首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Functional domains present in the mycobacterial hemagglutinin, HBHA   总被引:7,自引:0,他引:7       下载免费PDF全文
Identification and characterization of mycobacterial adhesins and complementary host receptors required for colonization and dissemination of mycobacteria in host tissues are needed for a more complete understanding of the pathogenesis of diseases caused by these bacteria and for the development of effective vaccines. Previous investigations have demonstrated that a 28-kDa heparin-binding mycobacterial surface protein, HBHA, can agglutinate erythrocytes and promote mycobacterial aggregation in vitro. In this study, further molecular and biochemical analysis of HBHA demonstrates that it has three functional domains: a transmembrane domain of 18 amino acids residing near the N terminus, a large domain of 81 amino acids consistent with an alpha-helical coiled-coil region, and a Lys-Pro-Ala-rich C-terminal domain that mediates binding to proteoglycans. Using His-tagged recombinant HBHA proteins and nickel chromatography we demonstrate that HBHA polypeptides which contain the coiled-coil region form multimers. This tendency to oligomerize may be responsible for the induction of mycobacterial aggregation since a truncated N-terminal HBHA fragment containing the coiled-coil domain promotes mycobacterial aggregation. Conversely, a truncated C-terminal HBHA fragment which contains Lys-Pro-Ala-rich repeats binds to the proteoglycan decorin. These results indicate that HBHA contains at least three distinct domains which facilitate intercalation into surface membranes, promote bacterium-bacterium interactions, and mediate the attachment to sulfated glycoconjugates found in host tissues.  相似文献   

2.
Although Mycobacterium tuberculosis and related species are considered to be typical endosomal pathogens, recent studies have suggested that mycobacteria can be present in the cytoplasm of infected cells and cause cytoskeleton rearrangements, the mechanisms of which remain unknown. Here, we used single-molecule force spectroscopy to demonstrate that the heparin-binding hemagglutinin (HBHA), a surface adhesin from Mycobacterium tuberculosis displaying sequence similarities with actin-binding proteins, is able to bind to actin. Force curves recorded between actin and the coiled-coil, N-terminal domain of HBHA showed a bimodal distribution of binding forces reflecting the detection of single and double HBHA-actin interactions. Force curves obtained between actin and the lysine-rich C-terminal domain of HBHA showed a broader distribution of binding events, suggesting they originate primarily from intermolecular electrostatic bridges between cationic HBHA domains and anionic actin residues. We also explored the dynamics of the HBHA-actin interaction, showing that the binding force and binding frequency increased with the pulling speed and contact time, respectively. Taken together, our data indicate that HBHA is able to specifically bind actin, via both its N-terminal and C-terminal domains, strongly suggesting a role of the HBHA-actin interaction in the pathogenesis of mycobacterial diseases.  相似文献   

3.
The heparin-binding hemagglutinin adhesin (HBHA) is a surface adhesin on the human pathogen Mycobacterium tuberculosis. Previously, it has been shown that HBHA exists as a dimer in solution. We investigated the detailed nature of this dimer using circular dichroism spectroscopy and analytical ultracentrifugation techniques. We demonstrate that the heparan sulfate (HS) binding region does not play a role in dimerization in solution, while the linker region between the predicted N-terminal coiled-coil and the C-terminal HS binding region does affect dimer stability. The majority of contacts responsible for dimerization, folding, and stability lie within the predicted coiled-coil region of HBHA, while the N-terminal helix preceding the coiled-coil appears to trigger the folding and dimerization of HBHA. Constructs lacking this initial helix or containing site-specific mutations produce nonhelical monomers in solution. Thus, we show that HBHA dimerization and folding are linked and that the N-terminal region of this cell surface adhesin triggers the formation of an HBHA coiled-coil dimer.  相似文献   

4.
The mechanism by which the neural cell adhesion molecule, N-CAM, mediates homophilic interactions between cells has been variously attributed to an isologous interaction of the third immunoglobulin (Ig) domain, to reciprocal binding of the two N-terminal Ig domains, or to reciprocal interactions of all five Ig domains. Here, we have used a panel of recombinant proteins in a bead binding assay, as well as transfected and primary cells, to clarify the molecular mechanism of N-CAM homophilic binding. The entire extracellular region of N-CAM mediated bead aggregation in a concentration- and temperature-dependent manner. Interactions of the N-terminal Ig domains, Ig1 and Ig2, were essential for bead binding, based on deletion and mutation experiments and on antibody inhibition studies. These findings were largely in accord with aggregation experiments using transfected L cells or primary chick brain cells. Additionally, maximal binding was dependent on the integrity of the intramolecular domain-domain interactions throughout the extracellular region. We propose that these interactions maintain the relative orientation of each domain in an optimal configuration for binding. Our results suggest that the role of Ig3 in homophilic binding is largely structural. Several Ig3-specific reagents failed to affect N-CAM binding on beads or on cells, while an inhibitory effect of an Ig3-specific monoclonal antibody is probably due to perturbations at the Ig2-Ig3 boundary. Thus, it appears that reciprocal interactions between Ig1 and Ig2 are necessary and sufficient for N-CAM homophilic binding, but that maximal binding requires the quaternary structure of the extracellular region defined by intramolecular domain-domain interactions.  相似文献   

5.
The mycobacterial adhesin heparin-binding hemagglutinin (HBHA) contains several lysine-rich repeats at its carboxyl-terminal end. Using truncated recombinant HBHA forms and hybrid proteins containing HBHA repeats grafted onto the Escherichia coli maltose-binding protein (MBP), we found that these repeats are responsible for heparin binding. Immunofluorescence microscopy studies revealed that their deletion abrogates binding of HBHA to human pneumocytes. Conversely, when fused to MBP, the HBHA repeats confer pneumocyte adherence properties to the hybrid protein. Treatment of pneumocytes with glycosaminoglycan-degrading enzymes showed that HBHA binding depends on the presence of heparan sulfate chains on the cell surface. The epitope of a monoclonal antibody that inhibits mycobacterial adherence to epithelial cells was mapped within the lysine-rich repeats, confirming their involvement in mycobacterial adherence to epithelial cells. Surface plasmon resonance analyses showed that recombinant HBHA binds to immobilized heparin with fast association kinetics (k(a) = 5.62 (+/- 0.10) x 10(5) m(-1) s(-1)), whereas the dissociation kinetics were slower (k(d) = 0.015 (+/- 0.002) s(-1)), yielding a K(D) value of 26 nm. Similar analyses with grafted MBP indicated similar kinetic constants, indicating that the carboxyl-terminal repeats contain the entire heparin-binding site of HBHA. The molecular characterization of the interactions of HBHA with epithelial glycosaminoglycans should help to better understand mycobacterial adherence within the lungs and may ultimately lead to new approaches for therapy or immunoprophylaxis.  相似文献   

6.
The neural cell adhesion molecule axonin-1/TAG-1 mediates cell-cell interactions via homophilic and heterophilic contacts. It consists of six Ig and four fibronectin type III domains anchored to the membrane by glycosylphosphatidylinositol. The recently solved crystal structure indicates a module composed of the four N-terminal Ig domains as the contact site between trans-interacting axonin-1 molecules from apposed membranes. Here, we have tested domain-specific monoclonal antibodies for their capacity to interfere with homophilic binding in a cell aggregation assay. The results confirmed the existence of a binding region within the N-terminal Ig domains and identified a second region contributing to homophilic binding on the third and fourth fibronectin domains near the C terminus. The perturbation of each region alone resulted in a complete loss of cell aggregation, suggesting that axonin-1-mediated cell-cell contact results from a cooperative action of two homophilic binding regions. The data support that axonin-1-mediated cell-cell contact is formed by cis-assisted trans-binding. The N-terminal binding regions of axonin-1 establish a linear zipper-like string of trans-interacting axonin-1 molecules alternately provided by the two apposed membranes. The C-terminal binding regions strengthen the cell-cell contact by enhancing the expansion of the linear string into a two-dimensional array via cis-interactions. Cis-assisted trans-binding may be a basic binding mechanism common to many cell adhesion molecules.  相似文献   

7.
Sixty‐four sequences containing lectin domains with homologs of known three‐dimensional structure were identified through a search of mycobacterial genomes. They appear to belong to the β‐prism II, the C‐type, the Microcystis virdis (MV), and the β‐trefoil lectin folds. The first three always occur in conjunction with the LysM, the PI‐PLC, and the β‐grasp domains, respectively while mycobacterial β‐trefoil lectins are unaccompanied by any other domain. Thirty heparin binding hemagglutinins (HBHA), already annotated, have also been included in the study although they have no homologs of known three‐dimensional structure. The biological role of HBHA has been well characterized. A comparison between the sequences of the lectin from pathogenic and nonpathogenic mycobacteria provides insights into the carbohydrate binding region of the molecule, but the structure of the molecule is yet to be determined. A reasonable picture of the structural features of other mycobacterial proteins containing one or the other of the four lectin domains can be gleaned through the examination of homologs proteins, although the structure of none of them is available. Their biological role is also yet to be elucidated. The work presented here is among the first steps towards exploring the almost unexplored area of the structural biology of mycobacterial lectins. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
EMILIN1 and EMILIN2 belong to a family of extracellular matrix glycoproteins characterized by the N-terminal cysteine-rich EMI domain, a long segment with high probabilty for coiled-coil structure formation and a C-terminal gC1q domain. To study EMILIN1 and EMILIN2 interaction and assembly we have applied qualitative and quantitative two hybrid systems using constructs corresponding to the gC1q and EMI domains. The identified interactions were further confirmed in yeast extracts of co-transfected cells followed by co-immunoprecipitation. The data indicated that gC1q domains are able to self-interact as well as to interact one each other and with the EMI domains, but no self interactions were detected between the EMI domains. Furthermore EMILINs interactions were studied in 293-EBNA cells co-transfected with full lenght EMILIN1 and EMILIN2 constructs. Specific antibodies were able to co-immunoprecipitate EMILINs, indicating that also full-lenght proteins can give rise to non-covalent homo- and hetero-multimers even if reduced and alkylated before mixing. Immunofluorescence analysis on mouse cell cultures and tissues sections with specific antibodies showed co-distribution of EMILIN1 and EMILIN2. Thus, we can hypothesize that EMILINs multimers are formed by head-to-tail interaction between C-terminal and N-terminal domains of EMILIN1 and/or EMILIN2 but also by tail-to-tail interaction between gC1q domains. These multiple interactions may regulate homo-typic and/or hetero-typic linear and eventually lateral branching assemblies of EMILIN1 and EMILIN2 in tissues.  相似文献   

9.
Fiumara F  Fioriti L  Kandel ER  Hendrickson WA 《Cell》2010,143(7):1121-1135
The functional switch of glutamine/asparagine (Q/N)-rich prions and the neurotoxicity of polyQ-expanded proteins involve complex aggregation-prone structural transitions, commonly presumed to be forming β sheets. By analyzing sequences of interaction partners of these proteins, we discovered a recurrent presence of coiled-coil domains both in the partners and in segments that flank or overlap Q/N-rich and polyQ domains. Since coiled coils can mediate protein interactions and multimerization, we studied their possible involvement in Q/N-rich and polyQ aggregations. Using circular dichroism and chemical crosslinking, we found that Q/N-rich and polyQ peptides form α-helical coiled coils in?vitro and assemble into multimers. Using structure-guided mutagenesis, we found that coiled-coil domains modulate in?vivo properties of two Q/N-rich prions and polyQ-expanded huntingtin. Mutations that disrupt coiled coils impair aggregation and activity, whereas mutations that enhance coiled-coil propensity promote aggregation. These findings support a coiled-coil model for the functional switch of Q/N-rich prions and for the pathogenesis of polyQ-expansion diseases.  相似文献   

10.
A Tomschy  C Fauser  R Landwehr    J Engel 《The EMBO journal》1996,15(14):3507-3514
Cluster formation of E-cadherin on the cell surface is believed to be of major importance for cell-cell adhesion. To mimic this process the extracellular part of mouse E-cadherin (ECAD) was recombinantly fused to the assembly domain of rat cartilage oligomeric matrix protein (COMP), resulting in the chimeric protein ECAD-COMP. The COMP domain formed a five-stranded alpha-helical coiled-coil. This enabled the formation of a pentameric ECAD with bundled C-termini and free N-termini. The pentameric protein construct ECAD-COMP and the monomeric ECAD were expressed in human embryonal kidney 293 cells. Electron microscopy, analytical ultracentrifugation, solid phase binding and cell attachment assays revealed that pentamers showed strong self-association and cell attachment, whereas monomers exhibited no activity. At the high internal concentration in the pentamer the N-terminal EC1 domains of two E-cadherin arms interact to form a ring-like structure. Then the paired domains interact with a corresponding pair from another pentamer. None of the four other extracellular domains of E-cadherin is involved in this interaction. Based on these results, an in vivo mechanism is proposed whereby two N-terminal domains of neighbouring E-cadherins at the cell surface first form a pair, which binds with high affinity to a similar complex on another cell. The strong dependence of homophilic interactions on C-terminal clustering points towards a regulation of E-cadherin mediated cell-cell adhesion via lateral association.  相似文献   

11.
Mechanism of homophilic cadherin adhesion   总被引:6,自引:0,他引:6  
Direct measurements of the distance-dependent forces between membrane-bound cadherins were used to test current models of homophilic cadherin interactions. The results reveal a complex binding mechanism in which the proteins adhere in multiple alignments that involve more than the amino-terminal domains.  相似文献   

12.
D88 and D109, two cyanogen bromide fragments of desmin which essentially correspond to the amino terminal headpiece domain and Helix 1B, respectively, bind to intact desmin with different topological specificities. D88, the headpiece domain fragment, binds only to the headpiece of intact desmin. In contrast, D109, which encompasses Helix 1B and most of the linker L10 binds to desmin even when its headpiece is removed. Additionally, these fragments only bind desmin if they are present during filament assembly; they do not bind pre-assembled desmin IF or tetramers. These observations suggest that, while alpha-helical coiled-coil interaction between rod domains provides the major driving force behind IF protein dimer formation, homophilic binding of head domains of these proteins may provide an additional stabilizing force and/or specify axial registration in certain IF proteins.  相似文献   

13.
Sawaya MR  Wojtowicz WM  Andre I  Qian B  Wu W  Baker D  Eisenberg D  Zipursky SL 《Cell》2008,134(6):1007-1018
Drosophila Dscam encodes a vast family of immunoglobulin (Ig)-containing proteins that exhibit isoform-specific homophilic binding. This diversity is essential for cell recognition events required for wiring the brain. Each isoform binds to itself but rarely to other isoforms. Specificity is determined by "matching" of three variable Ig domains within an approximately 220 kD ectodomain. Here, we present the structure of the homophilic binding region of Dscam, comprising the eight N-terminal Ig domains (Dscam(1-8)). Dscam(1-8) forms a symmetric homodimer of S-shaped molecules. This conformation, comprising two reverse turns, allows each pair of the three variable domains to "match" in an antiparallel fashion. Structural, genetic, and biochemical studies demonstrate that, in addition to variable domain "matching," intramolecular interactions between constant domains promote homophilic binding. These studies provide insight into how "matching" at all three pairs of variable domains in Dscam mediates isoform-specific recognition.  相似文献   

14.
Trimeric autotransporter adhesins (TAAs) are bacterial surface proteins that fulfil important functions in pathogenic Gram‐negative bacteria. Prominent examples of TAAs are found in Burkholderia cepacia complex, a group of bacterial species causing severe infections in patients with cystic fibrosis. While there is strong evidence that Burkholderia cenocepacia TAAs mediate adhesion, aggregation and colonization of the respiratory epithelium, we still know very little about the molecular mechanisms behind these interactions. Here, we use single‐molecule atomic force microscopy to unravel the binding mechanism of BCAM0224, a prototype TAA from B. cenocepacia K56‐2. We show that the adhesin forms homophilic trans‐interactions engaged in bacterial aggregation, and that it behaves as a spring capable to withstand high forces. We also find that BCAM0224 binds collagen, a major extracellular component of host epithelia. Both homophilic and heterophilic interactions display low binding affinity, which could be important for epithelium colonization. We then demonstrate that BCAM0224 recognizes receptors on living pneumocytes, and leads to the formation of membrane tethers that may play a role in promoting adhesion. Collectively, our results show that BCAM0224 is a multifunctional adhesin endowed with remarkable binding properties, which may represent a general mechanism among TAAs for strengthening bacterial adhesion.  相似文献   

15.
Stabilin-2 was recently shown to mediate a heterophilic interaction with integrin alphaMbeta2 via its FAS1 domain. Here, we demonstrate that stabilin-2 also mediates homophilic cell-cell interactions. L cells expressing stabilin-2 mediate a significant level of cell aggregation, and this aggregation is significantly inhibited by anti-stabilin-2 antibody. Stabilin-2-mediated aggregation is mediated by homophilic interactions and enhanced in the presence of Ca2+ and Mg2+. Interestingly, exogenous addition of FAS1 domains but not EGF-like domains enhances stabilin-2-mediated cell aggregation, suggesting that exogenous FAS1 domains may form polymeric structure with FAS1 domains of stabilin-2. Together, these data show the participation of stabilin-2 in homophilic cell adhesion and role of FAS1 domains.  相似文献   

16.
Cell adhesion molecules (CAMs) sense the extracellular microenvironment and transmit signals to the intracellular compartment. In this investigation, we addressed the mechanism of signal generation by ectodomains of single-pass transmembrane homophilic CAMs. We analyzed the structure and homophilic interactions of carcinoembryonic antigen (CEA)–related CAM 1 (CEACAM1), which regulates cell proliferation, apoptosis, motility, morphogenesis, and microbial responses. Soluble and membrane-attached CEACAM1 ectodomains were investigated by surface plasmon resonance–based biosensor analysis, molecular electron tomography, and chemical cross-linking. The CEACAM1 ectodomain, which is composed of four glycosylated immunoglobulin-like (Ig) domains, is highly flexible and participates in both antiparallel (trans) and parallel (cis) homophilic binding. Membrane-attached CEACAM1 ectodomains form microclusters in which all four Ig domains participate. Trans-binding between the N-terminal Ig domains increases formation of CEACAM1 cis-dimers and changes CEACAM1 interactions within the microclusters. These data suggest that CEACAM1 transmembrane signaling is initiated by adhesion-regulated changes of cis-interactions that are transmitted to the inner phase of the plasma membrane.  相似文献   

17.
Corneodesmosomes, the modified desmosomes of the uppermost layers of the epidermis, play an important role in corneocyte cohesion. Corneodesmosin is a secreted glycoprotein located in the corneodesmosomal core and covalently linked to the cornified envelope of corneocytes. Its glycine- and serine-rich NH(2)-terminal domain may fold to give structural motifs similar to the glycine loops described in epidermal cytokeratins and loricrin and proposed to display adhesive properties. A chimeric protein comprising human corneodesmosin linked to the transmembrane and cytoplasmic domains of mouse E-cadherin was expressed in mouse fibroblasts to test the ability of corneodesmosin to promote cell-cell adhesion. Classic aggregation assays indicated that corneodesmosin mediates homophilic cell aggregation. Moreover, Ca(2+) depletion showed a moderate effect on aggregation. To assess the involvement of the glycine loop domain in adhesion, full-length corneodesmosin, corneodesmosin lacking this domain, or this domain alone were expressed as glutathione S-transferase fusion proteins and tested for protein-protein interactions by overlay binding assays. The results confirmed that corneodesmosin presents homophilic interactions and indicated that its NH(2)-terminal glycine loop domain is sufficient but not strictly necessary to promote binding. Altogether, these results provide the first experimental evidence for the adhesive properties of corneodesmosin and for the involvement of its glycine loop domain in adhesion.  相似文献   

18.
HBHA is a mycobacterial cell surface protein that mediates adhesion to epithelial cells and that has been implicated in the dissemination of Mycobacterium tuberculosis (Mtb) from the site of primary infection. In this work, we demonstrate that HBHA is able to bind G-actin whereas its shorter form, deprived of the lysine-rich C-terminal region (HBHAΔC), does not bind. Consistently, interaction of actin with HBHA is competitive with heparin binding. Notably, we also observe that HBHA, but not HBHAΔC, clearly hampers G-actin polymerisation into F-actin filaments. Since Mtb escapes from the phagosome into the cytosol of host cells, where it can persist and replicate, HBHA is properly localised on the bacterial surface to regulate the dynamic process of cytoskeleton formation driven by actin polymerisation and depolymerisation.  相似文献   

19.
Although much progress has been made in the identification and characterization of adhesins borne by pathogenic bacteria, the molecular details underlying their interaction with host receptors remain largely unknown owing to the lack of appropriate probing techniques. Here we report a method, based on atomic force microscopy (AFM) with tips bearing biologically active molecules, for measuring the specific binding forces of individual adhesins and for mapping their distribution on the surface of living bacteria. First, we determined the adhesion forces between the heparin-binding haemagglutinin adhesin (HBHA) produced by Mycobacterium tuberculosis and heparin, used as a model sulphated glycoconjugate receptor. Both the adhesion frequency and adhesion force increased with contact time, indicating that the HBHA-heparin complex is formed via multiple intermolecular bridges. We then mapped the distribution of single HBHA molecules on the surface of living mycobacteria and found that the adhesin is not randomly distributed over the mycobacterial surface, but concentrated into nanodomains.  相似文献   

20.
Gicerin is a cell adhesion molecule belonging to the immunoglobulin superfamily. It has both a homophilic binding activity and a heterophilic binding activity to neurite outgrowth factor (NOF) a molecule belonging to the laminin family. We have reported many studies on the heterophilic activity of gicerin and NOF, but the function of its homophilic binding activity in vivo had been unclear. In the retina, gicerin is expressed in retinal ganglion cells only when they extend neurites to the optic tectum. In this report we have found that gicerin is also transiently expressed in the optic tectum during this time. First, cell aggregation assays were used to show that gicerin expressed in the optic tectum displays homophilic binding activity. Then, explant cultures of embryonic day 6 chick optic tectum on gicerin-Fc chimeric protein-coated dishes and NOF-coated dishes were carried out. It was found that gicerin-gicerin homophilic interactions promoted cell migration, whereas heterophilic interactions with NOF induced neurite formation. Furthermore, when anti-gicerin antibodies were injected in order to examine the effect of gicerin protein in the formation of the tectal layer in ovo, cell migration was strongly inhibited. These data suggest that homophilic interaction of gicerin participates in the migration of neural cells during the layer formation and plays a crucial role in the organization of the optic tectum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号