首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Plants exposed to stress pass the memory of exposure to stress to the progeny. Previously, we showed that the phenomenon of transgenerational memory of stress is of epigenetic nature and depends on the function of Dicer-like (DCL) 2 and DCL3 proteins. Here, we discuss a possible role of DNA methylation and function of small RNAs in establishing and maintaining transgenerational responses to stress. Our new data report that memory of stress is passed to the progeny predominantly through the female rather than male gamete. Possible evolutionary advantages of this mechanism are also discussed.Key words: transgenerational response to stress, Arabidopsis thaliana, maternal inheritance, methylation changes, homologous recombination frequency, genome instability, adaptive response, dcl2, dcl3Plants are sedentary organisms and thus can not respond to rapidly changing growth conditions by escaping to new environments as animals usually do. Moreover, since seed dispersal is rather limited in the vast majority of plants, the progeny is very likely to grow under the same environmental growth conditions as its parents did. The memory of pre-existing growth conditions can be advantageous for plant survival. The environmental experience of parents can be recorded in the form of induced epigenetic modifications that occur in somatic cell lineages. The very late, almost at the end of plant development, separation of germline cells from somatic tissues enables incorporation of acquired epigenetic changes in the gametes. Indeed, previous reports suggested that the progeny of exposed plants might have an advantage while growing in the same environment as its parents.13 Despite a growing number of experimental evidences that support the existence of the phenomenon of memory of stress, the data on adaptive changes in the progeny of stressed plants are scarce.Parental exposure to stress may not only lead to adaptive effects in progeny but also introduce a certain degree of changes in genome stability.49 Our early report showed that the progeny of tobacco plants infected with tobacco mosaic virus had an increased meiotic recombination frequency.8 A more recent report demonstrated that these progeny plants had a higher frequency of rearrangements at the loci carrying the homology to N-gene-like R-gene loci, allowing speculations about a possible role of these rearrangements in pathogen resistance evolution.9 Similarly, a study of Molinier et al. (2006) showed that the progeny of plants exposed to UVC or flagellin had an increased frequency of somatic homologous recombination events (HRF).4 The authors demonstrated that an increase in HRF triggered by a single exposure to UVC was maintained for five consecutive generations in the absence of stress. In contrast, our most recent reports demonstrated that maintaining an increase in HRF caused by ancestral exposure to heat, cold, flood, UVC or salt required exposure to stress in subsequent generations: if F1 plants were propagated for one more generation without stress, the effect diminished and HRF returned back to the level observed in the progeny of untreated plants.6,7 This scenario seems to be more probable from an evolutionary point of view. Within a given environmental niche, plants establish certain genetic and epigenetic traits needed to cope with the expected growth conditions. Drastic environmental changes or new unusual stresses may trigger a cascade of gene expression changes in attempt to survive and adapt to new conditions. Some of these potentially advantageous changes are most probably recorded in the form of DNA methylation and chromatin modifications and are passed to progeny as memory of stress exposure.It can be further hypothesized that if these new environmental conditions are no longer present during the lifespan of future generations, the newly established methylation patterns and chromatin organization will return to the original epigenetic landscape that was the most adequate fit for this environmental niche. If the same new stresses occur in consecutive generations, the newly established epigenetic changes will be maintained and possibly stabilized after many generations of exposure.  相似文献   

3.
4.
Proteome mapping of mature pollen of Arabidopsis thaliana   总被引:6,自引:0,他引:6  
  相似文献   

5.
6.
In many plants raffinose family oligosaccharides are accumulated during cold acclimation. The contribution of raffinose accumulation to freezing tolerance is not clear. Here, we investigated whether synthesis of raffinose is an essential component for acquiring frost tolerance. We created transgenic lines of Arabidopsis thaliana accessions Columbia-0 and Cape Verde Islands constitutively overexpressing a galactinol synthase (GS) gene from cucumber. GS overexpressing lines contained up to 20 times as much raffinose as the respective wild-type under non-acclimated conditions and up to 2.3 times more after 14 days of cold acclimation at 4 degrees C. Furthermore, we used a mutant carrying a knockout of the endogenous raffinose synthase (RS) gene. Raffinose was completely absent in this mutant. However, neither the freezing tolerance of non-acclimated leaves, nor their ability to cold acclimate were influenced in the RS mutant or in the GS overexpressing lines. We conclude that raffinose is not essential for basic freezing tolerance or for cold acclimation of A. thaliana.  相似文献   

7.
8.
9.
Proteome map of the chloroplast lumen of Arabidopsis thaliana.   总被引:13,自引:0,他引:13  
The thylakoid membrane of the chloroplast is the center of oxygenic photosynthesis. To better understand the function of the luminal compartment within the thylakoid network, we have carried out a systematic characterization of the luminal thylakoid proteins from the model organism Arabidopsis thaliana. Our data show that the thylakoid lumen has its own specific proteome, of which 36 proteins were identified. Besides a large group of peptidyl-prolyl cis-trans isomerases and proteases, a family of novel PsbP domain proteins was found. An analysis of the luminal signal peptides showed that 19 of 36 luminal precursors were marked by a twin-arginine motif for import via the Tat pathway. To compare the model organism Arabidopsis with another typical higher plant, we investigated the proteome from the thylakoid lumen of spinach and found that the luminal proteins from both plants corresponded well. As a complement to our experimental investigation, we made a theoretical prediction of the luminal proteins from the whole Arabidopsis genome and estimated that the thylakoid lumen of the chloroplast contains approximately 80 proteins.  相似文献   

10.
11.
The Arabidopsis mitogen activated protein kinase kinase kinase (MEKK1) plays an important role in stress signaling. However, little is known about the upstream pathways of MEKK1. This report describes the regulation of MEKK1 activity during cold signaling. Immunoprecipitated MEKK1 from cold-treated Arabidopsis seedlings showed elevated kinase activity towards mitogen activated protein kinase kinase2 (MKK2), one of the candidate MEKK1 substrates. To clarify how MEKK1 becomes active in response to cold stress signaling, MEKK1 phosphorylation was monitored by an enzyme extracted from the seedlings grown under cold stress with or without EGTA. MEKK1 was phosphorylated after cold stress, but EGTA inhibited the phosphorylation. MKK2 was also phosphorylated by the same extract, but only when EGTA was absent. These results suggested that Ca2+ signaling occurred upstream of the MEKK1–MKK2 pathway. Full-length MEKK1 showed almost no activity but MEKK1 without the N-terminal region (MEKK1 KD) that retained the kinase domain had a strong ability to phosphorylate MKK2, demonstrating the inhibitory role of the N-terminal region of MEKK1. In addition, MEKK1 was phosphorylated by calcium/calmodulin-regulated receptor-like kinase (CRLK1), which suggested that CRLK1 is one of candidates located upstream of MEKK1.  相似文献   

12.
13.
Nitric oxide (NO) has a fundamental role in the plant hypersensitive disease resistance response (HR), and S-nitrosylation is emerging as an important mechanism for the transduction of its bioactivity. A key step toward elucidating the mechanisms by which NO functions during the HR is the identification of the proteins that are subjected to this PTM. By using a proteomic approach involving 2-DE and MS we characterized, for the first time, changes in S-nitrosylated proteins in Arabidopsis thaliana undergoing HR. The 16 S-nitrosylated proteins identified are mostly enzymes serving intermediary metabolism, signaling and antioxidant defense. The study of the effects of S-nitrosylation on the activity of the identified proteins and its role during the execution of the disease resistance response will help to understand S-nitrosylation function and significance in plants.  相似文献   

14.
15.
Temperature changes and salt accumulation are among the most common abiotic factors affecting plants in agricultural and natural ecosystems. The different responses of plants to these factors have been widely investigated in previous works. However, detailed mechanism of the early photosynthetic response (first 24 h) has been poorly studied. The aim of the work was to monitor the early response of adult Arabidopsis thaliana plants exposed to different thermal (cold and heat) and salt conditions. Detailed evaluation of the efficiency of photosystem II was done, and the various routes of energy output as well as measurements of the contents of H2O2, proline, and photosynthetic pigments at different times during the first 24 h of treatment were examined. The conditions used in the study were those that caused a weak stress with time of exposure. Cold-treated plants showed the most continuous inhibitory effect on photosynthetic activity, with a fast metabolic slowdown (reduced PSII efficiency and decreased pigment contents), although they also demonstrated clear acclimation responses (increased heat dissipation and protein content). Heat-treated plants showed a late but stronger effect on photosynthesis with significantly increased quantum yield of nonregulated energy dissipation (??NO) and H2O2 content at the last measurements. Finally, salt-induced oxidative stress (increased H2O2 content), decreased PSII efficiency and pigment content.  相似文献   

16.
17.
18.
The epoxidation of zeaxanthin (Zx) to violaxanthin after exposure to different light stress conditions has been studied in Arabidopsis (Arabidopsis thaliana). Formation of Zx was induced by illumination of intact leaves for up to 8 h at different light intensities and temperatures. The kinetics of epoxidation was found to be gradually retarded with increasing light stress during pre-illumination, indicating a gradual down-regulation of the Zx epoxidase activity. Retardation of the epoxidation rates by a factor of up to 10 was inducible either by increasing the light intensity or by extending the illumination time or by decreasing the temperature during pre-illumination. The retardation of the epoxidation kinetics was correlated with a decrease of the PSII quantum efficiency after the pre-illumination treatment. Experiments with the stn7/stn8 mutant of Arabidopsis indicated that the thylakoid protein kinases STN7 and STN8, which are required for the phosphorylation of PSII proteins, are not involved in the short-term down-regulation of Zx epoxidation. However, the retardation of Zx epoxidation was maintained in thylakoids isolated from pre-illuminated leaves, indicating that a direct modification of the Zx epoxidase is most likely involved in the light-induced down-regulation.  相似文献   

19.
Cold acclimation is the phenomenon in which plants are exposed to low, but nonfreezing, temperatures before exposure to drastic temperatures. To investigate how sunflower plants adjust their metabolism during cold treatment, a comparative proteomic approach, based on spectral counting data, was adopted to identify differentially expressed proteins in leaves of freezing susceptible (Hopi) and tolerant (PI 543006 and BSD-2-691) lines after cold acclimation. In total 718, 675, and 769 proteins were confidently identified by tandem mass spectrometry in Hopi, PI 543006, and BSD-2-691 sunflower lines. Tolerant lines PI 543006 and BSD-2-691 showed the highest number of differentially expressed proteins, as 43, 72, and 168 proteins changed their expression in Hopi, PI 543006, and BSD-2-691 sunflower lines, respectively, at 95% confidence. Cold-responsive proteins were mostly involved in metabolism, protein synthesis, energy, and defense processes in all sunflower lines studied. Hierarchical clustering of all differentially expressed proteins resulted in the characterization of 14 different patterns of expression across Hopi, PI 543006, and BSD-2-691 and indicated that tolerant lines showed different proteome responses to cold acclimation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号