首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J. Rolstad  P. Wegge 《Oecologia》1987,72(3):389-394
Summary Distribution and size of 38 capercaillie Tetrao urogallus leks were related to amount and configuration of old forest patches in two south-east Norwegian coniferous forests. The smallest occupied patch was 48 ha containing a solitary displaying cock. All patches larger than 1 km2 contained leks. Number of cocks per lek increased with increasing patch size. Number of leks per patch increased in a step-wise manner with one lek added for each 2.5–3 km2 increase in patch size. In large patches there was one lek per 3–5 km2 old forest, and density of lekking cocks was 2–2.5 per km2. In small patches density of cocks varied considerably. Density of cocks was not related to patch isolation or patch shape. However, among leks surrounded by 50–60% old forest within a 1 km radius, number of cocks increased with increasing old forest fine-graininess. We argue that when old forests cover more than 50%, a fine-grained mosaic may support higher densities of lekking cocks than a coarse-grained mosaic. Conversely, when old forests cover less than 50%, a fine-grained mosaic is unfavourable, because each old forest patch becomes too small and isolated. Finally, we present a predictive model of how old forest fragmentation influences density of leks, number of cocks per lek, and total density of cocks.  相似文献   

2.
Semi-arid scrubland in the Middle East consists of a soil crust matrix overlain with patches of perennial shrubs. To understand factors influencing biodiversity in this vulnerable landscape we need to understand how this mosaic of habitats influences associated fauna. Spiders are particularly abundant in this habitat so we asked if spider diversity differed between habitat patches and if different patch types contained either a subset of the regional species pool or specific species guilds. We also asked whether changes in the fractal nature of the microphytic and macrophytic patch mosaic altered spider diversity in this habitat. We found that the semi-arid scrubland at Sayeret Shaked Park (Israel) contains different spider communities that require patches of a certain quality to develop fully. Different patch types contain communities of different species, but the community structure of the patches is similar. We suggest that large-scale environmental factors typical of the site as a whole influence coarse-grained community structure, while small-scale differences between patch types result in the specialisation of species to different patch types.  相似文献   

3.
  • 1 Plant patch shape may affect the abundance of herbivorous insects. Patches of the same size but longer or irregular have a higher perimeter/area relationship (P/A) than square or regular ones, which may determine the immigration, emigration and abundance of individuals in the patch.
  • 2 Only specialist species should be affected by plant patch shape. Those species that are more abundant in smaller patches should be more abundant in patches with higher P/A, whereas those that are more abundant in larger patches should be more abundant in patches with lower P/A.
  • 3 We studied the density of eggs, larvae and pupae of Pieris brassicae, Plutella xylostella and Trichoplusia ni in square (low P/A) and I‐shaped (high P/A) patches of 144 plants of Brassica oleracea. We also estimated their immigration to these patches, and the final plant weight.
  • 4 Plant patch shape affected the abundance, but not the distribution, of the two specialist species. Whereas P. brassicae was denser in I‐shaped patches, P. xylostella was more abundant in square patches. The generalist T. ni was not affected by patch shape. Immigration of P. brassicae was higher in I‐shaped patches, but immigration of P. xylostella and T. ni was not affected by patch shape. Plants were heavier in the centre of square patches.
  • 5 Our results suggest that plant patch shape affects the density of herbivorous insects and should be considered independently from other plant patch variables when studying the population dynamics of these organisms.
  相似文献   

4.
Abstract. Question: What are the grazing effects in the spatial organization and the internal structure of high and low cover patches from a two‐phase vegetation mosaic? Location: Patagonian steppe, Argentina. Methods: We mapped vegetation under three different grazing conditions: ungrazed, lightly grazed and heavily grazed. We analysed the spatial patterns of the dominant life forms. Also, in each patch type, we determined density, species composition, richness, diversity, size structure and dead biomass of grasses under different grazing conditions. Results: The vegetation was spatially organized in a two‐phase mosaic. High cover patches resulted from the association of grasses and shrubs and low cover patches were represented by scattered tussock grasses on bare ground. This spatial organization was not affected by grazing, but heavy grazing changed the grass species involved in high cover patches and reduced the density and cover of grasses in both patch types. Species richness and diversity in high cover patches decreased under grazing conditions, whereas in low cover patches it remained unchanged. Also, the decrease of palatable grasses was steeper in high cover patches than in low cover patches under grazing conditions. Conclusions: We suggest that although grazing promotes or inhibits particular species, it does not modify the mosaic structure of Patagonian steppe. The fact that the mosaic remained unchanged after 100 years of grazing suggests that grazing does not compromize population processes involved in maintaining patch structure, including seed dispersal, establishment or biotic interactions among life forms.  相似文献   

5.
In forest–grassland mosaics, patches can result from two processes: forest expansion over grassy ecosystems and forest fragmentation. We tested the hypothesis that patches produced by these processes differed in structure and spatial context in a forest–grassland mosaic in the southern Brazilian highlands. We compared a present‐day land cover map with a past vegetation map to identify natural forest patches and forest fragments. Patches were described according to structure (size, core area and shape metrics) and spatial context (distance from roads and urban areas, edge contrast). Principal component analyses were used to examine gradients of patch types, and differences were tested by analysis of variance with randomization test. We found 878 natural patches and 214 fragments. Natural forest patches, riparian forest patches and forest fragments differed in structure and spatial context. In comparison to natural forest patches, fragments tend to be larger, with larger core areas, and more irregular and complex in shape. Fragments are situated in a different spatial context, tending to be closer to roads and urban areas and to present higher edge contrast. Riparian natural forest patches are similar to natural forest patches, except for shape. The smaller area and regular shape of natural patches probably result from the mechanisms involved in nucleus formation in the grassland matrix and from current grassland management. Natural patches are less exposed to some anthropogenic stresses, since most of them remain in a native grassland matrix context. Our results show that inferring process from pattern is not trivial, because different processes – forest expansion and forest fragmentation – may lead to either distinct or similar patterns of patch shape and spatial context. Studying patch structure and spatial context may then provide further insight into understanding changes in vegetation pattern at landscape scale, and in disentangling the effects of concurrent processes.  相似文献   

6.
1. River corridors can be visualised as a three‐dimensional mosaic of surface–subsurface exchange patches over multiple spatial scales. Along major flow paths, surface water downwells into the sediment, travels for some distance beneath or along the stream, eventually mixes with ground water, and then returns to the stream. 2. Spatial variations in bed topography and sediment permeability result in a mosaic of patch types (e.g. gravel versus sandy patches) that differ in their hydrological exchange rate with the surface stream. Biogeochemical processes and invertebrate assemblages vary among patch types as a function of the flux of advected channel water that determines the supply of organic matter and terminal electron acceptors. 3. The overall effect of surface–subsurface hydrological exchanges on nutrient cycling and biodiversity in streams not only depends on the proportion of the different patch types, but also on the frequency distribution of patch size and shape. 4. Because nutrients are essentially produced or depleted at the downwelling end of hyporheic flow paths, reach‐scale processing rates of nutrients should be greater in stretches with many small patches (e.g. short compact gravel bars) than in stretches with only a few large patches (e.g. large gravel bars). 5. Based on data from the Rhône River, we predict that a reach with many small bars should offer more hyporheic refugia for epigean fauna than a reach containing only a few large gravel bars because benthic organisms accumulate preferentially in sediments located at the upstream and downwelling edge of bars during floods. However, large bars are more stable and may provide the only refugia during severe flood events. 6. In river floodplain systems exhibiting pronounced expansion/contraction cycles, hyporheic assemblages within newly created patches not only depend on the intrinsic characteristics of these patches but also on their life span, hydrological connection with neighbouring patches, and movement patterns of organisms. 7. Empirical and theoretical evidence illustrate how the spatial arrangement of surface–subsurface exchange patches affects heterogeneity in stream nutrient concentration, surface water temperature, and colonisation of dry reaches by invertebrates. 8. Interactions between fluvial action and geomorphic features, resulting from seasonal and episodic flow pulses, alter surface–subsurface exchange pathways and repeatedly modify the configuration of the mosaic, thereby altering the contribution of the hyporheic zone to nutrient transformation and biodiversity in river corridors.  相似文献   

7.
The explanation of mosaic pattern in chimeric organs analyzed by in situ methods requires modeling of specific hypotheses. The use of computer simulations to achieve this has led to the conclusion that finely variegated mixtures of cell lineage within chimeric tissues does not require extensive cell movement. Cell division models were used to determine the distribution of patch size as mosaic fields are generated. The results establish that these distributions are sensitive to the proportion of the two cell types which comprise the mosaic.  相似文献   

8.
北京地区植被景观中斑块形状的指数分析   总被引:47,自引:2,他引:47  
刘灿然  陈灵芝 《生态学报》2000,20(4):559-567
选取4个斑块形状指数(斑块的击长面积比SI1、斑块周长与等面积的圆周长之比SI2和身份个斑块分维SI3和SI4)并借助GIS软件ARC/INFO对北京地区植被景观中的斑块形状进行分析,又地这四个形状指数进行 earson相关分析和Spearman秋相关分析,结果表明,SI1与SI4,SI2与SI3两两之间均呈显著的正的秩相关,SI1与SI2,SI2与SI4,SI3与SI4两两之间于垢负和秩相关。因  相似文献   

9.
Regularity of species richness relationships to patch size and shape   总被引:2,自引:0,他引:2  
This study aims to assess the degree of regularity in the effect of patch size and patch shape on plant species richness across a macroscale region, and to evaluate the implications for nature conservation.
Our study area covers south-eastern Norway and contains 16 agricultural landscapes with 2162 patches.
To analyse regularity a local linear mixed model (LLMM) was applied. This procedure estimates the richness trends due to shared effects of size and shape, and simultaneously provides the landscape-specific random effect. The latter is a direct estimate of the degree of irregularity between the landscapes, conditioned on specific values of size and shape.
The results show a positive interaction between the shape and size of patches, which is repeated for all landscapes. The shape of the patches produces more regular patterns in species richness than the size of patches. This we attribute to effects of dispersal and distance to neighbouring patches of different environmentally conditioned species pools. Large and complex patches have shorter average distance to neighbouring patches (of different types) than large simple-shaped (circular) patches have. We attribute the higher species richness of the former, given a similar area, to a higher number of species dispersed from the outside into the more complex plot. For small patches, however, the distance to the edge is short relative to normal dispersal distances, for patches of all shapes. This explains why the positive effect of shape complexity on species richness is stronger for large patches. This interpretation is supported by a strong spatial correlation conditioned on the most complex patches.
Theories of dynamics in biodiversity in patchy landscapes must consider shape as a regulator at the same level as size, and both shape and size of patches should be simultaneously taken into account for management planning.  相似文献   

10.
Anomalous giant granules of beige (bg) mice have been used as a cell marker in the study of cell lineage of mast cells. Similar granules are known to exist in other tissues including kidney proximal tubules and liver parenchymal cells. In the present study, these granules were found to give yellow or orange autofluorescence when the tissue had been fixed with formaldehyde and embedded in paraffin. Thus, the granules can be used as a cell marker that can be visualized in serial paraffin sections without any specific histochemical staining. Chimaeric mice were produced by aggregation of 8-cell-stage embryos of beige (C57BL/6J-bgJ/bgJ) and A/J strains. The chimaeric liver showed beige cell patches with complicated shapes, although the patches frequently conformed to the shape of parenchymal cell cord or plate structures. In chimaeric kidney, beige cells formed coherent patches in the proximal tubules. The tubules were found to contain more than one clone. The patches frequently had long extended shapes suggesting growth of the clone along the tubule axis. Three-dimensional image reconstruction from the serial paraffin sections was carried out with the aid of a computer-assisted image analysis system, resulting in a clearer image of the patch shape.  相似文献   

11.
斑块尺度湿地植物群落多样性的维持能力   总被引:2,自引:0,他引:2  
基于GIS技术和主成分分析方法,对1950、1967、1983和2000年挠力河流域湿地景观斑块特征与斑块内植物群落多样性之间的关系进行了研究.结果表明: 1950—2000年间,研究区湿地斑块平均面积逐渐减小,能够维持2种及2种以上植物群落的斑块数量逐渐减少,最小斑块面积为10.1 km2;湿地斑块面积与植物群落多样性指数和群落类型数均呈极显著正相关关系(P<0.01),湿地斑块面积越大,维持植物群落多样性的能力越强;随着湿地斑块面积的逐渐减小,斑块破碎化指数和分维数逐渐增大,形状指数和斑块内植物群落多样性指数逐渐减小;随着湿地斑块空间分离度的增大,斑块内植物群落多样性指数呈减小趋势;主成分分析结果显示,研究区湿地斑块面积大小是影响斑块内群落多样性的最重要因素,其次为斑块的破碎化程度和分离度.  相似文献   

12.
The production of organ parenchyma in a rapid and reproducible manner is critical to normal development. In chimeras produced by the combination of genetically distinguishable tissues, mosaic patterns of cells derived from the combined genotypes can be visualized. These patterns comprise patches of contiguously similar genotypes and are different in different organs but similar in a given organ from individual to individual. Thus, the processes that produce the patterns are regulated and conserved. We have previously established that mosaic patches in multiple tissues are fractal, consistent with an iterative, recursive growth model with simple stereotypical division rules. Fractal dimensions of various tissues are consistent with algorithmic models in which changing a single variable (e.g. daughter cell placement after division) switches the mosaic pattern from islands to stripes of cells. Here we show that the spiral pattern previously observed in mouse cornea can also be visualized in rat chimeras. While it is generally held that the pattern is induced by stem cell division dynamics, there is an unexplained discrepancy in the speed of cellular migration and the emergence of the pattern. We demonstrate in chimeric rat corneas both island and striped patterns exist depending on the age of the animal. The patches that comprise the pattern are fractal, and the fractal dimension changes with the age of the animal and indicates the constraint in patch complexity as the spiral pattern emerges. The spiral patterns are consistent with a loxodrome. Such data are likely to be relevant to growth and cell division in organ systems and will help in understanding how organ parenchyma are generated and maintained from multipotent stem cell populations located in specific topographical locations within the organ. Ultimately, understanding algorithmic growth is likely to be essential in achieving organ regeneration in vivo or in vitro from stem cell populations.  相似文献   

13.
Data were collected on one group of muriquis, or woolly spider monkeys (Brachyteles arachnoides) during a 14-month study at Fazenda Montes Claros, Minas Gerais, Brazil to examine the effects of food patch size on muriqui feeding associations. Muriqui food patches were larger than expected from the availability of patch sizes in the forest; fruit patches were significantly larger than leaf patches. Feeding aggregate size, the maximum number of simultaneous occupants, and patch occupancy time were positively related to the size of fruit patches. However, a greater number of individuals fed at leaf sources than expected from the size of these patches. Adult females tended to feed alone in patches more often than males, whereas males tended to feed in single-sexed groups more often than females. Yet in neither case were these differences statistically significant.  相似文献   

14.
Comparing entire colour patterns as birds see them   总被引:11,自引:0,他引:11  
Colour patterns and their visual backgrounds consist of a mosaic of patches that vary in colour, brightness, size, shape and position. Most studies of crypsis, aposematism, sexual selection, or other forms of signalling concentrate on one or two patch classes (colours), either ignoring the rest of the colour pattern, or analysing the patches separately. We summarize methods of comparing colour patterns making use of known properties of bird eyes. The methods are easily modifiable for other animal visual systems. We present a new statistical method to compare entire colour patterns rather than comparing multiple pairs of patches. Unlike previous methods, the new method detects differences in the relationships among the colours, not just differences in colours. We present tests of the method's ability to detect a variety of kinds of differences between natural colour patterns and provide suggestions for analysis.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 86 , 405–431.  相似文献   

15.
Interpretation of spatially structured population systems is critically dependent on levels of migration between habitat patches. If there is considerable movement, with each individual visiting several patches, there is one ”patchy population”; if there is intermediate movement, with most individuals staying within their natal patch, there is a metapopulation; and if (virtually) no movement occurs, then the populations are separate (Harrison 1991, 1994). These population types actually represent points along a continuum of much to no mobility in relation to patch structure. Therefore, interpretation of the effects of spatial structure on the dynamics of a population system must be accompanied by information on mobility. We use empirical data on movements by ringlet butterflies, Aphantopus hyperantus, to investigate two key issues that need to be resolved in spatially-structured population systems. First, do local habitat patches contain largely independent local populations (the unit of a metapopulation), or merely aggregations of adult butterflies (as in patchy populations)? Second, what are the effects of patch area on migration in and out of the patches, since patch area varies considerably within most real population systems, and because human landscape modification usually results in changes in habitat patch sizes? Mark-release-recapture (MRR) data from two spatially structured study systems showed that 63% and 79% of recaptures remained in the same patch, and thus it seems reasonable to call both systems metapopulations, with some capacity for separate local dynamics to take place in different local patches. Per capita immigration and emigration rates declined with increasing patch area, while the resident fraction increased. Actual numbers of emigrants either stayed the same or increased with area. The effect of patch area on movement of individuals in the system are exactly what we would have expected if A. hyperantus were responding to habitat geometry. Large patches acted as local populations (metapopulation units) and small patches simply as locations with aggregations (units of patchy populations), all within 0.5 km2. Perhaps not unusually, our study system appears to contain a mixture of metapopulation and patchy-population attributes.  相似文献   

16.
17.
The frequency of B cells in Peyer's patches from normal BDF(1) and sheep red blood cell (SRBC)-fed BDF(1) mice that could respond to antigenic determinants on SRBC and trinitrophenyl (TNP) was determined using an in vitro system of limiting dilution analysis. In normal mice, one B cell in 1.9 x 10(4) Peyer's patch cells could be induced to an anti-SRBC response and one B cell in 3.6 x 10(4) Peyer's patch cells could be induced to an anti-TNP response. The frequency of B cells capable of responding to SRBC in normal mice was similar in Peyer's patches and spleen. However, after feeding mice SRBC for 3 weeks, there was a 6-fold reduction in the frequency of B cells in Peyer's patches capable of responding to SRBC but no change in the frequency of B cells capable of responding to TNP. The average clone size of Peyer's patch B cells responding to SRBC was similar in normal and SRBC-fed mice. Although antigen-feeding does not stimulate Peyer's patch B cells in situ to humoral antibody synthesis, antigen-feeding can markedly alter the reactivity of the antigen-sensitive cell population in Peyer's patches. We previously demonstrated that T cells in Peyer's patches could be specifically carrier primed for helper function by SRBC feeding. We have now demonstrated that antigen-feeding reduced significantly the frequency of B cells in Peyer's patches capable of responding to the fed antigen. Peyer's patches appear to serve an important function as a sampling site for intestinal antigens.  相似文献   

18.
Grazing can modify vegetation structure and species composition through selective consumption, modifying plant litter quality and hence decomposability. In most grasslands, moderate stocking rates maintain a mosaic of high‐quality patches, preferentially used by herbivores (‘grazing lawns’), and low‐quality tall patches, which are avoided. In grazing lawns decomposition rates can be accelerated because of the higher litter quality of its component species and, besides, through the indirect effect of increased nutrient availability in soil. We aimed at testing this indirect effect using standard materials, comparing their decomposition in grazing lawns, open and closed tall tussock grasslands. We selected 10 patches of each type and sampled floristic composition, soil variables and cattle dung deposition. Standard materials were filter paper and Poa stuckertii litter. We prepared litterbags of 0.3 mm (thin mesh) and 1 mm mesh size (coarse mesh). Samples were incubated for 65 days in two ways: above‐ground (thin and coarse mesh) and below‐ground (only thin mesh), aiming at analysing the conditions for decomposition for surface litter and buried litter or dead roots, respectively. Physical and chemical soil variables did not differ among patch types, despite the differences in species composition. Closed tussock grasslands showed the lowest dung deposition, confirming the less intense use of these patches. Soil nitrogen availability (N‐NO3 and N‐NH4+) was not significantly different among patch types. Each standard material followed a different decomposition pattern across patch types. For above‐ground incubated samples, Poa litter decomposed significantly faster in lawns, and slower in open tussock grasslands. Filter paper decomposed significantly faster in closed tussock grasslands than in the other two patch types. Decomposition of below‐ground incubated samples did not significantly differ among patch types, in line with results for soil variables. Above‐ground differences in decomposition may be associated with differences in microclimatic conditions resulting from differences in vegetation structure.  相似文献   

19.
In fragmented landscapes, changes in habitat availability, patch size, shape and isolation may affect survival of local populations. Proposing efficient conservation strategies for such species relies initially on distinguishing the particular effects of those factors. To address these issues, we investigated the occurrence of 3 bird species in fragmented Brazilian Atlantic Forest landscapes. Playback techniques were used to collect presence/absence data of these species inside 80 forest patches, and incidence models were used to infer their occupancy pattern from landscape spatial structure. The relative importance of patch size, shape and surrounding forest cover and isolation was assessed using a model selection approach based on maximum likelihood estimation. The presence of all species was in general positively affected by the amount of surrounding habitat and negatively affected by inter‐patch distances. The joint effects of patch size and the surrounding landscape characteristics were important determinants of occupancy for two species. The third species was affected only by forest cover and mean patch isolation. Our results suggest that local species presence is in general more influenced by the isolation from surrounding forests than by patch size alone. We found evidence that, in highly fragmented landscapes, birds that can not find patches large enough to settle may be able to overcome short distances through the matrix and include several nearby patches within their home‐ranges to complement their resource needs. In these cases, patches must be defined as functionally connected habitat networks rather than mere continuous forest segments. Bird conservation strategies in the Atlantic forest should focus on increasing patch density and connectivity, in order to implement forest networks that reduce the functional isolation between large remnants with remaining core habitat.  相似文献   

20.
MOTIVATION: Biological samples frequently contain multiple cell-types that each can play a crucial role in the development and/or regulation of adjacent cells or tissues. The search for biomarkers, or expression patterns of, one cell-type in those samples can be a complex and time-consuming process. Ordinarily, extensive laboratory bench work must be performed to separate the mixed cell population into its subcomponents, such that each can be accurately characterized. RESULTS: We have developed a methodology to electronically subtract gene expression in one or more components of a mixed cell population from a mixture, to reveal the expression patterns of other minor or difficult to isolate components. Examination of simulated data indicates that this procedure can reliably determine the expression patterns in cell-types that contribute as little as 5% of the total expression in a mixed cell population. We re-analyzed microarray expression data from the viral infection of macrophages and from the T-cells of wild type and Foxp3 deletion mice. Using our subtraction methodology, we were able to substantially improve the identification of genes involved in processes of subcomponent portions of these samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号