首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have genetically engineered an attenuated yellow fever (YF) virus to carry and express foreign antigenic sequences and evaluated the potential of this type of recombinant virus to serve as a safe and effective tumor vaccine. Live-attenuated YF vaccine is one of the most effective viral vaccines available today. Important advantages include its ability to induce long-lasting immunity, its safety, its affordability, and its documented efficacy. In this study, recombinant live-attenuated (strain 17D) YF viruses were constructed to express a cytotoxic T-lymphocyte epitope derived from chicken ovalbumin (SIINFEKL). These recombinant viruses replicated comparably to the 17D vaccine strain in cell culture and stably expressed the ovalbumin antigen, and infected cells presented the antigen in the context of major histocompatibility complex class I. Inoculation of mice with recombinant YF virus elicited SIINFEKL-specific CD8(+) lymphocytes and induced protective immunity against challenge with lethal doses of malignant melanoma cells expressing ovalbumin. Furthermore, active immunotherapy with recombinant YF viruses induced regression of established solid tumors and pulmonary metastases. Thus, recombinant YF viruses are attractive viral vaccine vector candidates for the development of therapeutic anticancer vaccines.  相似文献   

2.
The limited access to the nuclear compartment may constitute one of the major barriers after bacteria-mediated expression plasmid DNA delivery to eukaryotic cells. Alternatively, a self-destructing Listeria monocytogenes strain was used to release translation-competent mRNA directly into the cytosol of epithelial cells, macrophages and human dendritic cells. Enhanced green fluorescent protein (EGFP)-encoding mRNA, adapted for translation in mammalian cells by linking an IRES element to the 5'-end of the egfp coding sequence, was produced by T7 RNA polymerase in the carrier bacteria upon entry into the cytosol where the mRNA is efficiently released from the lysed bacteria and immediately translated in eukaryotic host cells. Besides the much earlier expression of EGFP being detectable already 4 h after infection, the number of EGFP expressing mammalian cells obtained with this novel RNA delivery technique is comparable to or - especially in phagocytic cells - even higher than that obtained with the expression plasmid DNA delivery strategy. Accordingly, bacteria-mediated delivery of ovalbumin-encoding mRNA to macrophages resulted in efficient antigen processing and presentation in vitro indicating that this approach may also be adapted for the in vivo delivery of antigen-encoding mRNA leading to a more efficient immune response when applied to vaccine development.  相似文献   

3.
Invasive intracellular bacteria are able to transfer eukaryotic expression plasmids into mammalian host cells in vitro and in vivo. This can be used to induce immune responses toward protein antigens encoded by the plasmid or to complement genetic defects. Plasmid transfer takes place when the recombinant bacterium dies within the host cell, either due to metabolic attenuation or induction of autolysis. Alternatively, antibiotics can be used and spontaneous transfer has also been observed, indicating that this phenomenon might also occur under physiological conditions. Plasmid transfer has been reported for Shigella flexneri, Salmonella typhimurium and S. typhi, Listeria monocytogenes and recombinant Escherichia coli, but other invasive bacteria should also share this property. In vivo attempts were mainly directed toward vaccination using shigella and salmonella as carrier. So far a wide variety of antigens have been used succesfully in mice. Often this type of immunization was superior over direct application of antigen or using the same bacterium as a heterologous carrier expressing the antigen via a prokaryotic promoter. Characterization of the host cells revealed that macrophages and dendritic cells might be responsible for immune stimulation by either expressing the antigen or cross-presenting the antigen after uptake of apoptotic antigen expressing cells.  相似文献   

4.
Immunization of mice with dendritic cells transfected ex vivo with tumor-associated antigen (TAA)-encoding mRNA primes cytotoxic T lymphocytes (CTL) that mediate tumor rejection. Here we investigated whether direct injection of TAA mRNA, encapsulated in cationic liposomes, could function similarly as cancer immunotherapy. Intradermal and intravenous injection of ovalbumin (OVA) mRNA generated specific CTL activity and inhibited the growth of OVA-expressing tumors. Vaccination studies with DNA have demonstrated that co-administration of antigen (Ag)- and cytokine-encoding plasmids potentiate the T cell response; in analogous fashion, the inclusion of granulocyte-macrophage colony-stimulating factor (GM-CSF) mRNA enhanced OVA-specific cytotoxicity. The ability of this GM-CSF-augmented mRNA vaccine to treat an established spontaneous tumor was evaluated in the Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) mouse, using the SV40 large T Ag (TAg) as a model tumor/self Ag. Repeated vaccination elicited vigorous TAg-specific CTL activity in nontransgenic mice, but tumor-bearing TRAMP mice remained tolerant. Adoptive transfer of naïve splenocytes into TRAMP mice prior to the first vaccination restored TAg reactivity, and slowed tumor progression. The data from this study suggests that vaccination with TAA mRNA is a simple and effective means of priming antitumor CTL, and that immunogenicity of the vaccine can be augmented by co-delivery of GM-CSF mRNA. Nonetheless, limitations of such vaccines in overcoming tolerance to tumor/self Ag may mandate prior or simultaneous reconstitution of the autoreactive T cell repertoire for this form of immunization to be effective.  相似文献   

5.
The efficacious delivery of eukaryotic expression plasmids to inductive cells of the immune system constitutes a key prerequisite for the generation of effective DNA vaccines. Here, we have explored the use of bacteria as vehicles to orally deliver expression plasmids. Attenuated Salmonella typhimurium aroA harbouring eukaryotic expression plasmids that encoded virulence factors of Listeria monocytogenes were administered orally to BALB/c mice. Strong cytotoxic and helper T cell responses as well as antibody production were elicited even after a single administration. Mice immunised four times with Salmonella that carried a eukaryotic expression plasmid encoding the secretory listerial protein listeriolysin were protected against a subsequent lethal challenge with this pathogen. A single dose was already partially protective. The efficiency of this vaccination procedure was due to transfer of the expression plasmid from the bacterial carrier to the mammalian host. Evidence for such an event could be obtained in vivo and in vitro. Expression of the desired antigen in various lymphoid tissues was already detectable 1 day after administration of the DNA vaccine and persisted for at least 1 month in spleen and mesenteric lymph nodes. Induction of cytotoxic and helper T cell responses was observed in all mouse strains tested including outbred strains whereas antibodies were mainly detected in BALB/c. Furthermore, we could show that immunogenicity could be improved by increasing the invasiveness of the bacterial carrier.  相似文献   

6.
Cytotoxic chemotherapies may expose the immune system to high levels of tumor antigens and expand the CD8+ T-cell response to include weak or subdominant antigens. Here, we evaluated the in vivo CTL response to tumor antigens using a murine mesothelioma tumor cell line transfected with a neotumor antigen, ovalbumin, that contains a known hierarchy of epitopes for MHC class I molecules. We show that as tumors progress, effector CTLs are generated in vivo that focus on the dominant epitope SIINFEKL, although a weak response was seen to one (KVVRFDKL) subdominant epitope. These CTLs did not prevent tumor growth. Cisplatin treatment slowed tumor growth, slightly improved in vivo SIINFEKL presentation to T cells and reduced SIINFEKL-CTL activity. However, the CTL response to KVVRFDKL was amplified, and a response to another subdominant epitope, NAIVFKGL, was revealed. Similarly, gemcitabine cured most mice, slightly enhanced SIINFEKL presentation, reduced SIINFEKL-CTL activity yet drove a significant CTL response to NAIVFKGL, but not KVVRFDKL. These NAIVFKGL-specific CTLs secreted IFN?? and proliferated in response to in vitro NAIVFKGL stimulation. IL-2 treatment during chemotherapy refocused the response to SIINFEKL and simultaneously degraded the cisplatin-driven subdominant CTL response. These data show that chemotherapy reveals weaker tumor antigens to the immune system, a response that could be rationally targeted. Furthermore, while integrating IL-2 into the chemotherapy regimen interfered with the hierarchy of the response, IL-2 or other strategies that support CTL activity could be considered upon completion of chemotherapy.  相似文献   

7.
Abstract A new lot of Francisella tularensis live vaccine strain (LVS) was tested for immunogenicity in 19 human volunteers. Scarification vaccination induced specific cell-mediated and humoral immune responses. We noted a significant rise in antibodies against irradiation-killed LVS, formalin-killed virulent strain SCHU4, and an ether extracted antigen preparation (EEx) beginning 14 days after vaccination. A main target of the humoral immune response was lipopolysaccharide. Eighty percent of vaccinated volunteers developed a positive IgG response to EEx by day 14 and 100% of vaccinees responded positively by day 21. Background IgA titers were lower than corresponding IgG or IgM titers. No early IgM rise was noted with any antigen. By day 14 after vaccination, in vitro lymphocyte responses to LVS, the rough variant of LVS, and EEx were significantly increased compared to controls. Seventy percent of volunteers had a positive in vitro lymphocyte response to EEx within 14 days of vaccination. We predict that EEx will be a usefull antigen for diagnosing tularemia and for evaluating the immunogenicity of vaccines against tularemia. We are testing this antigen using sera from human cases of tularemia and control sera.  相似文献   

8.
Promising yet limited clinical responses have been reported for peptide based immunotherapy against tumors. In order to induce more potent cytolytic CD8 T cell responses, we investigated the use of Bordetella pertussis vaccine as an adjuvant for peptide immunization. A whole cell (Wc) vaccine has been known to induce a Th1 biased immune response while an acellular (Ac) vaccine tends to induce that of the Th2 type. Natural infection by B. pertussis helps to maintain a robust Th1 memory in the host population. To examine the adjuvant activity of the pertussis vaccine, we immunized mice with an ovalbumin peptide as a model tumor antigen, and monitored the development of anti-tumor activities. The addition of either the Ac or the Wc vaccine helped expand the specific CD8 T cells. However, there was a marked difference in the induced cytolytic activity where the Wc vaccine was superior to the Ac. The Wc vaccine was also more effective in inducing in vivo tumor rejection. The adjuvant activity was not only effective against ovalbumin, but was also evident when an endogenous tumor antigen, Wilms' tumor 1 gene product, was targeted. These results indicate that, although the Wc vaccine does not share the same antigen specificity with tumor cells, it can aid in the development of highly cytolytic CD8 T cells as an adjuvant at the site of peptide immunization.  相似文献   

9.
Vaccination is a proven strategy to mitigate morbidity and mortality of infectious diseases. The methodology of identifying and testing new vaccine candidates could be improved with rational design and in vitro testing prior to animal experimentation. The tularemia vaccine, Francisella tularensis live vaccine strain (LVS), does not elicit complete protection against lethal challenge with a virulent type A Francisella strain. One factor that may contribute to this poor performance is limited stimulation of antigen-presenting cells. In this study, we examined whether the interaction of genetically modified LVS strains with human antigen-presenting cells correlated with effectiveness as tularemia vaccine candidates. Human dendritic cells infected with wild-type LVS secrete low levels of proinflammatory cytokines, fail to upregulate costimulatory molecules, and activate human T cells poorly in vitro. One LVS mutant, strain 13B47, stimulated higher levels of proinflammatory cytokines from dendritic cells and macrophages and increased costimulatory molecule expression on dendritic cells compared to wild type. Additionally, 13B47-infected dendritic cells activated T cells more efficiently than LVS-infected cells. A deletion allele of the same gene in LVS displayed similar in vitro characteristics, but vaccination with this strain did not improve survival after challenge with a virulent Francisella strain. In vivo, this mutant was attenuated for growth and did not stimulate T cell responses in the lung comparable to wild type. Therefore, stimulation of antigen-presenting cells in vitro was improved by genetic modification of LVS, but did not correlate with efficacy against challenge in vivo within this model system.  相似文献   

10.
BACKGROUND: Here we describe a novel DNA vaccine formulation that can enhance cytotoxic T lymphocyte (CTL) activity through efficient gene delivery to dendritic cells (DCs) by mannose receptor-mediated endocytosis. METHODS: Ovalbumin (OVA) was selected as a model antigen for vaccination; accordingly, OVA-encoding pDNA (pCMV-OVA) was constructed to evaluate DNA vaccination. Mannosylated cationic liposomes (Man-liposomes) were prepared using cholesten-5-yloxy-N-{4-[(1-imino-2-D-thiomannosylethyl)amino]butyl}formamide (Man-C4-Chol) with cationic lipid. The potency of the mannosylated liposome/pCMV-OVA complex (Man-lipoplex) was evaluated by measuring OVA mRNA in CD11c+ cells, CTL activity, and the OVA-specific anti-tumor effect after in vivo administration. RESULTS: An in vitro study using DC2.4 cells demonstrated that Man-liposomes could transfect pCMV-OVA more efficiently than cationic liposomes via mannose receptor-mediated endocytosis. In vivo studies revealed that the Man-lipoplex exhibited higher OVA mRNA expression in CD11c+ cells in the spleen and peritoneal cavity and provided a stronger OVA-specific CTL response than intraperitoneal (i.p.) administration of the conventional lipoplex and intramuscular (i.m.) administration of naked pCMV-OVA, the standard protocol for DNA vaccination. Pre-immunization with the Man-lipoplex provided much better OVA-specific anti-tumor effect than naked pCMV-OVA via the i.m. route. CONCLUSIONS: These results suggested that in vivo active targeting of DNA vaccine to DCs with Man-lipoplex might prove useful for the rational design of DNA vaccine.  相似文献   

11.
We have developed a DNA vaccine encoding a fusion protein of ubiquitin (Ub) and target proteins at the N-terminus for effective induction of antigen-specific CD8+ T cells. A series of expression plasmids encoding a model antigen, ovalbumin (OVA), fused with mutated Ub, was constructed. Western blotting analyses using COS7 cells transfected with these plasmids revealed that there were three types of amino acid causing different binding capacities between Ub and OVA. Natural Ub with a C-terminal glycine readily dissociated from OVA; on the other hand, artificially mutated Ub, the C-terminal amino acid of which had been exchanged to valine or arginine, stably united with the polypeptide, while Ub with a C-terminal alanine partially dissociated. The ability of DNA vaccination to induce OVA-specific CD8+ T cells closely correlated with the stability of Ub fusion to OVA. Our strategy could be used to optimize the effect of genetic vaccines on the induction of CD8+ T cells.  相似文献   

12.
In vivo priming of cytotoxic T lymphocytes (CTL) by DNA injection predominantly occurs by antigen transfer from DNA-transfected cells to antigen-presenting cells. A rational strategy for increasing DNA vaccine potency would be to use a delivery system that facilitates antigen uptake by antigen-presenting cells. Exogenous antigen presentation through the major histocompatibility complex (MHC) class I-restricted pathway of some viral antigens is increased after adequate virus-receptor interaction and the fusion of viral and cellular membranes. We used DNA-based immunization with plasmids coding for human immunodeficiency virus type 1 (HIV-1) Gag particles pseudotyped with vesicular stomatitis virus glycoprotein (VSV-G) to generate Gag-specific CTL responses. The presence of the VSV-G-encoding plasmid not only increased the number of mice displaying anti-Gag-specific cytotoxic response but also increased the efficiency of specific lysis. In vitro analysis of processing confirmed that exogenous presentation of Gag epitopes occurred much more efficiently when Gag particles were pseudotyped with the VSV-G envelope. We show that the VSV-G-pseudotyped Gag particles not only entered the MHC class II processing pathway but also entered the MHC class I processing pathway. In contrast, naked Gag particles entered the MHC class II processing pathway only. Thus, the combined use of DNA-based immunization and nonreplicating pseudotyped virus to deliver HIV-1 antigen to the immune system in vivo could be considered in HIV-1 vaccine design.  相似文献   

13.
Respiratory syncytial viruses (RSV) are one of the most important respiratory pathogens of humans and cattle, and there is currently no safe and effective vaccine prophylaxis. In this study, we designed two codon-optimized plasmids encoding the bovine RSV fusion (F) and nucleocapsid (N) proteins and assessed their immunogenicity in young calves. Two administrations of both plasmids elicited low antibody levels but primed a strong cell-mediated immunity characterized by lymphoproliferative response and gamma interferon production in vitro and in vivo. Interestingly, this strong cellular response drastically reduced viral replication, clinical signs, and pulmonary lesions after a highly virulent challenge. Moreover, calves that were further vaccinated with a killed-virus vaccine developed high levels of neutralizing antibody and were fully protected following challenge. These results indicate that DNA vaccination could be a promising alternative to the classical vaccines against RSV in cattle and could therefore open perspectives for vaccinating young infants.  相似文献   

14.
15.
Abstract Attenuated Salmonella strains are currently being evaluated as live vectors for the delivery of heterologous antigens to the mammalian mucosal and systemic immune systems. An approach to improving the stability of heterologous antigen expression during vaccination is to drive expression of the foreign protein from promoters e.g. nirB , that become activated when Salmonella enter the host. Salmonella strains were constructed that harboured similar multicopy plasmids encoding the lacZ gene. In each strain, lacZ expression was driven from either the nirB, htrA or groE promoters. Expression of LacZ increased in all vaccine strains as they were shifted from conditions of low to high temperature. In addition, expression of lacZ driven from the htrA and nirB promoters significantly increased when the Salmonella entered eukaryotic cells, including macrophages. Expression of lacZ from the groE promoter was significantly elevated in macrophages but not in cells derived from epithelia. These promoters may be useful for optimising heterologous antigen expression within immune cells of the host.  相似文献   

16.
We compared the immunogenicity of plasmid vaccines containing multiple human immunodeficiency virus (HIV) antigens and found that covaccination with plasmids expressing HIV-1 14 kDa vpr gene product profoundly reduces antigen-specific CD8-mediated cytotoxic T-cell activity (CTL). Interestingly, Th1 type responses against codelivered antigens (pGag-Pol, pNef, etc.) encoded by the plasmid vaccines were suppressed. This suggested that vpr might compromise CD8 T-cell immunity in vivo during infection. A pilot primate vaccine study was designed to test the hypothesis to compare the following groups: unvaccinated controls, animals vaccinated without simean immunodeficiency virus (SIV)-Nef antigen plasmid, and animals covaccinated with the identical plasmid antigen and a plasmid construct encoding SIV Vpr/Vpx. Animals were subsequently challenged intrarectally with pathogenic SIVmac251 after the final vaccination of a multiple immunization protocol. Control animals were all infected and exhibited high viral loads and rapid CD4+ T-cell loss. In contrast, the Nef plasmid-vaccinated animals were also infected but exhibited preservation of CD4+ T-cells and a multilog reduction in viral load compared with controls. Animals covaccinated multiple times with the Nef vaccine and pVpr/Vpx plasmid suffered rapid and profound loss of CD4+ T-cells. These results have important implications for the design of multicomponent and particle vaccines for HIV-1 as well as for our understanding of HIV/SIV pathogenesis in vivo.  相似文献   

17.

Background

Dendritic cells (DC) pulsed with MHC class I-restricted tumour associated antigen (TAA) peptides have been widely tested in pre-clinical models and early clinical studies for their ability to prime cytotoxic T cell (CTL) responses. The effect of co-expression of allogeneic MHC antigens on DC immunogenicity has not been addressed, and has implications for the feasibility of clinical applications.

Objective

This study compared DC from autologous H-2b or semi-allogeneic F1 H-2bxk mice pulsed with the H-2b-restricted model ovalbumin (OVA) peptide SIINFEKL, and compared in vitro and in vivo their ability to (i) activate specific OT1 cells, (ii) prime naïve CTL, and (iii) protect against B16.OVA challenge. Peptide-pulsed autologous and allogeneic DC were also tested in naïve human CTL priming assays.

Results

Semi-allogeneic DC expressed higher levels of co-stimulatory molecules. On pulsing with SIINFEKL they triggered greater proliferation of OT1 cells in vitro and in vivo, but were less effective at naïve CTL priming and tumour protection. Autologous human DC were similarly more potent at naïve CTL priming against the melanoma-associated TAA MART-1 in vitro.

Conclusion

The expression of allogeneic MHC antigens on peptide-pulsed DC impairs naïve CTL priming and anti-tumour effects, despite effective TAA presentation both in vitro and in vivo.
  相似文献   

18.
Highly purified eosinophil (EOS) fractions were obtained from peritoneal exudate cells of guinea pigs immunized with with Ascaris lumbricoides suum antigen (Asc). These Eos suppressed the in vitro DNA synthesis of the lymph node cells (LNC) sensitized with Asc and then activated by this antigen or phytohemagglutinin (PHA). Although addition of Eos did not effect the viability of LNC in vitro, the blastformation of LNC was suppressed remarkably when 5-10 X 10(5) purified Eos were added to 10(6) LNC within 48 hr after the start of stimulation by Asc. The suppressive effects of Eos on the blastformation of LNC immunized with complete Freund's adjuvant with or without ovalbumin were observed when stimulated with purified protein derivates or ovalbumin. Such suppression were observed beyond the barrier of animal strain specificity; Eos from Hartley guinea pigs suppressed proliferation of LNC from either strain 13 or strain 2, and Eos from strain 13 suppressed that from strain 2. Such suppressing activity of Eos was reduced by heating them at 56 C for 1 hr or by sonication.  相似文献   

19.
20.
Bovine Herpesvirus-1 (BoHV-1) is a DNA virus belonging to the family Herpesviridae, subfamily Alfaherpesvirinae; it is a worldwide pathogen, causing serious economic losses in livestock. In Colombia there have been multiple isolates of BoHV-1 that have been subjected to molecular characterization, classifying most of the country isolates as BoHV-1.1. In the present study we developed and evaluated an ethyleneimine binary inactivated isolate from the native BoHV-1 strain (Córdoba-2) in a rabbit model of vaccination and infection. The vaccine was evaluated in two phases, one of immunogenicity with vaccination and a booster after 21 days, and an evaluation phase of protection against challenge with a highly virulent reference strain. The results demonstrate optimum serum-conversion, with protective neutralizing antibody titers 28 days post vaccination and optimal protection against challenge with the reference strain with decreased clinical signs of infection, protection against the onset of fever and decrease of virus excretion post challenge. In conclusion, our results show the enormous potential that an immunogenic inactivated vaccine has produced from the native BoHV-1.1 strain, which produces a high antigen mass to the vaccine to induce optimal immunity and protection, and it is a strong candidate for evaluation and possible future use in different cattle populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号