an important role in the degradation of damaged macromolecules, in particular misfolded, aberrant proteins that can disrupt neuronal function and cause neurodegeneration if not removed. Mutations in the Endosomal Sorting Complex Required for Transport (ESCRT)-III subunit CHMP2B were recently associated with frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), neurodegenerative diseases characterized by abnormal ubiquitin-positive protein deposits in affected neurons. The ESCRT proteins are known to sort ubiquitinated integral membrane proteins into intralumenal vesicles of the multivesicular body (MVB), but it was not known how ESCRT mutations could cause neurodegenerative disease. We found autophagic degradation to be inhibited in cells depleted of ESCRT subunits or expressing CHMP2B mutants and in Drosphila melanogaster lacking ESCRTs. In addition to accumulation of autophagic vesicles, we also found increased levels of membrane-free ubiquitin-positive protein aggregates in ESCRT-depleted cells. Using cellular and Drosophila models for Huntington’s disease, we showed that reduced ESCRT levels inhibit clearance of expanded polyglutamine aggregates and aggravate their neurotoxic effect. Together, our data indicate that efficient autophagic degradation requires functional MVBs and provide a possible explanation to the observed neurodegenerative phenotype seen in patients with CHMP2B mutations. In this addendum we discuss models to explain the functions of ESCRTs and MVBs in autophagic degradation.

Addendum to: Filimonenko M, Stuffers S, Raiborg C, Yamamoto A, Malerod L, Fisher EM, Isaacs A, Brech A, Stenmark H, Simonsen A. Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease. J Cell Biol 2007; 179;485-500.

and

Rusten TE, Vaccari T, Lindmo K, Rodahl LM, Nezis IP, Sem-Jacobsen C, Wendler F, Vincent JP, Brech A, Bilder D, Stenmark H. ESCRTs and Fab1 regulate distinct steps of autophagy. Curr Biol 2007; 17;1817-25.  相似文献   

8.
Ubiquitin (Ub) sorting receptors facilitate the targeting of ubiquitinated membrane proteins into multivesicular bodies (MVBs). Ub-binding domains (UBDs) have been described in several endosomal sorting complexes required for transport (ESCRT). Using available structural information, we have investigated the role of the multiple UBDs within ESCRTs during MVB cargo selection. We found a novel UBD within ESCRT-I and show that it contributes to MVB sorting in concert with the known UBDs within the ESCRT complexes. These experiments reveal an unexpected level of coordination among the ESCRT UBDs, suggesting that they collectively recognize a diverse set of cargo rather than act sequentially at discrete steps.  相似文献   

9.
Dynamic modification of endosomal cargo proteins, such as the epidermal growth factor receptor, by ubiquitin can regulate their sorting into the lumen of multivesicular bodies through interactions with a complex protein network incorporating the endosomal sorting complexes required for transport (ESCRTs). Two deubiquitinating enzymes, AMSH and UBPY, interact with ESCRT protein components but exert opposite effects upon the rate of epidermal growth factor receptor downregulation. This might reflect their distinct specificities for different types of polyubiquitin chain linkage. We propose that AMSH might rescue ubiquitinated cargo from lysosomal degradation through disassembly of K63-linked polyubiquitin chains. UBPY function is essential for effective downregulation but is likely to be multifaceted, encompassing activity against both K63-linked and K48-linked polyubiquitin chains and including regulation of the stability of ESCRT-associated proteins such as STAM, by reversing their ubiquitination.  相似文献   

10.
Endosomal sorting complexes required for transport (ESCRTs) regulate a key sorting step of protein trafficking between endosomal compartments in lysosomal degradation. Interestingly, mutations in charged multivesicular body protein 2B (CHMP2B), which is a core subunit of ESCRT-III, have been identified in some neurodegenerative diseases. However, the cellular pathogenesis resulting from CHMP2B missense mutations is unclear. Furthermore, little is known about their functional analysis in post-mitotic neurons. In order to examine their cellular pathogenesis, we analyzed their effects in the endo-lysosomal pathway in post-mitotic neurons. Interestingly, of the missense mutant proteins, CHMP2B(T104N) mostly accumulated in the Rab5- and Rab7-positive endosomes and caused delayed degradation of EGFR as compared to CHMP2B(WT). Furthermore, CHMP2B(T104N) showed less association with Vps4 ATPase and was avidly associated with Snf7-2, a core component of ESCRT-III, suggesting that it may cause defects in the process of dissociation from ESCRT. Of the missense variants, CHMP2B(T104N) caused prominent accumulation of autophagosomes. However, neuronal cell survival was not dramatically affected by expression of CHMP2B(T104N). These findings suggested that, from among the various missense mutants, CHMP2B(T104N) was associated with relatively mild cellular pathogenesis in post-mitotic neurons. This study provided a better understanding of the cellular pathogenesis of neurodegenerative diseases associated with various missense mutations of CHMP2B as well as endocytic defects.  相似文献   

11.
Subunits of the endosomal sorting complex required for transport (ESCRT) were identified as components of a molecular machinery that sorts ubiquitinated membrane proteins into the intraluminal vesicles (ILVs) of multivesicular endosomes (MVEs) for subsequent delivery to the lumen of lysosomes or related organelles. As many of the membrane proteins that undergo ESCRT-mediated sorting are signalling receptors that are ubiquitinated in response to ligand binding, ESCRT subunits have been hypothesized to play a crucial role in attenuation of cell signalling by mediating ligand-induced receptor degradation. Here we discuss this concept based on the examples from loss-of-function studies in model organisms and cell lines. The emerging picture is that ESCRTs are indeed involved in downregulation of receptor signalling pathways associated with cell survival, proliferation and polarity. In addition, the recent discovery of a positive role for the ESCRT pathway in Wnt signalling through sequestration of an inhibitory cytosolic component into MVEs illustrates that ESCRTs may also control signalling in ways that are independent of degradative receptor sorting.  相似文献   

12.
VHS (Vps27, Hrs, and STAM) domains occur in ESCRT‐0 subunits Hrs and STAM, GGA adapters, and other trafficking proteins. The structure of the STAM VHS domain–ubiquitin complex was solved at 2.6 Å resolution, revealing that determinants for ubiquitin recognition are conserved in nearly all VHS domains. VHS domains from all classes of VHS‐domain containing proteins in yeast and humans, including both subunits of ESCRT‐0, bound ubiquitin in vitro. ESCRTs have been implicated in the sorting of Lys63‐linked polyubiquitinated cargo. Intact human ESCRT‐0 binds Lys63‐linked tetraubiquitin 50‐fold more tightly than monoubiquitin, though only 2‐fold more tightly than Lys48‐linked tetraubiquitin. The gain in affinity is attributed to the cooperation of flexibly connected VHS and UIM motifs of ESCRT‐0 in avid binding to the polyubiquitin chain. Mutational analysis of all the five ubiquitin‐binding sites in yeast ESCRT‐0 shows that cooperation between them is required for the sorting of the Lys63‐linked polyubiquitinated cargo Cps1 to the vacuole.  相似文献   

13.
ESCRTs (endosomal sorting complexes required for transport) bind and sequester ubiquitinated membrane proteins and usher them into multivesicular bodies (MVBs). As Ubiquitin (Ub)-binding proteins, ESCRTs themselves become ubiquitinated. However, it is unclear whether this regulates a critical aspect of their function or is a nonspecific consequence of their association with the Ub system. We investigated whether ubiquitination of the ESCRTs was required for their ability to sort cargo into the MVB lumen. Although we found that Rsp5 was the main Ub ligase responsible for ubiquitination of ESCRT-0, elimination of Rsp5 or elimination of the ubiquitinatable lysines within ESCRT-0 did not affect MVB sorting. Moreover, by fusing the catalytic domain of deubiquitinating peptidases onto ESCRTs, we could block ESCRT ubiquitination and the sorting of proteins that undergo Rsp5-dependent ubiquitination. Yet, proteins fused to a single Ub moiety were efficiently delivered to the MVB lumen, which strongly indicates that a single Ub is sufficient in sorting MVBs in the absence of ESCRT ubiquitination.  相似文献   

14.
Endosomes regulate both the recycling and degradation of plasma membrane (PM) proteins, thereby modulating many cellular responses triggered at the cell surface. Endosomes also play a role in the biosynthetic pathway by taking proteins to the vacuole and recycling vacuolar cargo receptors. In plants, the trans-Golgi network (TGN) acts as an early/recycling endosome whereas prevacuolar compartments/multivesicular bodies (MVBs) take PM proteins to the vacuole for degradation. Recent studies have demonstrated that some of the molecular complexes that mediate endosomal trafficking, such as the retromer, the ADP-ribosylation factor (ARF) machinery, and the Endosomal Sorting Complexes Required for Transport (ESCRTs) have both conserved and specialized functions in plants. Whereas there is disagreement on the subcellular localization of the plant retromer, its function in recycling vacuolar sorting receptors (VSRs) and modulating the trafficking of PM proteins has been well established. Studies on Arabidopsis ESCRT components highlight the essential role of this complex in cytokinesis, plant development, and vacuolar organization. In addition, post-translational modifications of plant PM proteins, such as phosphorylation and ubiquitination, have been demonstrated to act as sorting signals for endosomal trafficking.  相似文献   

15.
The endosomal sorting complex required for transport (ESCRT) machinery evolved early in evolution to sculpt and cut cellular membranes. Consisting of three subcomplexes termed ESCRT-I, -II and -III, this machinery is recruited to various cellular locations to perform key steps in essential processes such as protein degradation, cell division, and membrane sealing. Here we review recent discoveries that have shed light on biophysical and molecular mechanisms of ESCRTs in endolysosomal protein degradation and nuclear envelope sealing, and we discuss how dysfunctional ESCRTs can lead to diseases such as cancer and neurodegenerative disorders.  相似文献   

16.
The sorting of transmembrane cargo proteins into the lumenal vesicles of multivesicular bodies (MVBs) depends on the recruitment of endosomal sorting complexes required for transport (ESCRTs) to the cytosolic face of endosomal membranes. The subsequent dissociation of ESCRT complexes from endosomes requires Vps4, a member of the AAA family of adenosine triphosphatases. We show that Did2 directs Vps4 activity to the dissociation of ESCRT-III but has no role in the dissociation of ESCRT-I or -II. Surprisingly, vesicle budding into the endosome lumen occurs in the absence of Did2 function even though Did2 is required for the efficient sorting of MVB cargo proteins into lumenal vesicles. This uncoupling of MVB cargo sorting and lumenal vesicle formation suggests that the Vps4-mediated dissociation of ESCRT-III is an essential step in the sorting of cargo proteins into MVB vesicles but is not a prerequisite for the budding of vesicles into the endosome lumen.  相似文献   

17.
A concentric circle model of multivesicular body cargo sorting   总被引:4,自引:0,他引:4  
Targeting of ubiquitylated transmembrane proteins into luminal vesicles of endosomal multivesicular bodies (MVBs) depends on their recognition by endosomal sorting complexes required for transport (ESCRTs), which are also required for MVB vesicle formation. The model originally proposed for how ESCRTs function succinctly summarizes much of the protein-protein interaction and genetic data but oversimplifies the coordination of cargo recognition and cannot explain why ESCRTs are required for the budding of MVB vesicles. Recent structural and functional studies of ESCRT complexes suggest an alternative model that might direct the next series of breakthroughs in understanding protein sorting through the MVB pathway.  相似文献   

18.
Nixon RA  Yang DS  Lee JH 《Autophagy》2008,4(5):590-599
Neuronal survival requires continuous lysosomal turnover of cellular constituents delivered by autophagy and endocytosis. Primary lysosomal dysfunction in inherited congenital "lysosomal storage" disorders is well known to cause severe neurodegenerative phenotypes associated with accumulations of lysosomes and autophagic vacuoles (AVs). Recently, the number of inherited adult-onset neurodegenerative diseases caused by proteins that regulate protein sorting and degradation within the endocytic and autophagic pathways has grown considerably. In this Perspective, we classify a group of neurodegenerative diseases across the lifespan as disorders of lysosomal function, which feature extensive autophagic-endocytic-lysosomal neuropathology and may share mechanisms of neurodegeneration related to degradative failure and lysosomal destabilization. We highlight Alzheimer's disease as a disease within this group and discuss how each of the genes and other risk factors promoting this disease contribute to progressive lysosomal dysfunction and neuronal cell death.  相似文献   

19.
The endosomal sorting complexes required for transport (ESCRTs) are required to sort integral membrane proteins into intralumenal vesicles of the multivesicular body (MVB). Mutations in the ESCRT-III subunit CHMP2B were recently associated with frontotemporal dementia and amyotrophic lateral sclerosis (ALS), neurodegenerative diseases characterized by abnormal ubiquitin-positive protein deposits in affected neurons. We show here that autophagic degradation is inhibited in cells depleted of ESCRT subunits and in cells expressing CHMP2B mutants, leading to accumulation of protein aggregates containing ubiquitinated proteins, p62 and Alfy. Moreover, we find that functional MVBs are required for clearance of TDP-43 (identified as the major ubiquitinated protein in ALS and frontotemporal lobar degeneration with ubiquitin deposits), and of expanded polyglutamine aggregates associated with Huntington's disease. Together, our data indicate that efficient autophagic degradation requires functional MVBs and provide a possible explanation to the observed neurodegenerative phenotype seen in patients with CHMP2B mutations.  相似文献   

20.
G protein-coupled receptor (GPCR) signaling mediates many cellular functions, including cell survival, proliferation, and cell motility. Many of these processes are mediated by GPCR-promoted activation of Akt signaling by mammalian target of rapamycin complex 2 (mTORC2) and the phosphatidylinositol 3-kinase (PI3K)/phosphoinositide-dependent kinase 1 (PDK1) pathway. However, the molecular mechanisms by which GPCRs govern Akt activation by these kinases remain poorly understood. Here, we show that the endosomal sorting complex required for transport (ESCRT) pathway mediates Akt signaling promoted by the chemokine receptor CXCR4. Pharmacological inhibition of heterotrimeric G protein Gαi or PI3K signaling and siRNA targeting ESCRTs blocks CXCR4-promoted degradation of DEPTOR, an endogenous antagonist of mTORC2 activity. Depletion of ESCRTs by siRNA leads to increased levels of DEPTOR and attenuated CXCR4-promoted Akt activation and signaling, consistent with decreased mTORC2 activity. In addition, ESCRTs likely have a broad role in Akt signaling because ESCRT depletion also attenuates receptor tyrosine kinase-promoted Akt activation and signaling. Our data reveal a novel role for the ESCRT pathway in promoting intracellular signaling, which may begin to identify the signal transduction pathways that are important in the physiological roles of ESCRTs and Akt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号