首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Little is known regarding the translocation of non-templated nucleic acid polymerases with respect to single-stranded primers. VP55, the vaccinia virus poly(A) polymerase, translocates as it processively adds a approximately 3-7 adenylate tail to primers possessing only three ribouridylate residues (as an (rU)(2)-N(15)-rU motif), and a approximately 25-30 adenylate tail to primers that are more U-rich. Here, three models were addressed for the translocation of VP55 with respect to its primer, namely: (a) rigid protein/rigid nucleic acid; (b) flexible protein/rigid nucleic acid; (c) rigid protein/flexible nucleic acid. Analysis of free and covalently VP55-attached primers favored either (b) or a version of (c) incorporating a passive steric block, and suggested two regions of relative motion between polymerase and primer. Inclusion of a 6nt uridylate-rich patch at the primer 3' end switched the polymerase from approximately 3-7 nt to approximately 25-30 nt tail addition without affecting initial binding affinity. By synthesizing this patch as a (rU/dC) pool, discontinuous polymerase movements could be detected.  相似文献   

2.
3.
4.
5.
The interaction between antibodies directed against RNA polymerase I purified from Morris hepatoma 3924A and homologous RNA polymerase II was investigated. The activity of partially purified polymerase II was inhibited by the antibodies. In contrast, the reaction catalyzed by the purified enzyme was not affected. Partially purified polymerase II preparations contained a protein kinase activity. Sucrose gradient centrifugation in the presence of 0.3 M KCl resulted in complete separation of RNA polymerase II from protein kinase as well as in complete loss of sensitivity to the anti-RNA polymerase I antibodies. The protein kinase possessed reaction characteristics similar to those of the NII protein kinase (Rose, K.M., Bell, L.E., Siefken, D.A. and Jacob, S.T. (1981) J. Biol. Chem. 256, 7468–7477) which is associated with hepatoma RNA polymerase I (Rose, K.M., Stetler, D.A. and Jacob, S.T. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 2833–2837). The activities of both kinases were inhibited to the same extent by anti-RNA polymerase I antibodies and polypeptides of Mr 42000 and 25000, present in both kinase preparations, formed immune complexes with the antisera. Readdition of protein kinase NII to purified polymerase II resulted in phosphorylation of the polymerase and a concomitant enhancement of RNA synthesis. After addition of the kinase, RNA polymerase II activity was again sensitive to anti-RNA polymerase I antibodies. Upon reacting with protein kinase NII, RNA polymerase II polypeptides could be detected in immune complexes with anti-RNA polymerase I antibodies. These data indicate that protein kinase NII is associated with RNA polymerase II during early stages of purification and is at least partially responsible for the immunological cross-reactivity of RNA polymerases I and II.  相似文献   

6.
7.
Eukaryotic RNA polymerases I and III share two distinct α-related subunits that show limited homology to the α subunit of Escherichia coli RNA polymerase, which forms a homodimer to nucleate the assembly of prokaryotic RNA polymerase. To gain insight into the functions of α-related subunits in eukaryotes, we have previously identified the α-related small subunit RPA17 of RNA polymerase I (and III) in Schizosaccharomyces pombe, and have shown that it is a functional homolog of Saccharomyces cerevisiae AC19. In an extension of that study, we have now isolated and characterized rpa42 +, which encodes the α-related large subunit RPA42 of S. pombe RNA polymerase I, by virtue of the fact that its product interacts with RPA17 in the yeast two-hybrid system. We have found that rpa42 + encodes a polypeptide with an apparent molecular mass of 42 kDa, which shows 58% identity to the AC40 subunit shared by RNA polymerases I and III in S. cerevisiae. Furthermore, we have shown that rpa42 + complements a temperature-sensitive mutation in RPC40 the gene that encodes AC40 in S. cerevisiae and which is essential for cell growth. Finally, we have shown that neither RPA42 nor RPA17 can self-associate. These results provide evidence that the two distinct α-related subunits, RPA42 and RPA17, of RNA polymerases I and III are functionally conserved between S. pombe and S. cerevisiae, and suggest that heterodimer formation between them is essential for the assembly of RNA polymerases I and III in eukaryotes. Received: 20 April 1999 / Accepted: 26 July 1999  相似文献   

8.
9.
We describe the cloning and analysis of mRPA1, the cDNA encoding the largest subunit (RPA194) of murine RNA polymerase I. The coding region comprises an open reading frame of 5151 bp that encodes a polypeptide of 1717 amino acids with a calculated molecular mass of 194 kDa. Alignment of the deduced protein sequence reveals homology to the β′ subunit of Escherichia coli RNA polymerase in the conserved regions a-h present in all large subunits of RNA polymerases. However, the overall sequence homology among the conserved regions of RPA1 from different species is significantly lower than that observed in the corresponding β′-like subunits of class II and III RNA polymerase. We have raised two types of antibodies which are directed against the conserved regions c and f of RPA194. Both antibodies are monospecific for RPA194 and do not cross-react with subunits of RNA polymerase II or III. Moreover, these antibodies immunoprecipitate RNA polymerase I both from murine and human cell extracts and, therefore, represent an invaluable tool for the identification of RNA polymerase I-associated proteins. Received: 27 January 1997 / Accepted: 1 April 1997  相似文献   

10.
11.
In Escherichia coli cells carrying the srnB+ gene of the F plasmid, rifampin, added at 42°C, induces the extensive rapid degradation of the usually stable cellular RNA (Ohnishi, Y., (1975) Science 187, 257–258; Ohnishi, Y., Iguma, H., Ono, T., Nagaishi, H. and Clark, A.J. (1977) J. Bacteriol. 132, 784–789). We have studied further the necessity for rifampin and for high temperature in this degradation. Streptolidigin, another inhibitor of RNA polymerase, did not induce the RNA degradation. Moreover, the stable RNA of some strains in which RNA polymerase is temperature-sensitive did not degrade at the restrictive temperature in the absence of rifampin. These data suggest that rifampin has an essential role in the RNA degradation, possibly by the modification of RNA polymerase function. A protein (Mr 12 000) newly synthesized at 42°C in the presence of rifampin appeared to be the product of the srnB+ gene that promoted the RNA degradation. In a mutant deficient in RNAase I, the extent of the RNA degradation induced by rifampin was greatly reduced. RNAase activity of cell-free crude extract from the RNA-degraded cells was temperature-dependent. The RNAase was purified as RNAase I in DEAE-cellulose column chromatography and Sephadex G-100 gel filtration. Both in vivo and with purified RNAase I, a shift of the incubation mixture from 42 to 30°C, or the addition of Mg2+ ions, stopped the RNA degradation. Thus, an effect on RNA polymerase seems to initiate the expression of the srnB+ gene and the activation of RNAase I, which is then responsible for the RNA degradation of E. coli cells carrying the srnB+ gene.  相似文献   

12.
Jan Szopa  Karl G. Wagner 《Planta》1984,162(2):132-138
From isolated nuclei of suspension cultured cells of Nicotiana tabacum. DNA-dependent RNA polymerase II (E.C. 2.7.76) has been purified to homogeneity as evidenced by polyacrylamidegel electrophoresis under non-denaturing conditions. The purified enzyme had a specific activity of more than 15 nmol min-1·mg-1 with denatured calf thymus DNA as template. Sodium-dodecyl-sulfate gel electrophoresis and protein highperformance liquid chromatography revealed a subunit composition of four proteins with molecular weights of 165 000, 135 000, 35 000 and 25 000 and with a stoichiometry of 1:1:2:2. The RNA polymerase did not exhibit any detectable proteinkinase activity. The 25 000 subunit binds ADP in a molar ratio of 1:1; it could not be decided whether this subunit has an ATPase activity or is merely an acceptor of ADP.Abbreviations HPLC high-performance liquid chromatography - PMSF phenylmethylsulfonyl fluoride - SDS sodium dodecyl sulfate This contribution is dedicated to Professor Fritz Cramer on the occasion of his 60th birthday  相似文献   

13.
14.
Capistruin, a ribosomally synthesized, post-translationally modified peptide produced by Burkholderia thailandensis E264, efficiently inhibits growth of Burkholderia and closely related Pseudomonas strains. The functional target of capistruin is not known. Capistruin is a threaded-lasso peptide (lariat peptide) consisting of an N-terminal ring of nine amino acids and a C-terminal tail of 10 amino acids threaded through the ring. The structure of capistruin is similar to that of microcin J25 (MccJ25), a threaded-lasso antibacterial peptide that is produced by some strains of Escherichia coli and targets DNA-dependent RNA polymerase (RNAP). Here, we show that capistruin, like MccJ25, inhibits wild type E. coli RNAP but not mutant, MccJ25-resistant, E. coli RNAP. We show further that an E. coli strain resistant to MccJ25, as a result of a mutation in an RNAP subunit gene, exhibits resistance to capistruin. The results indicate that the structural similarity of capistruin and MccJ25 reflects functional similarity and suggest that the functional target of capistruin, and possibly other threaded-lasso peptides, is bacterial RNAP.  相似文献   

15.
16.
17.
Poly(A) polymerase I (PAP I), the pcnB gene product, is the main enzyme responsible for RNA polyadenylation in Escherichia coli. Polyadenylated RNA molecules are rapidly degraded by a multiprotein complex called RNA degradosome. Here we demonstrate that apart from its presence in cytosol, PAP I is also localized in cellular membrane. Although this observation might appear surprising, it was demonstrated recently by others that E. coli RNA degradosome is also associated with the cytoplasmic membrane. Moreover, we show that development of single-stranded RNA bacteriophages MS2 and Qbeta, but not that of single-stranded DNA bacteriophage M13, is more efficient in the pcnB mutant relative to an otherwise isogenic pcnB(+) host.  相似文献   

18.
19.
20.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号