首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant responses to wounding are part of their defense responses against insects, and are tightly regulated. The isoleucin conjugate of jasmonic acid (JA‐Ile) is a major regulatory molecule. We have previously shown that inositol polyphosphate signals are required for defense responses in Arabidopsis; however, the way in which inositol polyphosphates contribute to plant responses to wounding has so far remained unclear. Arabidopsis F‐box proteins involved in the perception of JA‐Ile (COI1) and auxin (TIR1) are structurally similar. Because TIR1 has recently been shown to contain inositol hexakisphosphate (InsP6) as a co‐factor of unknown function, here we explored the possibility that InsP6 or another inositol polyphosphate is required for COI1 function. In support of this hypothesis, COI1 variants with changes in putative inositol polyphosphate coordinating residues exhibited a reduced interaction with the COI1 target, JAZ9, in yeast two‐hybrid tests. The equivalent COI1 variants displayed a reduced capability to rescue jasmonate‐mediated root growth inhibition or silique development in Arabidopsis coi1 mutants. Yeast two‐hybrid tests using wild‐type COI1 in an ipk1Δ yeast strain exhibiting increased levels of inositol pentakisphosphate (InsP5) and reduced levels of InsP6 indicate an enhanced COI1/JAZ9 interaction. Consistent with these findings, Arabidopsis ipk1‐1 mutants, also with increased InsP5 and reduced InsP6 levels, showed increased defensive capabilities via COI1‐mediated processes, including wound‐induced gene expression, defense against caterpillars or root growth inhibition by jasmonate. The combined data from experiments using mutated COI1 variants, as well as yeast and Arabidopsis backgrounds altered in inositol polyphosphate metabolism, indicate that an inositol polyphosphate, and probably InsP5, contributes to COI1 function.  相似文献   

2.
3.
The synthesis and the metabolism of inositol 3,4,5,6-tetrakisphosphate (Ins(3,4,5,6)P4) are the responsibility of a single multifunctional kinase/phosphotransferase, ITPK1. This enzyme dynamically couples the cellular levels of Ins(3,4,5,6)P4 to the receptor-dependent hydrolysis of inositol lipids by phospholipase C. This is a biologically significant event because Ins(3,4,5,6)P4 regulates the conductance of a specialized class of chloride ion channels, which regulate many cellular functions including epithelial salt and fluid secretion, synaptic efficacy, bone remodelling, tumor cell migration, insulin release from pancreatic β-cells, and inflammatory responses. This review assesses the current state of our knowledge of this versatile and ubiquitous signalling cascade.  相似文献   

4.
5.
The effect of diets differing in enzyme supplements, mineral phosphorus (P) and microwave wheat treatment on phytate hydrolysis and lower inositol phosphate isomers (InsPs) appearance in broiler crops was studied. The broilers (16- and 15-day-old) were assigned to 48 pens of 15 or 20 birds each (n = 8 pens per treatment) in Experiments 1 and 2, respectively. In Experiment 1, birds received a low-P wheat-soybean meal diet where the wheat was either microwave treated or not. These diets were offered without further supplementation or with added phytase (500 FTU/kg diet), alone or in combination with a xylanase (16,000 BXU/kg diet). In Experiment 2, two maize-soybean meal-based diets were fed, without or with monocalcium phosphate supplementation. Furthermore, these diets were offered without further supplementation or with phytase at 500 or 12,500 FTU/kg diet. On day 23 or 24 (Experiments 1 and 2, respectively), crop digesta were pooled per pen, freeze-dried and analysed for InsPs and the marker TiO2. Microwaving reduced the intrinsic phytase activity and InsP6 hydrolysis, but increased the concentration of Ins(1,2,3,4,5)P5 and Ins(1,2,4,5,6)P5 in the digesta of crop (Experiment 1). Microwave treatment significantly interacted with enzyme supplementation for Ins(1,2,5,6)P4 concentration, indicating a synergistic effect of intrinsic and supplied phytase in the crop. Xylanase tended to support phytase hydrolysis in diets with microwave-treated wheat. Phytase addition increased InsP6 hydrolysis up to 79% (Experiment 2). Thus, wheat phytase activity can cause high InsP6 hydrolysis in the crop. Treatment differences in lower InsPs indicated that hydrolysis of the first InsP6 phosphate group is not the only step in the degradation cascade in the crop of broilers that is influenced by dietary factors.  相似文献   

6.
7.
Arsenate [As(V)] toxicity is considered to be derived from similarities in the chemical properties of As(V) and phosphate (Pi). An Arabidopsis thaliana mutant of inositol pentakisphosphate 2‐kinase (AtIPK1), atipk1‐1, has previously exhibited lower level of phytate and higher level of Pi, relative to wild‐type (WT). Here, atipk1‐1 displayed hypersensitivity to As(V) stress and less As(V) uptake when compared to WT. Overexpression of AtIPK1 controlled by the CaMV 35S promoter partially rescued the As(V)‐sensitive phenotype of atipk1‐1. When compared to control Pi status, addition of Pi enhanced As(V) tolerance of both WT and atipk1‐1 plants, while the arsenic concentration was less reduced in the latter genotype. Despite the higher Pi level in atipk1‐1 than did WT plants, the mutant suffered more severe Pi starvation under Pi limitation stress, indicating that Pi homeostasis was altered in the mutant. Gene expression analysis of WT and atipk1‐1 plants showed the diverse effect of As(V) stress on Pi starvation‐dependent regulation of Pi‐responsive genes. Our study suggested that a particular mechanism of As(V) toxicity existed in atipk1‐1 mutant, and may offer new insights into the interactions between Pi homeostasis and As(V) detoxification in plants.  相似文献   

8.
To investigate the effects of increasing concentrations ofmyo-inositol (inositol) on receptor stimulated [3H]inositol polyphosphate formation in the absence of lithium, slices of rat cerebral cortex were incubated with various concentrations of [3H]inositol (1 to 30 M). Carbachol stimulated formation of [3H]inositol trisphosphate (InsP3) and [3H]inositol 1,3,4,5-tetrakisphosphate {Ins(1,3,4,5)P4} increased several fold when the inositol concentration was increased reaching a plateau at approximately 12 M inositol. Time course studies revealed that in the presence of low concentrations of inositol (1 M), [3H]InsP3 and [3H]Ins(1,3,4,5)P4 formation in response to carbachol stimulation increased slowly over a 10 to 20 min time period, whereas in the presence of 4 and 12 M inositol, carbachol stimulated [3H]InsP3 and [3H]Ins(1,3,4,5)P4 formation was rapid and essentially complete within 3 to 5 min after carbachol addition. Although the carbachol dose response in 12 M inositol had a much greater maximal efficacy, there was no change in potency. Similar to the effects of carbachol on [3H]Ins(1,3,4,5)P4 formation from prelabeled phosphoinositides, muscarinic receptor stimulation increased Ins(1,3,4,5)P4 mass formation by seven fold. Furthermore, Li+ (8 mM) completely inhibited carbachol stimulated increases in Ins(1,3,4,5)P4 mass formation. In contrast to the effects of increasing inositol on carbachol stimulated formation of radiolabeled inositol phosphates, increasing inositol had no effect upon mass formation of Ins(1,3,4,5)P4. These results show that when measuring inositol polyphosphate formation by the radiolabeling technique in the absence of Li+, increasing the inositol concentration greatly increases the stimulated component of [3H]InsP3 and [3H]Ins(1,3,4,5)P4 formation. However, this inositol induced increase in agonist stimulated Ins(1,3,4,5)P4 formation is not reflected as an increase in mass formation.  相似文献   

9.
10.
Inositol pyrophosphates are unique cellular signaling molecules with recently discovered roles in energy sensing and metabolism. Studies in eukaryotes have revealed that these compounds have a rapid turnover, and thus only small amounts accumulate. Inositol pyrophosphates have not been the subject of investigation in plants even though seeds produce large amounts of their precursor, myo‐inositol hexakisphosphate (InsP6). Here, we report that Arabidopsis and maize InsP6 transporter mutants have elevated levels of inositol pyrophosphates in their seed, providing unequivocal identification of their presence in plant tissues. We also show that plant seeds store a little over 1% of their inositol phosphate pool as InsP7 and InsP8. Many tissues, including, seed, seedlings, roots and leaves accumulate InsP7 and InsP8, thus synthesis is not confined to tissues with high InsP6. We have identified two highly similar Arabidopsis genes, AtVip1 and AtVip2, which are orthologous to the yeast and mammalian VIP kinases. Both AtVip1 and AtVip2 encode proteins capable of restoring InsP7 synthesis in yeast mutants, thus AtVip1 and AtVip2 can function as bonafide InsP6 kinases. AtVip1 and AtVip2 are differentially expressed in plant tissues, suggesting non‐redundant or non‐overlapping functions in plants. These results contribute to our knowledge of inositol phosphate metabolism and will lay a foundation for understanding the role of InsP7 and InsP8 in plants.  相似文献   

11.
When [3H]inositol-prelabelled N1E-115 cells were stimulated with carbamylcholine (CCh) (100 microM), high K+ (60 mM), and prostaglandin E1 (PGE1) (10 microM), a transient increase in [3H]inositol pentakisphosphate (InsP5) accumulation was observed. The accumulation reached its maximum level at 15 s and had declined to the basal level at 2 min. CCh, high K+, and PGE1 also caused accumulations of [3H]inositol 1,4,5-trisphosphate [Ins(1,4,5)P3], [3H]inositol 1,3,4,6-tetrakisphosphate [Ins(1,3,4,6)P4], and [3H]inositol hexakisphosphate (InsP6). Muscarine and CCh induced accumulations of [3H]Ins(1,4,5)P3, [3H]-Ins(1,3,4,6)P4, [3H]InsP5, and [3H]InsP6 with a similar potency and exerted these maximal effects at 100 microM, whereas nicotine failed to do so at 1 mM. With a slower time course, CCh, high K+, and PGE1 caused accumulations of [3H]-inositol 1,3,4-trisphosphate [Ins(1,3,4)P3] and [3H]inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4]. In an N1E-115 cell homogenate, [3H]Ins(1,4,5)P3, [3H]Ins(1,3,4,5)P4, and [3H]Ins(1,3,4)P3 were converted to [3H]InsP5 through [3H]-Ins(1,3,4,6)P4. The above results indicate that Ins(1,3,4,6)P4, InsP5, and InsP6 are rapidly formed by several kinds of stimulants in N1E-115 cells.  相似文献   

12.
Abstract: Bovine adrenal chromaffin cells (BCC) were used to compare histamine- and angiotensin II-induced changes of inositol mono-, bis-, and trisphosphate (InsP1, InsP2, and InsP3, respectively) isomers, intracellular free Ca2+ ([Ca2+]i), and the pathways of inositol phosphate metabolism. Both agonists elevated [Ca2+]i by 200 nM 3–4 s after addition, but afterwards the histamine response was much more prolonged. Histamine and angiotensin II also produced similar four- to fivefold increases of Ins(1,4,5)P3 that peaked within 5 s. Over the first minute of stimulation, however, Ins(1,4,5)P3 formation was monophasic after angiotensin II, but biphasic after histamine, evidence supporting differential regulation of angiotensin II- and histamine-stimulated signal transduction. The metabolism of Ins(1,4,5)P3 by BCC homogenates was found to proceed via (a) sequential dephosphorylation to Ins(1,4)P2 and Ins(4)P, and (b) phosphorylation to inositol 1,3,4,5-tetrakisphosphate, followed by dephosphorylation to Ins(1,3,4)P3, Ins(1,3)P2, and Ins(3,4)P2, and finally to Ins(1 or 3)P. In whole cells, Ins(1 or 3)P only increased after histamine treatment. Additionally, Ins(1,3)P2 was the only other InsP2 besides Ins(1,4)P2 to accumulate within 1 min of agonist treatment [Ins(3,4)P2 did not increase]. These results support a correlation between the time course of Ins(1,4,5)P3 formation and the time course of [Ca2+]i transients and illustrate that Ca2+-mobilizing agonists can produce distinguishable patterns of inositol phosphate formation and [Ca2+], changes in BCC. Different patterns of second-messenger formation are likely to be important in signal recognition and may encode agonist-specific information.  相似文献   

13.
High‐affinity phosphate transporters mediate uptake of inorganic phosphate (Pi) from soil solution under low Pi conditions. The electrophysiological properties of any plant high‐affinity Pi transporter have not been described yet. Here, we report the detailed characterization of electrophysiological properties of the barley Pi transporter, HvPHT1;1 in Xenopus laevis oocytes. A very low Km value (1.9 µm ) for phosphate transport was observed in HvPHT1;1, which falls within the concentration range observed for barley roots. Inward currents at negative membrane potentials were identified as nH+:Pi (n > 1) co‐transport based on simultaneous Pi radiotracer uptake, oocyte voltage clamping and pH dependence. HvPHT1;1 showed preferential selectivity for Pi and arsenate, but no transport of the other oxyanions SO42? and NO3. In addition, HvPHT1;1 locates to the plasma membrane when expressed in onion (Allium cepa L.) epidermal cells, and is highly expressed in root segments with dense hairs. The electrophysiological properties, plasma membrane localization and cell‐specific expression pattern of HvPHT1;1 support its role in the uptake of Pi under low Pi conditions.  相似文献   

14.
Background information. Interconnections between the Ca2+ and cAMP signalling pathways can determine the specificity and diversity of the cellular effects mediated by these second messengers. Most cAMP effects are mediated by PKA (protein kinase A), which is anchored close to its membranous substrates by AKAPs (A kinase‐anchoring proteins). In many cell types, the activation of InsP3R (inositol 1,4,5‐trisphosphate receptor), an endoplasmic reticulum Ca2+ channel, is a key event of Ca2+ signalling. The phosphorylation of InsP3R1 by PKA stimulates Ca2+ mobilization. This control is thought to be tight, involving the association of PKA with InsP3R1. The InsP3R1 isoform predominates in central nervous tissue and its concentration is highest in the cerebellar microsomes. We investigated the complex formed by InsP3R1 and PKA in this fraction, vith a view to identifying its components and determining its distribution in the cerebellar cortex. Results. Immunoprecipitation experiments showed that InsP3R1 associated with PKA type IIβ and AKAP450, the longer variant of AKAP9, in sheep cerebellar microsomes. The co‐purification of AKAP450 with InsP3R1 on heparin‐agarose provided further evidence of the association of these proteins. Immunohistofluorescence experiments on slices of cerebellar cortex showed that AKAP450 was colocalized with InsP3R1 and RIIβ (regulatory subunit of PKA IIβ) in granule cells, but not in Purkinje cells. AKAP450 was localized in the Golgi apparatus of these two cell types whereas InsP3R1 was detected in this organelle only in granule cells. Conclusions. Taken together these results suggest that InsP3R1 forms a complex with AKAP450 and PKAIIβ, localized in the Golgi apparatus of cerebellar granule cells. In contrast, the association of InsP3R1 with PKA in Purkinje cells would require a different macromolecular complex.  相似文献   

15.
In this study the mass of polyphosphoinositides as well as the turnover of [3H]inositol phospholipids and [3H]inositol phosphates during ischaemia and short periods of reperfusion were studied in the isolated perfused rat heart. Since the phosphoinositides located within the sarcolemma are precursors for release of inositoltrisphosphate (InsP3) and diacylglycerol, sarcolemmal membranes (rather than whole tissue) isolated at the end of the experimental procedure, were used. Hearts were prelabelled with [3H]inositol and subsequently perfused with 10 mM LiCI to block the phosphatidylinositol (PI) pathway. The results showed that 20 min of global ischaemia depressed the amount of [3H]inositol present in both sarcolemmal phosphatidylinositol-4-phosphate (PI-4-P) and phosphatidylinositol-4,5-bisphosphate (PI-4,5-P2), as well as in the cytosolic [3H]inositol phosphates, [3H]InsP2 and [3H]InsP3. The mass of the sarcolemmal inositol phospholipids remained unchanged during ischaemia. Reperfusion caused an immediate (within 30 sec) increase in the amount of [3H]inositol in sarcolemmal PI, PI-4-P and PI-4,5-P2. PI-4-P levels showed a transient increase after 30 seconds postischaemic reperfusion, while the mass of the other sarcolemmal inositol phospholipids, PI and PI-4,5-P2, remained unchanged. [3H]Insp, [3H]InsP2 and [3H]InsP3 also increased significantly in comparison to ischaemic hearts after only 30 sec postischaemic reperfusion.In summary, the results obtained indicate inhibition of the PI pathway during ischaemia with an immediate significant stimulation upon reperfusion. In view of the capacity of InsP3 to mobilize Ca2+ the possibility exists that stimulation of this pathway during reperfusion may play a role in the intracellular Ca2+ overload, characteristic of postischaemic reperfusion.  相似文献   

16.
Seedlings of six temperate pasture species, three grasses and three legumes, were grown for 19–24 days in sterile agar or sand-vermiculite media, in the presence of inorganic phosphate (Pi), glucose 1-phosphate (G1P) or inositol hexaphosphate (IHP). Agar (pH 5.0) had a low IHP-sorbing capacity while IHP was almost completely sorbed in sand-vermiculite. Pi and G1P were relatively available in both media. Growth of each species was measured in relation to phosphorus (P) supply and levels of Pi supply at which shoot yields reached 90% of maximum yield (Pcrit) were determined. Pcrit values were generally higher for the legume species than for the grasses, and were six-fold higher for Trifolium subterraneum L. seedlings when grown in sand-vermiculite relative to agar. When supplied with G1P, seedlings of the six species grew as well as plants supplied with Pi. By contrast, IHP was a poor source of P for plant growth, even when supplied in agar at levels up to 40-fold greater than Pcrit. Using the growth of T. subterraneum in the presence of IHP, it was calculated that roots released approximately 0.09 nkat phytase g-1 root dry wt per day, over 20 days of growth. By supplementing agar containing IHP with phytase from Aspergillus niger (E.C. 3.1.3.8; 0.012 nkat plant-1, or 1.3 nkat g-1 root dry wt), sufficient P became available to enable T. subterraneum seedlings to grow as well as Pi-supplied plants. These results indicate that while pasture plants can quite effectively use P from some organic P sources (e.g. G1P), the acquisition of phytate-P is limited both by availability of substrate and the capacity of plant roots to hydrolyse available IHP. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
To respond to physical signals and endogenous hormones, plants use specific signal transduction pathways. We and others have previously shown that second messenger inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] is used in abscisic acid (ABA) signaling, and that some mutants with altered Ins(1,4,5)P3 have altered responses to ABA. Specifically, mutants defective in the myo-inositol polyphosphate 5-phosphatases (5PTases) 1 and 2 genes that hydrolyze 5-phosphates from Ins(1,4,5)P3 and other PtdInsP and InsP substrates, have elevated Ins (1,4,5)P3, and are ABA-hypersensitive. Given the antagonistic relationship between ABA and gibberellic acid (GA), we tested the response of these same mutants to a GA synthesis inhibitor, paclobutrazol (PAC). We report here that 5ptase1, 5ptase2 and 5ptase11 mutants are hypersensitive to PAC, suggesting a relationship between elevated Ins(1,4,5)P3 and decreased GA signal transduction. These data provide insight into signaling cross-talk between ABA and GA pathways.Key words: inositol, phosphatidylinositol phosphate, paclobutrazol, gibberellic acid, inositol trisphosphate, paclobutrazol  相似文献   

18.
A soluble extract from pea (Pisum sativum L.) roots, when incubated with ATP and inositol 1,4,5-trisphosphate, produced an inositol tetrakisphosphate. The chromatographic properties of this inositol tetrakisphosphate, and of the products formed by its chemical degradation, identify it as inositol 1,4,5,6-tetrakisphosphate. No evidence was obtained for a 3-phosphorylation of inositol 1,4,5-trisphosphate. The importance of these observations with respect to inositol phosphates and calcium signalling in higher plants, is discussed.Abbreviations HPLC high-performance liquid chromatography - Ins(1,4,5)P3 inositol 1,4,5-trisphosphate - InsP4 inositol tetrakisphosphate J.A.C. gratefully acknowledges support from the Agricultural and Food Research Council, U.K., Plant Molecular Biology Initiative.  相似文献   

19.
Phosphorus (P) nutrition of beech ecosystems depends on soil processes, plant internal P cycling and P acquisition. P uptake of trees in the field is currently not validated due to the lack of an experimental approach applicable in natural forests. Application of radiolabelled tracers such as 33P and 32P is limited to special research sites and not allowed in natural environments. Moreover, only one stable isotope of P, namely 31P, exists. One alternative tool to measure P acquisition in the field could be the use of 18O‐labelled 31P‐phosphate (31P18O4 3?). Phosphate (Pi) uptake rates calculated from the 18O enrichment of dried root material after application of 31Pi 18O4 3? via nutrient solution was always lower compared to 33P incorporation, did not show increasing rates of Pi uptake at P deficiency under controlled conditions, and did not reveal seasonal fluctuations in the field. Consequently, a clear correlation between 33P‐based and 18O‐based Pi uptake by roots could not be established. Comparison of Pi uptake rates achieved from 33P‐Pi and 18O‐Pi application led to the conclusion of high Pi metabolism in roots after Pi uptake. The replacement of 18O by 16O from water in 18O‐Pi during root influx, but most probably after Pi uptake into roots, due to metabolic activities, indicates high and fast turnover of Pi. Hence, the use of 18O‐Pi as an alternative tool to estimate Pi acquisition of trees in the field must consider the increase of 18O abundance in root water that was disregarded in dried root material.  相似文献   

20.
We obtained detailed kinetic characteristics–stoichiometry, reaction rates, substrate affinities and equilibrium conditions–of human PPIP5K2 (diphosphoinositol pentakisphosphate kinase 2). This enzyme synthesizes ‘high-energy’ PP-InsPs (diphosphoinositol polyphosphates) by metabolizing InsP6 (inositol hexakisphosphate) and 5-InsP7 (5-diphosphoinositol 1,2,3,4,6-pentakisphosphate) to 1-InsP7 (1-diphosphoinositol 2,3,4,5,6-pentakisphosphate) and InsP8 (1,5-bis-diphosphoinositol 2,3,4,6-tetrakisphosphate), respectively. These data increase our insight into the PPIP5K2 reaction mechanism and clarify the interface between PPIP5K catalytic activities and cellular bioenergetic status. For example, stochiometric analysis uncovered non-productive, substrate-stimulated ATPase activity (thus, approximately 2 and 1.2 ATP molecules are utilized to synthesize each molecule of 1-InsP7 and InsP8, respectively). Impaired ATPase activity of a PPIP5K2-K248A mutant increased atomic-level insight into the enzyme''s reaction mechanism. We found PPIP5K2 to be fully reversible as an ATP-synthase in vitro, but our new data contradict previous perceptions that significant ‘reversibility’ occurs in vivo. PPIP5K2 was insensitive to physiological changes in either [AMP] or [ATP]/[ADP] ratios. Those data, together with adenine nucleotide kinetics (ATP Km=20–40 μM), reveal how insulated PPIP5K2 is from cellular bioenergetic challenges. Finally, the specificity constants for PPIP5K2 revise upwards by one-to-two orders of magnitude the inherent catalytic activities of this enzyme, and we show its equilibrium point favours 80–90% depletion of InsP6/5-InsP7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号