首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The responses of oxonol dyes to single and multiple single turnovers of the photosynthetic apparatus of photosynthetic bacteria have been studied, and compared with the responses of the endogenous carotenoid pigments. The absorbance changes of the oxonols can be conveniently measured at 587 nm, because this is an isosbestic point in the ‘light-minus-dark’ difference spectrum of the chromatophores.The oxonols appear to respond to the light-induced ‘energization’ by shifting their absorption maxima. In the presence of K+, valinomycin abolished and nigericin enhanced such shifts, suggesting that the dyes respond to the light-induced membrane potential. Since the dyes are anions at neutral pH values, they probably distribute across the membrane in accordance with the potential, which is positive inside the chromatophores. The accumulation of dye, which is indicated by a decrease in the carotenoid bandshift, poises the dye-membrane equilibrium in favor of increased dye binding and this might be the cause of the spectral shift.The dye response has an apparent second-order rate constant of approx. 2 · 106 M?1 · s?1 and so is always slower than the carotenoid bandshift. Thus the dyes cannot be used to monitor membrane potential on submillisecond timescales. Nevertheless, on a timescale of seconds the logarithm of the absorbance change at 587 nm is linear with respect to the membrane potential calibrated with the carotenoid bandshift. This suggests that under appropriate conditions the dyes can be used with confidence as indicators of membrane potential in energy-transducing membranes that do not posses intrinsic probes of potential.  相似文献   

2.
The changes in carotenoid absorbance induced by illumination or by a diffusion potential were larger in chromatophores from cells cultured under low light intensity than those in chromatophores from high-light culture in a photosynthetic bacterium, Rhodopseudomonas sphaeroides. The carotenoid molecules which are associated with the pigment-protein complex (with the infrared bacteriochlorophyll peaks at 800 and 850 nm) (complex II) probably respond to the electrical field changes in the chromatophore membrane.  相似文献   

3.
An analysis has been made of the spectrum of the carotenoid absorption band shift generated by continuous illumination of chromatophores of the GlC-mutant of Rhodopseudomonas sphaeroides at room temperature by means of three computer programs. There appears to be at least two pools of the same carotenoid, only one of which, comprising about 20% of the total carotenoid content, is responsible for the light-induced absorbance changes. The 'remaining' pool absorbs at wavelengths which were about 5 nm lower than those at which the 'changing' pool absorbs. This difference in absorption wavelength could indicate that the two pools are influenced differently by permanent local electric fields. The electrochromic origin of the absorbance changes has been demonstrated directly; the isosbestic points of the absorption difference spectrum move to shorter wavelengths upon lowering of the light-induced electric field. Band shifts up to 1.7 nm were observed. A comparison of the light-induced absorbance changes with a KCl-valinomycin-induced diffusion potential has been used to calibrate the electrochromic shifts. The calibration value appeared to be 137 +/- 6 mV per nm shift.  相似文献   

4.
An analysis has been made of the spectrum of the carotenoid absorption band shift generated by continuous illumination of chromatophores of the GlC-mutant of Rhodopseudomonas sphaeroides at room temperature by means of three computer programs. There appears to be at least two pools of the same carotenoid, only one of which, comprising about 20 % of the total carotenoid content, is responsible for the light-induced absorbance changes. The ‘remaining’ pool absorbs at wavelengths which were about 5 nm lower than those at which the ‘changing’ pool absorbs. This difference in absorption wavelength could indicate that the two pools are influenced differently by permanent local electric fields.

The electrochromic origin of the absorbance changes has been demonstrated directly; the isosbestic points of the absorption difference spectrum move to shorter wavelengths upon lowering of the light-induced electric field. Band shifts up to 1.7 nm were observed. A comparison of the light-induced absorbance changes with a KCl-valinomycin-induced diffusion potential has been used to calibrate the electrochromic shifts. The calibration value appeared to be 137 ± 6 mV per nm shift.  相似文献   


5.
In Chromatium chromatophores, the response of part of the carotenoid complement to a light-induced membrane potential is a shift to the blue of its absorption spectrum, as indicated by the characteristics of the light-minus-dark difference spectrum. The spectrum in the dark of the population of carotenoid which responds to a light-induced membrane potential is located at least 1–2 nm to the red in comparison to the total carotenoid absorption. The results indicate that the proposed permanent electric field affecting the responding population has a polarity with respect to the chromatophore membrane opposite to that in Rhodopseudomonas sphaeroides chromatophores. The carotenoid absorption change interferes seriously with measurements of cytochrome c-555 redox changes at its α band.  相似文献   

6.
《BBA》1986,849(1):141-149
(1) Changes of local intramembrane electrical field in the surface and central region of the chromatophore membrane during energization were studied both by the measurement of absorbance changes of ethidium, a monovalent cationic dye, and of carotenoid, the intrinsic probe of electrical field. (2) Binding of ethidium to the chromatophore membrane of Rhodopseudomonas sphaeroides was found to be dependent on the energization of membrane as well as on the ionic condition of the medium. The dye was released from the membrane when salt was added to the suspension, indicating the electrostatic interaction between the positive dye and the net negative membrane surface. The result was explained by the surface-potential dependent distribution of the dye to the membrane surface, as seen with other charged dyes (Masamoto, K., Matsuura, K., Itoh, S. and Nishimura, M. (1981) Biophys. Acta 638, 108–115). (3) Energization of chromatophores by flash-light-induced absorbance change of ethidium showing a similar difference spectrum to that induced by the addition of salts. The release of ethidium by a single turn-over flash of saturating intensity was estimated to be 0.22 ethidium per reaction center. Addition of ethidium (at 200 μM) slightly affected the flash-induced absorbance change of carotenoid which responds to the intramembrane electricalfield change, indicating a low-membrane permeability of the dye. The extent of the absorbance change of ethidium was linear to that of carotenoid, and was abolished in the presence of valinomycin plus K+. However, the rise and decay kinetics of the absorbance change of ethidium was different from that of carotenoid. (4) These absorbance changes of ethidium and carotenoid can be explained by a model in which ethidium responds to the potential changes in the surface region and carotenoid in the central hydrophobic region of the chromatophore membrane.  相似文献   

7.
Chromatium vinosum chromatophores contain an energy-linked pyrophosphatase that is insensitive to oligomycin and dicyclohexylcarbodiimide. Pyrophosphate hydrolysis produces a carotenoid band-shift similar to that resulting from illumination. The carotenoid band-shift can also be produced by a K+ diffusion potential (interior positive) and the magnitude of the band shift is proportional to the membrane potential over at least a 100-fold variation in K+ concentration. The light-induced carotenoid band-shift in whole cells is identical to that seen in chromatophores but K+ diffusion potentials (interior positive) produce a mirror image of the light-induced band-shift. These results are interpreted in terms of chromatophores being inside-out vesicles.  相似文献   

8.
The shift of the carotenoid absorption spectrum induced by illumination and valinomycin-K+ addition was investigated in membrane structures with different characteristics and opposite sidednesses isolated from Rhodopseudomonas sphaeroides. Right-side-out membrane structures were prepared by isotonic lysozyme-EDTA treatment of the cells (spheroplasts) and by hypotonic treatment of spheroplasts (spheroplast membrane vesicles). Inside-out membrane structures ("chromatophores") were obtained by treating spheroplast membrane vesicles by French press or sonication. The membrane structures with either sidedness showed the same light-induced change of the "red shift" type. However, the absorbance change by K+ addition in the presence of valinomycin in the right-side-out membrane structures were opposite to that in the inverted vesicles, "blue shift" in the former and "red shift" in the latter. The carotenoid absorbance change was linear to membrane potential, calculated from the concentration of KCl added, with a reference on the cytoplasmic side, through positive and negative ranges.  相似文献   

9.
Previous pulse-chase studies have shown that bacteriochlorophyll a-protein complexes destined eventually for the photosynthetic (chromatophore) membrane of Rhodopseudomonas sphaeroides appear first in a distinct pigmented fraction. This rapidly labeled material forms an upper band when extracts of phototrophically grown cells are subjected directly to rate-zone sedimentation. In the present investigation, flash-induced absorbance changes at 605 nm have demonstrated that the upper fraction is enriched two-fold in photochemical reaction center activity when compared to chromotophores; a similar enrichment in the reaction center-associated B-875 antenna bacteriochlorophyll complex was also observed. Although b- and c-type cytochromes were present in the upper pigmented band, no photoreduction of the b-type components could be demonstrated. The endogenous c-type cytochrome (Em = +345 mV) was photooxidized slowly upon flash illumination. The extent of the reaction was increased markedly with excess exogenous ferrocytochrome c but only slightly in chromatophores. Only a small light-induced carotenoid band shift was observed. These results indicate that the rapidly labeled fraction contains photochemically competent reaction centers associated loosely with c-type and unconnected to b-type cytochrome. It is suggested that this fraction arises from new sites of cytoplasmic membrane invagination which fragment to form leaky vesicles upon cell disruption.  相似文献   

10.
Proteoliposomes were reconstituted from detergent-solubilized pigment.protein complexes of chromatophores of Rhodopseudomonas sphaeroides and soybean phospholipids. The reconstituted vesicles showed a photooxidation of reaction center bacteriochlorophyll and a light-induced spectral shift of carotenoid to longer wave-lengths. The red shift similar to that in intact cells or chromatophores, indicates the generation of local fields in the membrane of proteoliposomes. When inside-positive membrane potential was induced by adding valinomycin and potassium salt, a shift of carotenoid spectrum to shorter wavelengths was observed. Therefore, the reconstituted vesicles, at least in the major part of population, produced the light-induced local field in the same direction as in intact cells, which is inside negative. Sidedness of the membrane structure and the direction of electric field formation in reconstituted vesicles were opposite to those in chromatophores (inside-out vesicles.  相似文献   

11.
(1) Three analogs of merocyanine dyes added to suspensions of chromatophore vesicles showed absorbance changes responding to the change in surface potential induced by salt addition and to the change in membrane potential induced by illumination. (2) The extent of the light-induced absorbance changes of the dyes was linearly related, in the presence and absence of uncouplers, to that of carotenoid spectral shift which is an intrinsic probe of the intramembrane electric field. (3) Comparison of the merocyanine absorbance changes induced by salt addition with those induced by illumination indicated that the surface potential change in the outer surface of chromatophore membranes during illumination was very small. (4) Judging from the spectra of these absorbance and from the low permeabilities of the dyes to membrane, the absorbance change are attributed to change in distribution of the dyes between the medium and the outer surface region in chromatophore membranes. The extent of the light-induced absorbance changes of merocyanine dyes depended on the salt concentration of the medium. The types of dependence were different among three merocyanine analogs. This is explained by the mechanism mentioned above assuming appropriate parameters. It is suggested that, under continuous illumination, an equilibrium of the electrochemical potential of H+ is reached between the bulk aqueous phase and the outer surface region in the membrane where the merocyanine dyes are distributed.  相似文献   

12.
Optical potentiometric indicators have been used to monitor the transmembrane electrical potential (Em) of many cells and organelles. A better understanding of the mechanisms of dye response is needed for the design of dyes with improved responses and for unambiguous interpretation of experimental results. This paper describes the responses to delta Em of 20 impermeant oxonols in human red blood cells. Most of the oxonols interacted with valinomycin, but not with gramicidin. The fluorescence of 15 oxonols decreased with hyperpolarization, consistent with an "on-off" mechanism, whereas five oxonols unexpectedly showed potential-dependent increases in fluorescence at less than 2 microM [dye]. Binding curves were determined for two dyes (WW781, negative response and RGA451, positive response) at 1 mM [K]o (membrane hyperpolarized with gramicidin) and at 90 mM [K]o (delta Em = 0 with gramicidin). Both dyes showed potential-dependent decreases in binding. Changes in the fluorescence of cell suspensions correlated with changes in [dye]bound for WW781, in accordance with the "on-off" mechanism, but not for RGA451. Large positive fluorescence changes (greater than 30%) dependent on Em were observed between 0.1 and 1.0 microM RGA451. A model is suggested in which RGA451 moves between two states of different quantum efficiencies within the membrane.  相似文献   

13.
The shift of the carotenoid absorption spectrum induced by illumination and valinomycin-K+ addition was investigated in membrane structures with different characteristics and opposite sidednesses isolated from Rhodopseudomonas sphaeroides. Right-side-out membrane structures were prepared by isotonic lysozyme-EDTA treatment of the cells (spheroplasts) and by hypotonic treatment of spheroplasts (spheroplast membrane vesicles). Inside-out membrane structures (“chromatophores”) were obtained by treating spheroplast membrane vesicles by French press or sonication.The membrane structures with either sidedness showed the same light-induced change of the “red shift” type. However, the absorbance change by K+ addition in the presence of valinomycin in the right-side-out membrane structures were opposite to that in the inverted vesicles, “blue shift” in the former and “red shift” in the latter. The carotenoid absorbance change was linear to membrane potential, calculated from the concentration of KCl added, with a reference on the cytoplasmic side, through positive and negative ranges.  相似文献   

14.
We have examined the thermodynamic properties of the physiological electron donor to ferricytochrome c2 in chromatophores from the photosynthetic bacterium Rhodopseudomonas sphaeroides. This donor (Z), which is capable of reducing the ferricytochrome with a halftime of 1-2 ms under optimal conditions, has an oxidation-reduction midpoint potential of close to 150 mV at pH 7.0, and apparently requires two electrons and two protons for its equilibrium reduction. The state of reduction of Z, which may be a quinone.protein complex near the inner (cytochrome c2) side of the membrane, appears to govern the rate at which the cyclic photosynthetic electron transport system can operate. If Z is oxidized prior to the flash-oxidation of cytochrome c2, the re-reduction of the cytochrome takes hundreds of milliseconds and no third phase of the carotenoid bandshift occurs. In contrast if Z is reduced before flash activation, the cytochrome is rereduced within milliseconds and the third phase of the carotenoid bandshift occurs. The prior reduction of Z also has a dramatic effect on the uncoupler sensitivity of the rate of electron flow; if it is oxidized prior to activation, uncoupler can stimulate the cytochrome rereduction after several turnovers by less than tenfold, but if it is reduced prior to activation, the stimulation after several turnovers can be as dramatic as a thousandfold. The results suggest that Z plays a central role in controlling electron and proton movements in the ubiquinone cytochrome b-c2 oxido-reductase.  相似文献   

15.
Mild proteolysis of Rhodopseudomonas capsulata chromatophores results in a parallel loss of the 800 nm bacteriochlorophyll absorption band and a blue shift in the carotenoid absorption bands associated with the B-800–850 light-harvesting complex. Both the light-induced and the salt-induced electrochromic carotenoid band shift disappear in parallel to the loss of the 800 nm bacteriochlorophyll absorption upon pronase treatment of chromatophores. During the time required for the loss of the 800 nm bacteriochlorophyll absorption and the loss of the electrochromic carotenoid band shift photochemistry is not inhibited and the ionic conductance of the membrane remains very low. We conclude that the carotenoid associated with the B-800–850 light-harvesting complex is the one that responds electrochromically to the transmembrane electric field. Analysis of the pigment content of Rps. capsulata chromatophores indicates that all of the carotenoid may be accounted for in the well defined pigment-protein complexes.  相似文献   

16.
Proteoliposomes were reconstituted from detergent-solubilized pigment · protein complexes of chromatophores of Rhodopseudomonas sphaeroides and soybean phospholipids. The reconstituted vesicles showed a photooxidation of reaction center bacteriochlorophyll and a light-induced spectral shift of carotenoid to longer wavelengths. The red shift similar to that in intact cells or chromatophores, indicates the generation of local fields in the membrane of proteoliposomes. When inside-positive membrane potential was induced by adding valinomycin and potassium salt, a shift of carotenoid spectrum to shorter wavelengths was observed. Therefore, the reconstituted vesicles, at least in the major part of population, produced the light-induced local field in the same direction as in intact cells, which is inside negative. Sidedness of the membrane structure and the direction of electric field formation in reconstituted vesicles were opposite to those in chromatophores (inside-out vesicles).  相似文献   

17.
The flash-induced formation of transmembrane electric potential differences (measured by carotenoid bandshift) and redox changes of cytochrome bh (b561) were monitored spectrophotometrically in Rb. sphaeroides chromatophores in a pH range from 7.5 to 10.0. It is shown that in the presence of antimycin A and at pH less than 8.3 the myxothiazol-sensitive, antimycin-insensitive component of the carotenoid bandshift is kinetically coupled to cytochrome bh reduction. The kinetics of both processes can be described by a single exponent with a rise time of about 10 ms. Alkalization of the medium (8.3 less than or equal to pH less than or equal to 9.2) causes the appearance of an additional constituent in this phase of the carotenoid response with the rise time varying in the range of 100-300 ms. With a further pH increase (pH greater than 9.2), the electrogenic constituent, kinetically linked to cytochrome bh reduction, diminishes. The obtained data are discussed within the framework of the scheme, assuming that the electron transfer between bl and bh hemes in the bc1 complex is, under certain conditions, accompanied by proton transfer in the same direction.  相似文献   

18.
Roger C. Prince  P.Leslie Dutton 《BBA》1977,462(3):731-747
We have examined the thermodynamic properties of the physiological electron donor to ferricytochrome c2 in chromatophores from the photosynthetic bacterium Rhodopseudomonas sphaeroides. This donor (Z), which is capable of reducing the ferri-cytochrome with a halftime of 1–2 ms under optimal conditions, has an oxidation-reduction midpoint potential of close to 150 mV at pH 7.0, and apparently requires two electrons and two protons for its equilibrium reduction.

The state of reduction of Z, which may be a quinone · protein complex near the inner (cytochrome c2) side of the membrane, appears to govern the rate at which the cyclic photosynthetic electron transport system can operate. If Z is oxidized prior to the flash-oxidation of cytochrome c2, the re-reduction of the cytochrome takes hundreds of milliseconds and no third phase of the carotenoid bandshift occurs. In contrast if Z is reduced before flash activation, the cytochrome is rereduced within milliseconds and the third phase of the carotenoid bandshift occurs. The prior reduction of Z also has a dramatic effect on the uncoupler sensitivity of the rate of electron flow; if it is oxidized prior to activation, uncoupler can stimulate the cytochrome re-reduction after several turnovers by less than tenfold, but if it is reduced prior to activation, the stimulation after several turnovers can be as dramatic as a thousandfold. The results suggest that Z plays a central role in controlling electron and proton movements in the ubiquinone cytochrome b-c2 oxido-reductase.  相似文献   


19.
Chromatophores from Rhodopseudomonas sphaeroides were oriented by allowing aqueous suspensions to dry on glass plates. Orientation of reaction center pigments was investigated by studying the linear dichroism of chromatophores in which the absorption by antenna bacteriochlorophyll had been attenuated through selective oxidation. Alternatively the light-induced absorbance changes, in the ranges 550–650 and 700–950 nm, were studied in untreated chromatophores. The long wave transition moment of reaction center bacteriochlorophyll (P-870) was found to be nearly parallel to the plane of the membrane, whereas the long wave transition moments of bacteriopheophytin are polarized out of this plane. For light-induced changes the linear dichroic ratios, defined as Δavah, are nearly the same for untreated and for oxidized chromatophores. Typical values are 1.60 at 870 nm, 0.80 at 810 nm, 1.20 at 790 nm, 0.70 at 765 nm, 0.30 at 745 nm, and 0.50 at 600 nm. The different values for the absorbance decrease at 810 nm (0.80) and the increase at 790 nm (1.20) are incompatible with the hypothesis that these changes are due to the blue-shift of a single band. We propose that the decreases at 870 and 810 nm reflect bleaching of the two components of a bacteriochlorophyll dimer, the “special pair” that shares in the photochemical donation of a single electron. The increase at 790 nm then represents the appearance of a monomer band in place of the dimer spectrum, as a result of electron donation. This hypothesis is consistent with available data on circular dichroism. It is confirmed by the presence of a shoulder at 810 nm in the absorption spectrum of reaction centers at low temperature; this band disappears upon photooxidation of the reaction centers. For the changes near 760 nm, associated with bacteriopheophytin, the polarization and the shape of the “light-dark” difference spectrum (identical to the first derivative of the absorption spectrum) show that the 760 nm band undergoes a light-induced shift to greater wavelengths.  相似文献   

20.
The photosynthetic chromatophore membranes of Rhodopseudomonas capsulata were fused with liposomes to investigate the effects of lipid dilution on energy transfer between the bacteriochlorophyll-protein complexes of this membrane. Phosphatidylcholine-containing liposomes were mixed with chromatophores at pH 6.0 to 6.2, and the mixture was fractionated on discontinuous sucrose gradients into four membrane fractions with lipid-to-protein ratios that varied 11-fold. Freeze-fracture electron microscopy revealed that the fractions contained closed vesicles formed by the fusion of liposomes to chromatophores. Particles with 9-nm diameters on the P fracture faces did not appear to change in size with increasing lipid content, but the number of particles per membrane area decreased proportionally with increases in the lipid-to-protein ratio. The bacteriochlorophyll-to-protein ratios, electrophoretic polypeptide profiles on sodium dodecyl sulfate-polyacrylamide gels, and light-induced absorbance changes at 595 nm caused by photosynthetic reaction centers were not altered by fusion. The relative fluorescence emission intensities due to the B875 light-harvesting complex increased significantly with increasing lipid content, but no increases in fluorescence due to the B800-B850 light-harvesting complex were observed. Electron transport rates, measured as succinate-cytochrome c reductase activities, decreased with increased lipid content. The results indicate an uncoupling of energy transfer between the B875 light-harvesting and reaction center complexes with lipid dilution of the chromatophore membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号