首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
During cold storage after milk collection, psychrotrophic bacterial populations dominate the microflora, and their extracellular enzymes, mainly proteases and lipases, contribute to the spoilage of dairy products. The diversity, dynamics, and enzymatic traits of culturable psychrotrophs in raw milk from four farms were investigated over a 10-month period. About 20% of the isolates were found to be novel species, indicating that there is still much to be learned about culturable psychrotrophs in raw milk. The psychrotrophic isolates were identified and classified in seven classes. Three classes were predominant, with high species richness (18 to 21 species per class) in different seasons of the year: Gammaproteobacteria in spring and winter, Bacilli in summer, and Actinobacteria in autumn. The four minor classes were Alphaproteobacteria, Betaproteobacteria, Flavobacteria, and Sphingobacteria. The dominant classes were found in all four dairies, although every dairy had its own unique "bacterial profile." Most but not all bacterial isolates had either lipolytic or both lipolytic and proteolytic activities. Only a few isolates showed proteolytic activity alone. The dominant genera, Pseudomonas and Acinetobacter (Gammaproteobacteria), showed mainly lipolytic activity, Microbacterium (Actinobacteria) was highly lipolytic and proteolytic, and the lactic acid bacteria (Lactococcus and Leuconostoc) displayed very minor enzymatic ability. Hence, the composition of psychrotrophic bacterial flora in raw milk has an important role in the determination of milk quality. Monitoring the dominant psychrotrophic species responsible for the production of heat-stable proteolytic and lipolytic enzymes offers a sensitive and efficient tool for maintaining better milk quality in the milk industry.  相似文献   

2.
Culture-dependent evaluation of the bacteria was carried out on gastropods, such as Monodonta lineata, Gibbula umbilicalis, Nucella lapillus and Patella intermedia, and the environmental samples (biofilm and surrounding sea water) collected from six different locations of Northern Portugal coastal area to investigate the interactions between the microbes in the viscera of gastropods and in the environment. A total of 141 isolates and 39 operational taxonomic units were identified. Phylogenetic analysis based on the 16S rRNA gene showed that bacterial isolates are highly diverse and most of them were found in other marine environment. The observed bacterial diversity was distributed over five different classes (Gammaproteobacteria, Alphaproteobacteria, Flavobacteria, Bacilli and Actinobacteria) with the greatest number of 16S rRNA gene sequence derived from the Gammaproteobacteria (77 %). Vibrio is found to be the dominant one among the different bacterial species isolated. The results suggest that the microorganisms in the environment are maintained in the viscera of the gastropods which may have a key role in the metabolic functions.  相似文献   

3.
In this study, bacterial communities within the guts of several longicorn beetles were investigated by a culture-dependent method. A total of 142 bacterial strains were isolated from nine species of longicorn beetle, including adults and larvae. A comparison of their partial 16S rRNA gene sequences showed that most of the bacteria constituting the gut communities can typically be found in soil, plants and the intestines of animals, and approximately 10% were proposed as unreported. Phylogenetic analysis demonstrated that the bacterial species comprised 7 phyla, and approximately half were Gammaproteobacteria. Actinobacteria were the second most populous group (19%), followed by Firmicutes (13%) and Alphaproteobacteria (11%). Betaproteobacteria, Flavobacteria, and Acidobacteria were minor constituents. The taxonomic compositions of the isolates were variable according to the species of longicorn beetle. Particularly, an abundance of Actinobacteria existed in Moechotypa diphysis and Mesosa hirsute, which eat broadleaf trees; however, no Actinobacteria were isolated from Corymbia rubra and Monochamus alternatus, which are needle-leaf eaters. Considerable proportions of xylanase and pectinase producing bacteria in the guts of the longicorn beetles implied that the bacteria may play an important role in the digestion of woody diets. Actinobacteria and Gammaproteobacteria were the dominant xylanase producers in the guts of the beetles.  相似文献   

4.
A metaproteomic survey of surface coastal waters near Palmer Station on the Antarctic Peninsula, West Antarctica, was performed, revealing marked differences in the functional capacity of summer and winter communities of bacterioplankton. Proteins from Flavobacteria were more abundant in the summer metaproteome, whereas winter was characterized by proteins from ammonia-oxidizing Marine Group I Crenarchaeota. Proteins prevalent in both seasons were from SAR11 and Rhodobacterales clades of Alphaproteobacteria, as well as many lineages of Gammaproteobacteria. The metaproteome data were used to elucidate the main metabolic and energy generation pathways and transport processes occurring at the microbial level in each season. In summer, autotrophic carbon assimilation appears to be driven by oxygenic photoautotrophy, consistent with high light availability and intensity. In contrast, during the dark polar winter, the metaproteome supported the occurrence of chemolithoautotrophy via the 3-hydroxypropionate/4-hydroxybutyrate cycle and the reverse tricarboxylic acid cycle of ammonia-oxidizing archaea and nitrite-oxidizing bacteria, respectively. Proteins involved in nitrification were also detected in the metaproteome. Taurine appears to be an important source of carbon and nitrogen for heterotrophs (especially SAR11), with transporters and enzymes for taurine uptake and degradation abundant in the metaproteome. Divergent heterotrophic strategies for Alphaproteobacteria and Flavobacteria were indicated by the metaproteome data, with Alphaproteobacteria capturing (by high-affinity transport) and processing labile solutes, and Flavobacteria expressing outer membrane receptors for particle adhesion to facilitate the exploitation of non-labile substrates. TonB-dependent receptors from Gammaproteobacteria and Flavobacteria (particularly in summer) were abundant, indicating that scavenging of substrates was likely an important strategy for these clades of Southern Ocean bacteria. This study provides the first insight into differences in functional processes occurring between summer and winter microbial communities in coastal Antarctic waters, and particularly highlights the important role that ‘dark'' carbon fixation has in winter.  相似文献   

5.
Abundant proteorhodopsin genes in the North Atlantic Ocean   总被引:5,自引:0,他引:5  
Proteorhodopsin (PR) is a light-driven proton pump that has been found in a variety of marine bacteria, including Pelagibacter ubique , a member of the ubiquitous SAR11 clade. The goals of this study were to explore the diversity of PR genes and to estimate their abundance in the North Atlantic Ocean using quantitative polymerase chain reaction (QPCR). We found that PR genes in the western portion of the Sargasso Sea could be grouped into 27 clusters, but five clades had the most sequences. Sets of specific QPCR primers were designed to examine the abundance of PR genes in the following four of the five clades: SAR11 ( P. ubique and other SAR11 Alphaproteobacteria ), BACRED17H8 ( Alphaproteobacteria ), HOT2C01 ( Alphaproteobacteria ) and an uncultured subgroup of the Flavobacteria . Two groups (SAR11 and HOT2C01) dominated PR gene abundance in oligotrophic waters, but were significantly less abundant in nutrient- and chlorophyll-rich waters. The other two groups (BACRED17H8 and Flavobacteria subgroup NASB) were less abundant in all waters. Together, these four PR gene types were found in 50% of all bacteria in the Sargasso Sea. We found a significant negative correlation between total PR gene abundance and nutrients and chlorophyll but no significant correlation with light intensity for three of the four PR types in the depth profiles north of the Sargasso Sea. Our data suggest that PR is common in the North Atlantic Ocean, especially in SAR11 bacteria and another marine alphaproteobacterial group (HOT2C01), and that these PR-bearing bacteria are most abundant in oligotrophic waters.  相似文献   

6.
微生物在藻际环境中的物质循环作用   总被引:1,自引:0,他引:1  
周进  林光辉  蔡中华 《生态学杂志》2016,27(8):2708-2716
浮游植物作为海洋初级生产力的主要驱动者,其功能的发挥与共生微生物密不可分.藻类(甲藻、硅藻或蓝藻)的栖息环境中存在多样的共生细菌,各类细菌拥有不同的组成比例,但某些异养细菌在藻际环境中总是占据优势地位,如变形杆菌、黄杆菌及放线菌等.基于微生物在调节微食物网、促进物质循环和维持生态系统平衡中的重要意义,本文主要以赤潮事件的藻际环境为例,尝试梳理上述主导性“常驻微生物”在“藻-菌”共生体物质转化中的作用.特别是针对近些年来倍受关注的黄杆菌和玫瑰杆菌,着重例述了它们在物质代谢中的行为与生态策略,以更好地理解常驻物种在藻际生态位中的生态行为与协同进化.  相似文献   

7.
Coral reefs are the most biodiverse of all marine ecosystems. Bacteria are known to be abundant and active in seawater around corals, inside coral tissues, and within their surface microlayer. Very little is known, however, about the structure, composition and maintenance of these bacterial communities. In the current study we characterize the culturable bacterial community within the mucus of healthy specimens of the Red Sea solitary coral Fungia scutaria. This was achieved using culture-based methods and molecular techniques for the identification of the bacterial isolates. More than 30% of the isolated bacteria were novel species and a new genus. The culturable heterotrophic bacterial community of the mucus of this coral is composed mainly of the bacterial groups Gammaproteobacteria, Alphaproteobacteria and of Actinobacteria. This study provides the first evidence of actinomycetes isolated from corals.  相似文献   

8.
In order to identify bacteria that assimilate dissolved inorganic carbon (DIC) in the northeast Pacific Ocean, stable isotope probing (SIP) experiments were conducted on water collected from 3 different sites off the Oregon and Washington coasts in May 2010, and one site off the Oregon Coast in September 2008 and March 2009. Samples were incubated in the dark with 2 mM 13C-NaHCO3, doubling the average concentration of DIC typically found in the ocean. Our results revealed a surprising diversity of marine bacteria actively assimilating DIC in the dark within the Pacific Northwest coastal waters, indicating that DIC fixation is relevant for the metabolism of different marine bacterial lineages, including putatively heterotrophic taxa. Furthermore, dark DIC-assimilating assemblages were widespread among diverse bacterial classes. Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes dominated the active DIC-assimilating communities across the samples. Actinobacteria, Betaproteobacteria, Deltaproteobacteria, Planctomycetes, and Verrucomicrobia were also implicated in DIC assimilation. Alteromonadales and Oceanospirillales contributed significantly to the DIC-assimilating Gammaproteobacteria within May 2010 clone libraries. 16S rRNA gene sequences related to the sulfur-oxidizing symbionts Arctic96BD-19 were observed in all active DIC assimilating clone libraries. Among the Alphaproteobacteria, clones related to the ubiquitous SAR11 clade were found actively assimilating DIC in all samples. Although not a dominant contributor to our active clone libraries, Betaproteobacteria, when identified, were predominantly comprised of Burkholderia. DIC-assimilating bacteria among Deltaproteobacteria included members of the SAR324 cluster. Our research suggests that DIC assimilation is ubiquitous among many bacterial groups in the coastal waters of the Pacific Northwest marine environment and may represent a significant metabolic process.  相似文献   

9.
On-going studies of phytoplankton-bacterioplankton interactions at the long-term ecological research site Helgoland Roads have indicated that many of the heterotrophic bacterial taxa have not yet been cultivated. A high-throughput approach combining whole cell matrix-assisted laser desorption ionization – time of flight mass spectroscopy with 16S rRNA gene sequencing was applied to the spring bloom of 2016. Aiming at an assessment of cultivability during a spring bloom, cultivation on solid marine media had to be used since dilution to extinction would not have been feasible for a high-throughput approach, as performed in this study. A total of 5023 isolates were obtained from nine weekly samples on eight different solid media between the early-bloom and post-bloom periods. Most of the 4136 strains identified affiliated with Bacteroidetes (13.3%), Gammaproteobacteria (26.9%), Alphaproteobacteria (40.6%) and Actinobacteria (6.7%). Of the 271 operational phylogenetic units (OPUs) identified, 13 are likely to represent novel genera and 143 novel species. A comparison with 16S rRNA gene tag data indicated that most of the isolates were rather rare in surface waters, with the exception of five OPUs affiliating with Rhodobacteraceae, Polaribacter, Psychromonas and Pseudoalteromonas. The effort yielded many novel isolates, yet most of the abundant heterotrophic bacteria still remained elusive. The large strain collection obtained will not only provide insights into the succession of the cultivable fraction of the bacterioplankton, but also enable fine-tuned taxonomic and physiological follow-up studies for improving our knowledge on heterotrophic bacteria in North Sea waters.  相似文献   

10.
We examined the bacterial decomposition of humic acids (HA) in two flow-through culture experiments, one inoculated by marine and one by estuarine bacterial communities. In both experiments, the cultures were fed with HA media of salinities of 28 and 14, close to their ambient and a distinctly different, foreign salinity. HA were decomposed to >?60% of the initial concentration within 70?days, and the foreign salinity yielded the highest decomposition. A detrended correspondence analysis of denaturing gradient gel electrophoresis (DGGE) banding patterns showed that during incubation, the bacterial community composition underwent distinct changes. A phylogenetic analysis of DGGE bands excised and bacteria isolated at the end on HA as the sole carbon source showed that Alphaproteobacteria and Gammaproteobacteria largely dominated the communities in the marine flow-through cultures, whereas Gammaproteobacteria, Actinobacteria and Alphaproteobacteria dominated the estuarine communities. Eleven of 13 isolates obtained from both experiments were able to grow on HA as the sole carbon source, seven on phenol and three, affiliated to the Roseobacter clade, on various aromatic acids. The bacteria retrieved from the flow-through cultures were closely (96-99%) affiliated to organisms capable of degrading humic matter, aromatic and aliphatic compounds and also to other bacteria reported previously from the Wadden Sea and Weser estuary.  相似文献   

11.
Gut bacterial communities of bumble bees are correlated with defense against pathogens. Further understanding this host-microbe association is vitally important as bumble bees are currently experiencing global population declines, potentially due in part to emergent diseases. In this study, we used pyrosequencing and community fingerprinting (ARISA) to characterize the gut microbial communities of nine bumble species from across the Bombus phylogeny. Overall, we delimited 74 bacterial taxa (operational taxonomic units or OTUs) belonging to Betaproteobacteria, Gammaproteobacteria, Bacilli, Actinobacteria, Flavobacteria and Alphaproteobacteria. Each bacterial community was taxonomically simple, containing an average of 1.9 common (relative abundance per sample > 5%) bacterial OTUs. The most abundant and prevalent (occurring in 92% of the samples) bacterial OTU, based on 16S rRNA sequences, closely matched that of the previously described Betaproteobacteria species Snodgrassella alvi. Bacteria that were first described in bee-related external environments dominated a number of gut bacterial communities, suggesting that they are not strictly dependent on the internal gut environment. The ARISA data showed a correlation between bacterial community structures and the geographic locations where the bees were sampled, suggesting that at least a subset of the bacterial species may be transmitted environmentally. Using light and fluorescent microscopy, we demonstrated that the gut bacteria form a biofilm on the internal epithelial surface of the ileum, corroborating results obtained from Apis mellifera.  相似文献   

12.
Earthworms ingest large amounts of soil and have the potential to radically alter the biomass, activity, and structure of the soil microbial community. In this study, the diversity of eight bacterial groups from fresh soil, gut, and casts of the earthworms Lumbricus terrestris and Aporrectodea caliginosa were studied by single-strand conformation polymorphism (SSCP) analysis using both newly designed 16S rRNA gene-specific primer sets targeting Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Deltaproteobacteria, Bacteroidetes, Verrucomicrobia, Planctomycetes, and Firmicutes and a conventional universal primer set for SSCP, with RNA and DNA as templates. In parallel, the study of the relative abundance of these taxonomic groups in the same samples was performed using fluorescence in situ hybridization. Bacteroidetes, Alphaproteobacteria, and Betaproteobacteria were predominant in communities from the soil and worm cast samples. Representatives of classes Flavobacteria and Sphingobacteria (Bacteroidetes) and Pseudomonas spp. (low-abundant Gammaproteobacteria) were detected in soil and worm cast samples with conventional and taxon-targeting SSCP and through the sequence analysis of 16S rRNA clone libraries. Physiologically active unclassified Sphingomonadaceae (Alphaproteobacteria) and Alcaligenes spp. (Betaproteobacteria) also maintained their diversities during transit through the earthworm intestine and were found on taxon-targeting SSCP profiles from the soil and worm cast samples. In conclusion, our results suggest that some specific bacterial taxonomic groups maintain their diversity and even increase their relative numbers during transit through the gastrointestinal tract of earthworms.  相似文献   

13.
The community structure and composition of marine microbial biofilms established on glass surfaces was investigated across three differentially contaminated Antarctic sites within McMurdo Sound. Diverse microbial communities were revealed at all sites using fluorescence in situ hybridization (FISH) and denaturing gradient gel electrophoresis (DGGE) techniques. Sequencing of excised DGGE bands demonstrated close affiliation with known psychrophiles or undescribed bacteria also recovered from the Antarctic environment. The majority of bacterial sequences were affiliated to the Gammaproteobacteria, Cytophaga/Flavobacteria of Bacteroidetes (CFB), Verrucomicrobia and Planctomycetales. Principal components analysis of quantitative FISH data revealed distinct differences in community composition between sites. Each of the sites were dominated by different bacterial groups: Alphaproteobacteria, Gammaproteobacteria and CFB at the least impacted site, Cape Armitage; green sulfur and sulfate reducing bacteria near the semi-impacted Scott Base and Planctomycetales and sulfate reducing bacteria near the highly impacted McMurdo Station. The highest abundance of archaea was detected near Scott Base (2.5% of total bacteria). Multivariate analyses (non-metric multidimensional scaling and analysis of similarities) of DGGE patterns revealed greater variability in community composition between sites than within sites. This is the first investigation of Antarctic biofilm structure and FISH results suggest that anthropogenic impacts may influence the complex composition of microbial communities.  相似文献   

14.
The aim of this study was to test three flat-plate photobioreactor configurations for cultivation of marine green alga Dunaliella tertiolecta under non-axenic growth conditions and to characterize and quantify the associated bacteria. The photobioreactor cultivations were conducted using tap water-based media. Static mixers intended to enhance mixing and light utilization did not generally increase algal growth at the low light intensities used. The maximum biomass concentration (measured as volatile suspended solids) and maximum specific growth rate achieved in the flat plate with no mixer were 2.9?g?l(-1) and 1.3?day(-1), respectively. Based on quantitative polymerase chain reaction, bacterial growth followed the growth of D. tertiolecta. Based on 16S rDNA amplification and denaturing gradient gel electrophoresis profiling, heterotrophic bacteria in the D. tertiolecta cultures mainly originated from the non-axenic algal inocula, and tap water heterotrophs were not enriched in high chloride media (3?% salinity). Bacterial communities were relatively stable and reproducible in all flat-plate cultivations and were dominated by Gammaproteobacteria, Flavobacteria, and Alphaproteobacteria.  相似文献   

15.
The contribution of major bacterial groups to the assimilation of extracellular polymeric substances (EPS) and glucose in the Delaware Estuary was assessed using microautoradiography and fluorescence in situ hybridization. Bacterial groups contributed to EPS and glucose assimilation in part according to their distribution in the estuary. Abundance of the phylogenetic groups explained 35% and 55% of the variation in EPS and glucose assimilation, respectively. Actinobacteria contributed 70% to glucose assimilation in freshwater, while Alphaproteobacteria assimilated 60% of this compound in saline water. In contrast, various bacterial groups dominated the assimilation of EPS. Actinobacteria and Betaproteobacteria contributed the most in the freshwater section, whereas Cytophaga-like bacteria and Alpha- and Gammaproteobacteria participated in EPS assimilation in the lower part of the estuary. In addition, we examined the fraction of bacteria in each group that assimilated glucose or EPS. Overall, the fraction of bacteria in all groups that assimilated glucose was higher than the fraction that assimilated EPS (15 to 30% versus 5 to 20%, respectively). We found no correlation between the relative abundance of a group in the estuary and the fraction of bacteria actively assimilating glucose or EPS; the more active groups were often less abundant. Our results imply that the bacterial community in the Delaware Estuary is not controlled solely by "bottom-up" factors such as dissolved organic matter.  相似文献   

16.
添加不同益生菌对草鱼养殖水体菌群结构的影响   总被引:3,自引:0,他引:3  
为评价添加不同益生菌对草鱼养殖水体菌群结构的影响,研究采用454焦磷酸测序技术分析其水体菌群结构。结果表明:添加益生菌后的处理组(枯草芽孢杆菌BS、光合细菌PSB和复合菌CB)其微生物多样性高于对照组(Control)。在门的水平,Control和CB样品中变形菌(Proteobacteria)为优势菌,PSB和BS中变形菌(Proteobacteria)和放线菌(Actinobacteria)所占比例差别不大。与Control相比,其他三组中拟杆菌(Bacteroidetes)和放线菌(Actinobacteria)都增加。对变形菌深入分析发现,在PSB,BS和 CB 样品中,-变形杆菌为优势菌,接下来是-变形杆菌纲、-变形杆菌纲和-变形杆菌纲。对拟杆菌分析发现,除对照外,其他样品中黄杆菌纲(Flavobacteria)为优势菌。在对照和处理组中,-变形杆菌、-变形杆菌、-变形杆菌和拟杆菌门在目的水平组成也有差异。以上结果表明,水体中添加益生菌能增加水体菌群多样性,改变菌群结构。    相似文献   

17.
为研究污水厂/养殖池中好氧反硝化微生物的多样性及菌株反硝化能力,本研究采集了位于福建省厦门市和漳州市的污水处理厂、排污口、污水池、对虾养殖池的污水和污泥样品进行好氧反硝化微生物的富集、分离、鉴定和功能筛选。分别以NaNO3、NaNO2作为唯一氮源共分离纯化获得128株单菌。其中以NaNO3为唯一氮源分离得到63株,以NaNO2为唯一氮源分离得到65株。16SrRNA基因序列分析表明,128株单菌分属于γ-变形菌纲(Gammaproteobacteria,58.6%)、芽胞杆菌纲(Bacilli,6.4%)、放线菌纲(Actinobacteria,11.7%)、α-变形菌纲(Alphaproteobacteria,8.6%)、纤维菌纲(Cytophagia,2.3%)、鞘脂杆菌纲(Sphingobacteria,0.8%)和黄杆菌纲(Flavobacteria,1.6%)7个纲中的38个属。其中盐单胞菌属(Halomonas,29.7%)和芽胞杆菌属(Bacillus,12.5%)为优势菌属,并且广泛存在于各个样品中。反硝化功能初筛结果表明,35株菌能在72h内将20mg·L-1 NO-3-N/NO-2-N完全去除;复筛结果表明,21株菌能在72h内将100 mg·L-1 NO-3-N/NO-2-N完全去除,并且盐单胞菌属、卓贝尔氏菌属(Zobellella)、斯塔普氏菌属(Stappia)及节杆菌属(Arthrobactor)反硝化效果较好,其中斯塔普氏属是首次报道具有好氧反硝化功能。本研究结果表明,污水场/养殖池等环境中可培养反硝化细菌多样性丰富,同时高效反硝化菌的获得也为含氮废水的生物处理提供了良好的菌种资源。  相似文献   

18.
The Clarion-Clipperton Fracture Zone (CCFZ) is located in the northeastern equatorial Pacific and contains abundant polymetallic nodules. To investigate its bacterial diversity, four libraries of 16S rRNA genes were constructed from sediments of four stations in different areas of the CCFZ. In total, 313 clones sequenced from the 4 libraries were assigned into 14 phylogenetic groups and 1 group of 28 unclassified bacteria. High bacterial diversity was predicted by the rarefaction analysis. The most dominant group overall was Proteobacteria, but there was variation in each library: Gammaproteobacteria was the most dominant group in two libraries, E2005-01 and ES0502, while Alphaproteobacteria and Deltaproteobacteria were the most dominant groups in libraries EP2005-03 and WS0505, respectively. Seven groups, including Alphaproteobacteria, Gammaproteobacteria, Deltaproteobacteria, Betaproteobacteria, Acidobacteria, Actinobacteria, and Bacteroidetes, were common to all four libraries. The remaining minor groups were distributed in libraries with different patterns. Most clones sequenced in this study were clustered with uncultured bacteria obtained from the environment, such as the ocean crust and marine sediment, but only distantly related to isolates. Bacteria involved in the cycling of metals, sulfur and nitrogen were detected, and their relationship with their habitat was discussed. This study sheds light on the bacterial communities associated with polymetallic nodules in the CCFZ and provides primary data on the bacterial diversity of this area.  相似文献   

19.
Altlhough ammonia oxidation and ammonia-oxidizing bacteria (AOB) have been extensively studied, nitrite oxidation and nitrite-oxidizing bacteria (NOB) are still not well understood. In this article, the effect of organic matter on NOB and heterotrophic bacteria was investigated with functional performance analysis and bacterial community shift analysis. The results showed that at low concentrations of initial sodium acetate [initial sodium acetate (ISA) = 0.5 or 1 g/L], the nitrite removal rate was higher than that obtained under autotrophic conditions and the bacteria had a single growth phase, whereas at high ISA concentrations (5 or 10 g/L), continuous aerobic nitrification and denitrification occurred in addition to higher nitrite removal rates, and the bacteria had double growth phases. The community structure of total bacteria strikingly varied with the different concentrations of ISA; the dominant populations shifted from autotrophic and oligotrophic bacteria (NOB, and some strains of Bacteroidetes, Alphaproteobacteria, Actinobacteria, and green nonsulfur bacteria) to heterotrophic and denitrifying bacteria (strains of Gammaproteobacteria, especially Pseudomonas stutzeri and P. nitroreducens). The reasons that nitrite removal rate increased with supplement of organic matters were discussed.  相似文献   

20.
Fifty-seven snow-bacteria strains were isolated from the snow of the Zadang and Mengdagangri Glaciers located in the central and southern part of the Tibetan Plateau, respectively. 16S rRNA gene sequence analysis showed that strains isolated from the Zadang Glacier belonged to the Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, Firmicutes and Bacteroidetes, and were dominated by the Firmicutes. Strains from the Mengdagangri Glacier belonged to the Actinobacteria, Alphaproteobacteria and Gammaproteobacteria, and were dominated by the Actinobacteria. Sixty-one percent of the isolates were colored with pigment. Sixty-nine percent of isolates from the Zadang Glacier were psychrotolerants, and there were no psychrophiles. We compared the growth-temperature range of 26 snow-bacteria strains to their closest mesophilic type strains and found that 46% of them had an optimum growth-temperature at or lower than 20°C, and 65% were all able to grow at 0°C. However, only 5.3% of mesophilic strains had optimum growth-temperatures at or lower than 20°C, and 9% could grow at 0°C. Snow-bacteria shift their growth-temperature downward; and doing this, in terms of the minimum and optimum temperatures for growth, might be an important strategy for them to adapt to low temperature after they have been deposited on the glacier. Our results suggested that, in order to adapt from mesophilic environments to a cold habitat, snow-bacteria widen their temperature range for growth, convert from mesophiles to psychrotolerants, but not to psychrophiles. In addition, eight isolates formed pigmented colonies, while their mesophilic counterparts were achromogenic. This helped us to confirm through comparative analysis that pigmented microorganisms were more abundant in high-altitude glaciers than in mesophilic environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号