首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Members of the ATP Binding Cassette B/Multidrug‐Resistance/P–glyco‐protein (ABCB/MDR/PGP) subfamily were shown to function primarily in Oryza sativa (rice) auxin transport; however, none of the rice ABCB transporters have been functionally characterized. Here, we describe that a knock‐down of OsABCB14 confers decreased auxin concentrations and polar auxin transport rates, conferring insensitivity to 2,4‐dichlorophenoxyacetic acid (2,4–D) and indole‐3‐acetic acid (IAA). OsABCB14 displays enhanced specific auxin influx activity in yeast and protoplasts prepared from rice knock‐down alleles. OsABCB14 is localized at the plasma membrane, pointing to an important directionality under physiological conditions. osabcb14 mutants were surprisingly found to be insensitive to iron deficiency treatment (–Fe). Their Fe concentration is higher and upregulation of Fe deficiency‐responsive genes is lower in osabcb14 mutants than in wild‐type rice (Nipponbare, NIP). Taken together, our results strongly support the role of OsABCB14 as an auxin influx transporter involved in Fe homeostasis. The functional characterization of OsABCB14 provides insights in monocot auxin transport and its relationship to Fe nutrition.  相似文献   

2.
3.
The glyoxalase system constitutes the major pathway for the detoxification of metabolically produced cytotoxin methylglyoxal (MG) into a non‐toxic metabolite d ‐lactate. Glyoxalase I (GLY I) is an evolutionarily conserved metalloenzyme requiring divalent metal ions for its activity: Zn2+ in the case of eukaryotes or Ni2+ for enzymes of prokaryotic origin. Plant GLY I proteins are part of a multimember family; however, not much is known about their physiological function, structure and metal dependency. In this study, we report a unique GLY I (OsGLYI‐11.2) from Oryza sativa (rice) that requires Ni2+ for its activity. Its biochemical, structural and functional characterization revealed it to be a monomeric enzyme, possessing a single Ni2+ coordination site despite containing two GLY I domains. The requirement of Ni2+ as a cofactor by an enzyme involved in cellular detoxification suggests an essential role for this otherwise toxic heavy metal in the stress response. Intriguingly, the expression of OsGLYI‐11.2 was found to be highly substrate inducible, suggesting an important mode of regulation for its cellular levels. Heterologous expression of OsGLYI‐11.2 in Escherichia coli and model plant Nicotiana tabacum (tobacco) resulted in improved adaptation to various abiotic stresses caused by increased scavenging of MG, lower Na+/K+ ratio and maintenance of reduced glutathione levels. Together, our results suggest interesting links between MG cellular levels, its detoxification by GLY I, and Ni2+ – the heavy metal cofactor of OsGLYI‐11.2, in relation to stress response and adaptation in plants.  相似文献   

4.
The frequent occurrence of chalky rice (Oryza sativa L.) grains becomes a serious problem as a result of climate change. The molecular mechanism underlying chalkiness is largely unknown, however. In this study, the temperature‐sensitive floury endosperm11‐2 (flo11‐2) mutant was isolated from ion beam‐irradiated rice of 1116 lines. The flo11‐2 mutant showed significantly higher chalkiness than the wild type grown under a mean temperature of 28°C, but similar levels of chalkiness to the wild type grown under a mean temperature of 24°C. Whole‐exome sequencing of the flo11‐2 mutant showed three causal gene candidates, including Os12g0244100, which encodes the plastid‐localized 70‐kDa heat shock protein 2 (cpHSP70‐2). The cpHSP70‐2 of the flo11‐2 mutant has an amino acid substitution on the 259th aspartic acid with valine (D259V) in the conserved Motif 5 of the ATPase domain. Transgenic flo11‐2 mutants that express the wild‐type cpHSP70‐2 showed significantly lower chalkiness than the flo11‐2 mutant. Moreover, the accumulation level of cpHSP70‐2 was negatively correlated with the chalky ratio, indicating that cpHSP70‐2 is a causal gene for the chalkiness of the flo11‐2 mutant. The intrinsic ATPase activity of recombinant cpHSP70‐2 was lower by 23% at Vmax for the flo11‐2 mutant than for the wild type. The growth of DnaK‐defective Escherichia coli cells complemented with DnaK with the D201V mutation (equivalent to the D259V mutation) was severely reduced at 37°C, but not in the wild‐type DnaK. The results indicate that the lowered cpHSP70‐2 function is involved with the chalkiness of the flo11‐2 mutant.  相似文献   

5.
Auxin and brassinosteroid (BR) are important phytohormones for controlling lamina inclination implicated in plant architecture and grain yield. But the molecular mechanism of auxin and BR crosstalk for regulating lamina inclination remains unknown. Auxin response factors (ARFs) control various aspects of plant growth and development. We here report that OsARF19‐overexpression rice lines show an enlarged lamina inclination due to increase of its adaxial cell division. OsARF19 is expressed in various organs including lamina joint and strongly induced by auxin and BR. Chromatin immunoprecipitation (ChIP) and yeast one‐hybrid assays demonstrate that OsARF19 binds to the promoter of OsGH3‐5 and brassinosteroid insensitive 1 (OsBRI1) directing their expression. OsGH3‐5‐overexpression lines show a similar phenotype as OsARF19‐O1. Free auxin contents in the lamina joint of OsGH3‐5‐O1 or OsARF19‐O1 are reduced. OsGH3‐5 is localized at the endoplasmic retieulum (ER) matching reduction of the free auxin contents in OsGH3‐5‐O1. osarf19‐TDNA and osgh3‐5‐Tos17 mutants without erected leaves show a function redundancy with other members of their gene family. OsARF19‐overexpression lines are sensitive to exogenous BR treatment and alter the expressions of genes related to BR signalling. These findings provide novel insights into auxin and BR signalling, and might have significant implications for improving plant architecture of monocot crops.  相似文献   

6.
Phytochromes are red‐ and far red light photoreceptors in higher plants. Rice (Oryza sativa L.) has three phytochromes (phyA, phyB and phyC), which play distinct as well as cooperative roles in light perception. To gain a better understanding of individual phytochrome functions in rice, expression patterns of three phytochrome genes were characterized using promoter‐GUS fusion constructs. The phytochrome genes PHYA and PHYB showed distinct patterns of tissue‐ and developmental stage‐specific expression in rice. The PHYA promoter‐GUS was expressed in all leaf tissues in etiolated seedlings, while its expression was restricted to vascular bundles in expanded leaves of light‐grown seedlings. These observations suggest that light represses the expression of the PHYA gene in all cells except vascular bundle cells in rice seedlings. Red light was effective, but far red light was ineffective in gene repression, and red light‐induced repression was not observed in phyB mutants. These results indicate that phyB is involved in light‐dependent and tissue‐specific repression of the PHYA gene in rice.  相似文献   

7.
8.
9.
10.
11.
Grain weight is the most important component of rice yield and is mainly determined by grain size, which is generally controlled by quantitative trait loci (QTLs). Although numerous QTLs that regulate grain weight have been identified, the genetic network that controls grain size remains unclear. Herein, we report the cloning and functional analysis of a dominant QTL, grain length and width 2 (GLW2), which positively regulates grain weight by simultaneously increasing grain length and width. The GLW2 locus encodes OsGRF4 (growth‐regulating factor 4) and is regulated by the microRNA miR396c in vivo. The mutation in OsGRF4 perturbs the OsmiR396 target regulation of OsGRF4, generating a larger grain size and enhanced grain yield. We also demonstrate that OsGIF1 (GRF‐interacting factors 1) directly interacts with OsGRF4, and increasing its expression improves grain size. Our results suggest that the miR396c‐OsGRF4‐OsGIF1 regulatory module plays an important role in grain size determination and holds implications for rice yield improvement.  相似文献   

12.
Grain size and weight are directly associated with grain yield in crops. However, the molecular mechanisms that set final grain size and weight remain largely unknown. Here, we characterize two large grain mutants, large grain8‐1 (large8‐1) and large grain8‐2 (large8‐2). LARGE8 encodes the mitogen‐activated protein kinase phosphatase1 (OsMKP1). Loss of function mutations in OsMKP1 results in large grains, while overexpression of OsMKP1 leads to small grains. OsMKP1 determines grain size by restricting cell proliferation in grain hulls. OsMKP1 directly interacts with and deactivates the mitogen‐activated protein kinase 6 (OsMAPK6). Taken together, we identify OsMKP1 as a crucial factor that influences grain size by deactivating OsMAPK6, indicating that the reversible phosphorylation of OsMAPK6 plays important roles in determining grain size in rice.  相似文献   

13.
14.
纪剑辉  周颖君  吴贺贺  杨立明 《遗传》2015,37(12):1228-1241
Trihelix转录因子家族在植物生长发育以及响应逆境胁迫等方面发挥着重要作用,但目前基于水稻全基因组水平鉴定和分析该基因家族的研究尚未见相关报道。本文利用生物信息学方法在水稻基因组数据库中鉴定到Trihelix家族成员31个,序列聚类和功能结构域分析发现该家族均含有高度保守的、特征性的Trihelix结构域;根据亲缘关系远近和结构域特点,将其分为5个亚家族(Ⅰ~Ⅴ)。通过与拟南芥、二穗短炳草和高粱中Trihelix家族的聚类分析发现,这4个物种中Trihelix家族的分类相一致,但每个物种均含有不同亚家族的成员,表明该基因家族的分化早于物种的分化。基于MEME程序分析水稻Trihelix转录因子家族的保守基序与聚类分析结果具有较高的一致性。染色体区段复制分析表明,部分Trihelix家族成员在水稻以及水稻与其他物种之间存在种内和种间的染色体区段复制;生物芯片数据分析发现,Trihelix基因家族在水稻不同组织中、以及对6种不同植物激素的响应呈现多样化的表达谱。采用RiceFREND在线数据库分析发现,水稻Trihelix转录因子家族的20个成员与其他蛋白存在互作关系。本研究结果初步明确了水稻Trihelix转录因子家族的进化特点、染色体分布、染色体区段复制关系、组织表达、激素应答,以及该家族蛋白与其他蛋白质的互作情况,为进一步揭示Trihelix转录因子家族的分子进化规律和生物学功能奠定了基础。  相似文献   

15.
16.
17.
18.
High temperature impairs rice (Oryza sativa) grain filling by inhibiting the deposition of storage materials such as starch, resulting in mature grains with a chalky appearance, currently a major problem for rice farming in Asian countries. Such deterioration of grain quality is accompanied by the altered expression of starch metabolism‐related genes. Here we report the involvement of a starch‐hydrolyzing enzyme, α‐amylase, in high temperature‐triggered grain chalkiness. In developing seeds, high temperature induced the expression of α‐amylase genes, namely Amy1A, Amy1C, Amy3A, Amy3D and Amy3E, as well as α‐amylase activity, while it decreased an α‐amylase‐repressing plant hormone, ABA, suggesting starch to be degraded by α‐amylase in developing grains under elevated temperature. Furthermore, RNAi‐mediated suppression of α‐amylase genes in ripening seeds resulted in fewer chalky grains under high‐temperature conditions. As the extent of the decrease in chalky grains was highly correlated to decreases in the expression of Amy1A, Amy1C, Amy3A and Amy3B, these genes would be involved in the chalkiness through degradation of starch accumulating in the developing grains. The results show that activation of α‐amylase by high temperature is a crucial trigger for grain chalkiness and that its suppression is a potential strategy for ameliorating grain damage from global warming.  相似文献   

19.
20.
The bioactive form of jasmonate is the conjugate of the amino acid isoleucine (Ile) with jasmonic acid (JA), which is biosynthesized in a reaction catalysed by the GH3 enzyme JASMONATE RESISTANT 1 (JAR1). We examined the biochemical properties of OsJAR1 and its involvement in photomorphogenesis of rice (Oryza sativa). OsJAR1 has a similar substrate specificities as its orthologue in Arabidopsis. However, osjar1 loss‐of‐function mutants did not show as severe coleoptile phenotypes as the JA‐deficient mutants coleoptile photomorphogenesis 2 (cpm2) and hebiba, which develop long coleoptiles in all light qualities we examined. Analysis of hormonal contents in the young seedling stage revealed that osjar1 mutants are still able to synthesize JA‐Ile conjugate in response to blue light, suggesting that a redundantly active enzyme can conjugate JA and Ile in rice seedlings. A good candidate for this enzyme is OsJAR2, which was found to be able to catalyse the conjugation of JA with Ile as well as with some additional amino acids. In contrast, if plants in the vegetative stage were mechanically wounded, the content of JA‐Ile was severely reduced in osjar1, demonstrating that OsJAR1 is the most important JA‐Ile conjugating enzyme in the wounding response during the vegetative stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号