首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Traditionally macrophages (MΦ) have been considered to be the key type of antigen presenting cells (APC) to combat bacterial infections by phagocytosing and destroying bacteria and presenting bacteria-derived antigens to T cells. However, data in recent years have demonstrated that dendritic cells (DC), at their immature stage of differentiation, are capable of phagocytosing particulate antigens including bacteria. Thus, DC may also be important APC for initiating an immune response to bacterial infections. Our studies focus on studying how DC and MΦ process antigens derived from bacteria with no known mechanism of phagosomal escape (i.e. Salmonella typhimurium) for T cell stimulation as well as what role these APC types have in Salmonella infection in vivo. Using an in vitro antigen processing and presentation assay with bone marrow-derived (BM) APC showed that, in addition to peritoneal elicited MΦ and BMMΦ, BMDC can phagocytose and process Escherichia coli and S. typhimurium for peptide presentation on major histocompatibility complex (MHC) class I (MHC-I) and class II MHC-II. These studies showed that both elicited peritoneal MΦ and BMMΦ use an alternate MHC-I presentation pathway that does not require the transporter associated with antigen processing (TAP) or the proteasome and involves peptide loading onto a preformed pool of post-Golgi MHC-I molecules. In contrast, DC process E. coli and S. typhimurium for peptide presentation on MHC-I using the cytosolic MHC-I presentation pathway that requires TAP, the proteasome and uses newly synthesized MHC-I molecules. We further investigated the interaction of Salmonella with BMDC and BMMΦ by analyzing surface molecule expression and cytokine secretion following S. typhimurium infection of BMDC and BMMΦ. These data reveal that Salmonella co-incubation with BMDC as well as BMMΦ results in upregulation of MHC-I and MHC-II as well as several co-stimulatory molecules including CD80 and CD86. Salmonella infection of BMDC or BMMΦ also results in secretion of cytokines including IL-6 and IL-12. Finally, injecting mice with BMDC that have been loaded in vitro with S. typhimurium primes naïve CD4+ and CD8+ T cells to Salmonella-encoded antigens. Taken together, our data suggest that DC may be an important type of APC that contributes to the immune response to Salmonella.  相似文献   

2.
It is well established that activating-type Fc receptors for IgG (FcgammaR), such as FcgammaRI and FcgammaRIII, are essential for inducing inflammatory responses, whereas a unique inhibitory FcgammaR, FcgammaRIIB, inhibits intracellular signaling upon ligation of IgG-immune complexes, and can suppress inflammation and autoimmunity. Although antigen presentation is a crucial step for evoking inflammatory responses, the contribution of FcgammaRIIB to antigen presentation is controversial as to whether it regulates antigen-presenting cells (APC), particularly dendritic cells (DC), positively or negatively. In the present report, we show that the antigen targeting to both activating-type FcgammaRs, FcgammaRI/III, and inhibitory FcgammaRIIB on bone marrow-derived DC and macrophages and primary epidermal Langerhans' cells augmented T cell proliferation in vitro and elicited humoral responses upon adoptive transfer of the antigen-pulsed DC. The DC lacking FcgammaRIIB showed a reduction in IC-uptake ability and a decreased T-cell stimulation, and induced less efficient IgG production than those of DC from wild-type mice. On the other hand, the DC lacking FcR common gamma subunit, which only expresses FcgammaRIIB, showed significant up-regulations of IC-uptake, T-cell proliferation, and IgG production compared to those of FcgammaR null DC, demonstrating a positive regulation of FcgammaRIIB for the efficient antigen presentation of IgG-complexed antigens. These results support the therapeutic benefits of antigen-targeting to FcgammaR on APC in the various inflammatory disorders.  相似文献   

3.
Yersinia enterocolitica (Ye) disrupts the ability of dendritic cells (DC) to prime CD4+ T cells suggesting that Ye may subvert uptake and/or processing of soluble antigens (Ag). To investigate this Ye-infected DC were loaded with fluorescently labelled ovalbumins as markers for Ag uptake and processing, and analysed by flow cytometry, fluorometry and microscopy. Wild type pYV+ as well as plasmidless pYV(-) bacteria inhibited Ag degradation in DC by 40% compared to non-infected cells. Microscopic analyses of pYV(-)-infected DC revealed that 40% of DC contained intracellular bacteria, and that DC without intracellular bacteria had degraded more Ag. When internalization of pYV(-) was blocked by cytochalasin D, Ag degradation was no longer inhibited indicating the competition between degradation of bacteria and ovalbumin. In contrast, cytochalasin D pre-treated DC infected with pYV+ inhibited Ag degradation by a mechanism dependent on the presence of virulence plasmid pYV encoding YopE, YopH, YopM, YopP, YopT and YopO. As no single Yop inhibited Ag degradation, interaction of multiple Yops might account for this effect, possibly by inhibiting Rho GTPases, because of a significant decrease of Ag degradation observed in DC incubated with toxin B of C. difficile. However, the contribution of other pYV-encoded factors cannot be excluded.  相似文献   

4.
The subcellular location of a recombinant antigen in recombinant attenuated Salmonella vaccines may influence immunogenicity dependent on exposure of the recombinant antigen to cells involved in systemic immune responses. It has been shown that a recombinant attenuated Salmonella vaccine secreting the recombinant Streptococcus pneumoniae PspA (rPspA) antigen specified by pYA3494 induced protective anti-rPspA-specific immune responses (Kang et al. (2002) Infect. Immun. 70, 1739-1749). A recombinant plasmid pYA3496 specifying a His(6)-tagged rPspA (His(6)-rPspA) protein (no apparent signal sequence) caused the rPspA antigen to localize to the cytoplasm of Salmonella. Salmonella vaccines carrying pYA3494 or pYA3496 expressed similar amounts of rPspA. After a single oral immunization in BALB/c mice with 10(9) colony-forming units (CFU) of the recombinant Salmonella vaccines carrying pYA3494 or pYA3496, IgG antibody responses were stimulated to both rPspA and Salmonella lipopolysaccharide (LPS) antigens. The anti-rPspA IgG titer induced by Salmonella carrying pYA3494 (1.9 x 10(7)) was 10(4) times higher than induced by Salmonella carrying pYA3496 (<2.4 x 10(3)).  相似文献   

5.
Recombinant adenoviral vectors (AdV) are potent vehicles for antigen engineering of dendritic cells (DC). DC engineered with AdV to express full length tumor antigens are capable stimulators of antigen-specific polyclonal CD8+ and CD4+ T cells. To determine the impact of AdV on the HLA class I antigen presentation pathway, we investigated the effects of AdV transduction on antigen processing machinery (APM) components in human DC. Interactions among AdV transduction, maturation, APM regulation and T cell activation were investigated. The phenotype and cytokine profile of DC transduced with AdV was intermediate, between immature (iDC) and matured DC (mDC). Statistically significant increases in expression were observed for peptide transporters TAP-1 and TAP-2, and HLA class I peptide-loading chaperone ERp57, as well as co-stimulatory surface molecule CD86 due to AdV transduction. AdV transduction enhanced the expression of APM components and surface markers on mDC, and these changes were further modulated by the timing of DC maturation. Engineering of matured DC to express a tumor-associated antigen stimulated a broader repertoire of CD8+ T cells, capable of recognizing immunodominant and subdominant epitopes. These data identify molecular changes in AdV-transduced DC (AdV/DC) that could influence T cell priming and should be considered in design of cancer vaccines.  相似文献   

6.
7.
Tumor-derived peptides are used frequently as antigen (Ag) source in dendritic cell (DC) therapy in cancer patients. An alternative is to load DC with tumor-associated Ag (TAA)-encoding RNA. RNA-loading obviates prior knowledge of CTL and Th epitopes in the Ag. Multiple epitopes for many HLA alleles (both MHC class I and class II) are encoded by the RNA and loading is independent of the patient’s HLA make-up. Herein, we determined the optimal conditions for mRNA-electroporation of monocyte-derived DC for clinical application in relation to different maturation cocktails. The data demonstrate that TAA carcinoembryonic antigen, gp100 and tyrosinase are expressed already 30 min after electroporation with the encoding mRNA. Moreover, gp100-specific CTL are activated by gp100 mRNA-electroporated DC. Importantly, we show here that the presence of polyinosinic–polycytidylic acid [poly(I:C)] in the maturation cocktail prevents effective protein expression of the electroporated mRNA as well as subsequent CTL recognition. This effect of poly(I:C) correlates with the induction of IFN-induced genes and innate anti-viral effector molecules in DC. Together these data show that electroporation of mature DC with TAA-encoding mRNA is attractive for use in DC vaccination protocols in cancer patients, but protein expression should be tested for each maturation cocktail. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
9.
Dendritic cell (DC) maturation plays a central role in regulating immunity. We show that glucocorticoid and 1alpha,25(OH)(2)D(3) agonists modulate DCs via distinct and additive signaling pathways. Phenotypic and functional indices were examined in DCs treated with dexamethasone (DEX) and/or a 1alpha,25(OH)(2)D(3) analog (D(3) analog). DEX potently attenuated pro-inflammatory cytokines and chemokines but had modest, reversible effects on T-cell stimulatory capacity. D(3) analog produced significantly greater inhibition of T-cell stimulation in vitro and in vivo and, unlike DEX, increased expression of the chemokines MCP-1 and MIP-1alpha. Both DEX and D(3) analog were associated with reduced expression of the NF-kappaB proteins c-Rel and Rel B but not Rel A. Combined DEX and D(3) analog treatment of DCs resulted in significant additive inhibition of pro-inflammatory cytokines, T-cell stimulation, chemokines, chemokine receptors, and NF-kappaB components. Additive inhibition was most striking for RANTES, CCR5, CCR7, and Rel B. The combined effects of the two hormonal pathways on DCs have unique immunomodulatory potential.  相似文献   

10.
Dendritic cells (DC) take up pathogens through phagocytosis and process them into protein and lipid fragments for presentation to T cells. So far, the proteome of the human DC phagosome, a detrimental compartment for antigen processing and presentation as well as for DC activation, remains largely uncharacterized. Here we have analyzed the protein composition of phagosomes from human monocyte-derived DC. For LC-MS/MS analysis we purified phagosomes from DC using latex beads targeted to DC-SIGN, and quantified proteins using a label-free method. We used organellar enrichment ranking (OER) to select proteins with a high potential to be relevant for phagosome function. The method compares phagosome protein abundance with protein abundance in whole DC. Phagosome enrichment indicates specific recruitment to the phagosome rather than co-purification or passive incorporation. Using OER we extracted the most enriched proteins that we further complemented with functionally associated proteins to define a set of 90 phagosomal proteins that included many proteins with established relevance on DC phagosomes as well as high potential novel candidates. We already experimentally confirmed phagosomal recruitment of Galectin-9, which has not been previously associated with phagocytosis, to both bead and pathogen containing phagosomes, suggesting a role for Galectin-9 in DC phagocytosis.  相似文献   

11.
Fusion proteins consisting of the ligand-binding domain of CTLA4 covalently attached to an antigen (Ag) are potent immunogens. This fusion strategy effectively induces Ag-specific immunity both when introduced as a DNA-based vaccine and as a recombinant protein. CTLA4 is a ligand for B7 molecules expressed on the surface of antigen-presenting cells (APCs), and this interaction is critical for the fusion protein to stimulate Ag-specific immunity. We show that interaction of the fusion protein with either B7-1 or B7-2 is sufficient to stimulate immune activity, and that T cells are essential for the development of IgG responses. In addition, we demonstrate that human dendritic cells (DCs) pulsed with CTLA4–Ag fusion proteins can efficiently present Ag to T cells and induce an Ag-specific immune response in vitro. These studies provide further mechanistic understanding of the process by which CTLA4–Ag fusion proteins stimulate the immune system, and represent an efficient means of generating Ag-specific T cells for immunotherapy.Dhanalakshmi Chinnasamy and Matt Tector contributed equally to this work  相似文献   

12.
Aims: To investigate the effect of diet on the survival of Salmonella in the bovine abomasum. Methods and Results: Five fistulated cows were randomly assigned to one of five diets denoted as: (i) 100% grass, (ii) grass + 5·3 kg DM concentrate, (iii) 100% grass silage, (iv) 100% hay and (v) maize/grass silage plus concentrates. Rumen fluid was harvested from each dietary treatment and inoculated with nonacid (NA) and acid‐adapted (AA) 5‐strain Salmonella cocktails. After 24‐h incubation period, Salmonella were acid challenged to synthetic abomasum fluid (SAF, pH 2·5) for 5 h to determine their resistance to low pH. The study found that the volatile fatty acids composition and the pH profile of bovine rumen fluid were significantly altered (P < 0·05) by some of the dietary treatments but not others. Regression analysis found that significantly higher numbers of acid‐adapted Salmonella survived in SAF after incubation in rumen fluid from diets 1, 2 and 4, but fewer significant differences were found between diets for nonacid–adapted Salmonella. The results suggest that the acid‐adapted cells were subjected to a higher level of cell injury than the nonadapted cells. Conclusions: Pre‐incubation in rumen fluid did influence the resistance of nonacid and acid‐adapted Salmonella to SAF but it was dependant on the dietary treatment fed to the cows. Significance and Impact of the Study: This study examined the use of diet, as a modulating factor to limit the bovine excretion of Salmonella with a view to providing a scientific basis for the design of dietary management controls in the future.  相似文献   

13.
14.
Mutations in transporters associated with antigen processing (TAP-1 and -2) required for the transport of cytosolic endogenous peptides to the endoplasmic reticulum correlate with increased metastatic potential and reduced host survival in several malignancies. To address the possible function of TAP as a tumor suppressor gene, we show that correction of TAP-1 and/or TAP-2 defects in B16 mouse melanoma enhanced the cell surface expression of MHC class I molecules and significantly reduced the rate of subcutaneous tumor growth and pulmonary metastatic burden. Cytotoxic assays confirmed increased sensitivity of TAP-1 and/or TAP-2 transfected clones of B16 melanoma to cytotoxic T lymphocytes. These results indicate that the expression of TAP limits the malignant potential of tumors with implications for CD8(+) T cell-based immunotherapy in controlling growth of certain TAP-deficient malignancies.  相似文献   

15.
At the functional level, the majority of human leukocyte antigen (HLA) class I MHC variants can be classified into about ten different major groups, or supertypes, characterized by overlapping peptide binding motifs and repertoires. Previous studies have detailed the peptide binding specificity of the HLA A2, A3, B7, and B44 supertypes, and predicted, on the basis of MHC pocket structures, known motifs, or the sequence of T cell epitopes, the existence of the HLA A1 and A24 supertypes. Direct experimental validation of the A1 and A24 supertypes, however, has been lacking. In the current study, the peptide-binding repertoires and main anchor specificities of several common HLA A molecules (A*0101, A*2301, A*2402, A*2601, A*2902, and A*3002) predicted to be members of the A1 or A24 supertypes were analyzed and defined using single amino acid substituted peptides and a large peptide library. Based on the present findings, the A1 supertype includes A*0101, A*2601, A*2902, and A*3002, whereas the A24 supertype includes A*2301 and A*2402. Interestingly, A*2902 is associated with a motif and peptide binding repertoire that overlaps significantly with those of all of the A1- and A24-supertype molecules studied, representing—to our knowledge—the first report of significant cross-reactivity among molecules belonging to different supertypes.  相似文献   

16.
通过对鼠伤寒沙门菌LH株的发酵培养,热酚水法提取脂多糖LPS,1%乙酸沸水浴水解90m in脱毒,Super-dex 200柱层析,收集第一峰为鼠伤寒O-SP抗原;然后用CDAP对O-SP活化、ADH衍生后,在EDAC的缩合作用下,结合到破伤风类毒素TT上,制备出鼠伤寒结合疫苗;用含2.5μg多糖鼠伤寒结合疫苗免疫小鼠,以2.5μgO-SP多糖生理盐水溶液以及生理盐水溶液为对照组,间隔14天,免疫三针;以LPS为包被抗原,用间接ELISA法测定血清中抗鼠伤寒LPS IgG抗体。鼠伤寒结合疫苗三针免疫后,小鼠血清抗鼠伤寒LPS IgG抗体效价达到1:80以上的比例为84.2%,而总的几何平均滴度(GMT)达到796;说明制备的鼠伤寒结合疫苗有良好的免疫原性,而且鼠伤寒结合疫苗在小鼠和豚鼠体内有良好的安全性。  相似文献   

17.
Allergic asthma is a common airway inflammatory disease in which B cells play important roles through IgE production and antigen presentation. SNP (single nucleotide polymorphism) analysis showed that Atg (autophagy-related) allele mutations are involved in asthma. It has been demonstrated that macroautophagy/autophagy is essential for B cell survival, plasma cell differentiation and immunological memory maintenance. However, whether B cell autophagy participates in asthma pathogenesis remains to be investigated. In this report, we found that autophagy was enhanced in pulmonary B cells from asthma-prone mice. Autophagy deficiency in B cells led to attenuated immunopathological symptoms in asthma-prone mice. Further investigation showed that IL4 (interleukin 4), a key effector Th2 cytokine in allergic asthma, was critical for autophagy induction in B cells both in vivo and in vitro, which further sustained B cell survival and enhanced antigen presentation by B cells. Moreover, IL4-induced autophagy depended on JAK signaling via an MTOR-independent, PtdIns3K-dependent pathway. Together, our data indicate that B cell autophagy aggravates experimental asthma through multiple mechanisms.  相似文献   

18.
A recombinant (r-) Salmonella typhimurium aroA vaccine that secretes the naturally secreted protein of Mycobacterium bovis strain BCG, Ag85B, by means of the HlyB/HlyD/TolC export machinery (termed p30 in the following) was constructed. In contrast to r-S. typhimurium control, oral vaccination of mice with the r-S. typhimurium p30 construct induced partial protection against an intravenous challenge with the intracellular pathogen Mycobacterium tuberculosis, resulting in similar vaccine efficacy comparable to that of the systemically administered attenuated M. bovis BCG strain. The immune response induced by r-S. typhimurium p30 was accompanied by augmented interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha) levels produced by restimulated splenocytes. These data suggest that the HlyB/HlyD/TolC-based antigen delivery system with attenuated r-S. typhimurium as carrier is capable of inducing an immune response against mycobacterial antigens.  相似文献   

19.
The ICAM-1 adhesion molecule is expressed selectively at low levels on endothelial cells but is strongly upregulated in dysfunctional endothelial cells associated with inflammation, cancer, and atherogenesis. Using COS-7 cells transfected with murine ICAM-1 (mICAM-1) as a target receptor, a phage display library was screened. Clones were selected by elution with a mAb specific for a functional epitope of ICAM-1 and a novel peptide sequence binding to the extracellular domain of mICAM-1 was identified that can potentially be used as a targeting vector aimed at dysfunctional endothelium. We further showed that the targeting specificity of the peptide was retained following its incorporation at the N terminal end of a large chimeric protein. Moreover, this chimeric protein containing the mICAM-1-specific sequence was found to inhibit ICAM-1-mediated intercellular adhesion during antigen presentation. Taken together, these results demonstrate the potential for improving the cell-selectivity and properties of therapeutical agents toward targeting adhesion molecules involved in cell-cell interactions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号