首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 910 毫秒
1.
The model used in this paper is Y = Xβ, where with unknown x0. Estimators of x0 are derived by putting βmx0m+1 regarding βm+1 as a new unknown parameter. Formally we use the model Y = X1β+ + e where β′+ = (β0, …βm+1 and Then βm+1/ βm is a point estimator of x0. Assuming normality for e and taking the random variable z=βmx0m+1 we get a t-distributed variable and finally a confidence estimator of x0. The formulas are applied in dose response relations in antibiotic assays refering to a standard. Now we can take into account not only the dependence on the dose/concentration but also on the position on the test agar plate where the test solution is filled in. As a consequence the confidence interval of the unknown dose/concentration x0 becomes shorter and by it the statements more precise.  相似文献   

2.
A continuous stirred tank fermentor (CSTF) used for cultivation of the fungus Morchella crassipes in ammonia base waste sulfite liquor (NH3-WSL) was considered as a multivariable linear system around its operating point. Pulse testing on the inputs (inlet jacket temperature, inlet pH, inlet substrate concentration) and their responses at the outputs (biomass, outlet temperature, outlet jacket temperature, outlet pH, outlet substrate concentration) were used for numerical determination of the transfer function matrix:   相似文献   

3.
Conformation and folding in histones H1 and H5   总被引:1,自引:0,他引:1  
Denatured histones H1 and H5 can be readily refolded on salt addition. Their digestion by trypsin leads to limit peptides of about 80 residues having the same nmr and CD spectra as those of the intact parent histones. Scanning microcalorimetry shows that (1) the folded structures of H1 and H5 are located entirely in their limit peptides; (2) both have values of the specific denaturation enthalpy typical for small globular proteins; and that (3) both exhibit a classic “2-state” transition (ΔH = ΔH). The heat-denaturation profiles of H5 measured using intrinsic and extrinsic Cotton effect and side-chain nmr peaks do not coincide at all. Only the intrinsic Cotton effects give a Tm and ΔH close to that from microcalorimetry. We conclude that these proteins exhibit large-scale side-chain motions that precede the macroscopic cooperative transition.  相似文献   

4.
K. Uma  R. Kishore  P. Balaram 《Biopolymers》1993,33(6):865-871
The competing effects of a disulfide bridge and an α-aminoisobutyryl residue (Aib) in determining the conformation of a hexapeptide have been investigated, by comparing the cyclic disulfide (1) and the acylic peptide Boc-Cys(SBzl)-Val-Aib-Ala-Leu-Cys(SBzl)-NHMe ( 2 ). Previously published nmr and crystallographic studies [R. Kishore, S. Raghothama, and P. Balaram (1987) Biopolymers, Vol. 26, pp. 873–891; I. L. Karle, R. Kishore, S. Raghothama, & P. Balaram, (1988) Journal of the American Chemical Society Vol. 110, pp. 1958–1963] have established an antiparallel β-hairpin structure for 1 with a central Aib-Ala β-turn. A comparison of nmr data for 1 and 2 in chloroform and dimethylsulfoxide reveals that the acyclic peptide is conformationally labile. Evidence for a 310-helical conformation in CDCl3 is obtained from sensitivity of NH chemical shifts to temperature and solvent perturbation and low JHNCαH values. Studies in solvent mixtures establish a conformational transition on going from CDCl3 to (CD3)2SO. The changes in NH nmr parameters, together with the observation of several interresidue C H-Ni + 1H nuclear Overhauser effects support a conformation having a central β-turn with extended arms in (CD3)2SO. A single Aib residue appears to stabilize a helix in apolar solvents, for the acyclic hexapeptide, while the disulfide bridge serves to lock the β-hairpin conformation. © 1993 John Wiley & Sons, Inc.  相似文献   

5.
A 20-membered cyclic peptide disulfide has been synthesized as a conformational model for disulfide loops of limited ring size. 1H-nmr studies at 270 MHz establish the presence of three intramolecular hydrogen bonds involving the Leu, Val, and methylamide NH groups in CDCl3. Evidence for peptide aggregation in CDCl3 is also presented. A structural transition involving loosening of the hydrogen bond formed by the Val NH group is observed upon the measured addition of (CD3)2SO to CDCl3. Hydrogen-bonding studies, together with unusually low field positions of the Cys(1) and Cys(6) CαH resonances and high J values provide support for an intramolecular antiparallel β-sheet conformation, facilitated by a chain reversal at the Aib-Ala segment. Extensive nuclear Overhauser effect studies provide compelling evidence for the proposed conformation and also establish a type I′ β-turn at the Aib-Ala residues, the site of the chain reversal.  相似文献   

6.
The various polymer–acid solvation possibilities occuring in the helix–coil transition process of polypeptides with polar side chains were systematically analyzed by infrared spectroscopy. The following samples have been considered: poly-γ-benzyl-L -glutamate (PBLG), alternating poly-γ-benzyl-D ,L -glutamate (PBD-LG), and poly-β-benzyl-L -as-partate (PBLA). The behavior of the amide A, I, II, and νC?O ester absorptions of each polymer dissolved in trifluoroacetic acid–chloroform mixtures was studied in depth. The classical assumptions concerning the interaction between a polypeptide and a proton donor solvent are discussed. This interaction was previously proposed in a theoretical model of helix–coil transition. For PBLG, the spectral characteristics of the cooperative transition are evidenced by the amide bands. These bands also show main chain–acid hydrogen bonding (I) Quantitative analysis of phenomenon (I) was performed in order to localize the “binding sites” of the polymer. In agreement with the theory, only the complexation of peptide units belonging to random coil and terminal helical regions were observed. However, in contrast to the theory in which the association constants KCO and KNH of these residues are generally kept equal, the present results have shown that the main binding site is the carbonyl group (KNH ? 0 or « KCO ). The behavior of the polar side chains of these polypeptides were analyzed during the transition. Similarly to the peptide backbone, they bind the acid by hydrogen bonding (II) Furthermore, this association is more important when the side chains are localized in the coiled regions than in the helical ones. This result suggests, by analogy with the main chain behavior, that the helix–coil transition theory should take into account two more association constants for polar side chains, namely k1 for the helical regions and k2 > k1 for the coiled ones.  相似文献   

7.
For a balanced one-way classification, where the normally distributed observations obey a random model yij=μ+bi+cij with two variance components var (bi) = δ and var (cij) = δ, the probability is given that the analysis of variance estimate of δ will be negative. This probability depends on δ/δ and the degrees of freedom in the ANOVA table. Tables for this probability are given. If the normally distributed observations obey an intra-class correlation model, the probability that the Mean Square between groups is smaller than the Mean Square within groups can also be evaluated from the given tables.  相似文献   

8.
1. Limnologists have long acknowledged the importance of phosphorus (P) in determining the organism biomass and productivity of lake ecosystems. Despite a relatively large number of studies that have examined P cycling in lake ecosystems, there remain several substantial methodological issues that have impeded our understanding of P cycling in limnetic plankton communities. Two critical issues confronting ecologists are (1) a lack of precise measurements of the dissolved inorganic phosphorus (PO) and (2) accurate or complete measurements of dissolved P regeneration rates by plankton communities. 2. Here, we examine patterns of epilimnetic planktonic P pool sizes and turnover rates in eight lakes in British Columbia, Canada over a 2‐year period. We determine the concentrations and turnover times of P in various planktonic compartments (dissolved and various planktonic size fractions), using recently developed methods for estimating phosphate concentration and planktonic regeneration rates. 3. The pico‐ and nanoplankton size fraction (0.2–20 μm) played a central role in planktonic P cycling in lakes examined by this study. On average across lakes, pico‐ and nanoplankton contained >60% of the planktonic P, accounted for >90% PO uptake, and contributed 50% of the plankton community dissolved P regeneration rate. 4. PO concentrations determined by steady state bioassays (ssPO) were extremely low (87–611 pmol L−1) and were 2–3 orders of magnitude less than simultaneously measured colorimetric soluble reactive phosphorus estimates. Lake ssPO concentrations increased linearly with total phosphorus (TP), and the slope of this relationship was approximately 1, indicating that PO remained a consistent proportion of the TP pool across a range of TP concentrations. 5. Turnover rates of the total planktonic P pool and the <20 μm pool became more rapid with increasing lake TP, indicating that, according to this metric, planktonic P cycling efficiency increased with TP concentrations. We also detected a significant relationship between particulate phosphorus (PP) <20 μm turnover time and seston N : P ratios, with PP <20 μm turnover times becoming slower with increasing seston N : P. These findings suggest that long‐standing conceptual models of nutrient cycling that predict slower cycling rates and decreasing cycling efficiency with increasing TP concentrations require further empirical examination. We postulate that patterns in lake P turnover and cycling efficiency are a result of complex interactions between plankton biomass and composition, and the ratios of multiple nutrients (C, N, P), rather than solely a function of the TP pool.  相似文献   

9.
Soils are predicted to exhibit significant feedback to global warming via the temperature response of greenhouse gas (GHG) production. However, the temperature response of hydromorphic wetland soils is complicated by confounding factors such as oxygen (O2), nitrate () and soil carbon (C). We examined the effect of a temperature gradient (2–25 °C) on denitrification rates and net nitrous oxide (N2O), methane (CH4) production and heterotrophic respiration in mineral (Eutric cambisol and Fluvisol) and organic (Histosol) soil types in a river marginal landscape of the Tamar catchment, Devon, UK, under non‐flooded and flooded with enriched conditions. It was hypothesized that the temperature response is dependent on interactions with ‐enriched flooding, and the physicochemical conditions of these soil types. Denitrification rate (mean, 746 ± 97.3 μg m?2 h?1), net N2O production (mean, 180 ± 26.6 μg m?2 h?1) and net CH4 production (mean, 1065 ± 183 μg m?2 h?1) were highest in the organic Histosol, with higher organic matter, ammonium and moisture, and lower concentrations. Heterotrophic respiration (mean, 127 ± 4.6 mg m?2 h?1) was not significantly different between soil types and dominated total GHG (CO2eq) production in all soil types. Generally, the temperature responses of denitrification rate and net N2O production were exponential, whilst net CH4 production was unresponsive, possibly due to substrate limitation, and heterotrophic respiration was exponential but limited in summer at higher temperatures. Flooding with increased denitrification rate, net N2O production and heterotrophic respiration, but a reduction in net CH4 production suggests inhibition of methanogenesis by or N2O produced from denitrification. Implications for management and policy are that warming and flood events may promote microbial interactions in soil between distinct microbial communities and increase denitrification of excess with N2O production contributing to no more than 50% of increases in total GHG production.  相似文献   

10.
The dependency of the velocity of biological processes from the temperature is described by the “Law of absolute velocity of biological processes”, which has only the individual parameters energy of activation ΔE, and the universal constant C. The law holds for all biological processes and is expressed by the equation: where C is: .  相似文献   

11.
The conformational transition of poly(L -agrignine) by binding with various mono-, di-, and polyvalent anions, especially with SO, was studied by CD measurements. The intramolecular random coil-to-α-helix conformational transition and the subsequent transition to the β-turn-like structure was caused by binding with SO. The binding data obtained from equilibrium dialysis experiments showed that the α-helical conformation of poly(L -arginine) is stabilized at a 1:3 stoichiometric ratio of bound SO to arginine residue; at higher free SO concentrations, the α-helix converts to the β-turn-like structure accompanied by a decrease in amount of bound SO. The same conformaitonal transition of poly(L -arginine) also occurred in the solutions of other divalent anions (SO, CO, and HPO) and polyvalent anions (P2O, P3O). Among the monovalent anions examined, CIO and dodecyl sulfate were effective in including α-helical conformation, while the other monovalent anions (OH?, Cl?, F?, H2PO, HCO and CIO) failed to induce poly(L -arginine) to assume the α-helical conformation. Thus, we noticed that, except for dodecyl sufate, the terahedral structure is common to the α-helix-forming anions. A well-defined model to the α-helical poly(L -arginine)/anion complex was proposed, in which both the binding stoichiometry of anions to the arginine residue and the tetrahedral structure of anions were taken into consideration. Based on these results, it was concluded that the tetrahedral-type anions stabilize the α-helical conformation of poly(L -arginine) by crosslinking between two guanidinium groups of nearby side chains on the same α-helix through the ringed structures stabilized by hydrogen bonds as well as by electrostatic interaction. Throughout the study it was noticed that the structural behavior of poly(L -arginine) toward anions is distinct from that of poly(L -lysine).  相似文献   

12.
M Rinaudo  A Domard 《Biopolymers》1973,12(10):2211-2224
Potentiometric neutralization of oligomers represented by the general formula shown was studied. The intrinsic pK of carboxyl function was found to be 4.40 at 25°C; the variation of the apparent pKa, ΔK(α), was studied as a function of the degree of neutralization: the influence of the degree of neutralization on the accumulation of ionic sites along the chain is clearly shown. The experimental curves of polyglutamic acid allowed us to deduce the sequence of ionic selectivity and the energy of conformational transition. The theoretical interpretation of the results was proposed in terms of the rod like model from Katchalsky's theory. The intrinsic pKo for the polymer was set equal to the value experimentally obtained on oligomers. By activity measurements on Na+ and Ca2+ counterions in salt-free solutions, the free fraction of counterions was deduced on the different samples. The results were interpreted with the electrostatic model previously proposed; in this view, the oligomers are assimilated to imaginary polyelectrolytes. This allowed us to determine the values of ΔpK and the fraction of free ions at the same time.  相似文献   

13.
Calmodulin (CaM) functions depend on interactions with CaM‐binding proteins, regulated by . Induced structural changes influence the affinity, kinetics, and specificities of the interactions. The dynamics of CaM interactions with neurogranin (Ng) and the CaM‐binding region of /calmodulin‐dependent kinase II (CaMKII290−309) have been studied using biophysical methods. These proteins have opposite dependencies for CaM binding. Surface plasmon resonance biosensor analysis confirmed that and CaM interact very rapidly, and with moderate affinity ( ). Calmodulin‐CaMKII290−309 interactions were only detected in the presence of , exhibiting fast kinetics and nanomolar affinity ( ). The CaM–Ng interaction had higher affinity under ‐depleted ( and k −1 = 1.6 × 10−1s−1) than ‐saturated conditions ( ). The IQ motif of Ng (Ng27−50) had similar affinity for CaM as Ng under ‐saturated conditions ( ), but no interaction was seen under ‐depleted conditions. Microscale thermophoresis using fluorescently labeled CaM confirmed the surface plasmon resonance results qualitatively, but estimated lower affinities for the Ng ( ) and CaMKII290−309( ) interactions. Although CaMKII290−309 showed expected interaction characteristics, they may be different for full‐length CaMKII. The data for full‐length Ng, but not Ng27−50, agree with the current model on Ng regulation of /CaM signaling.  相似文献   

14.
15.
Mercuric ion, a well-known nephrotoxin, promotes oxidative tissue damage to kidney cells. One principal toxic action of Hg(II) is the disruption of mitochondrial functions, although the exact significance of this effect with regard to Hg(II) toxicity is poorly understood. In studies of the effects of Hg(II) on superoxide (O) and hydrogen peroxide (H2O2) production by rat kidney mitochondria, Hg(II) (1–6 μM), in the presence of antimycin A, caused a concentration-dependent increase (up to fivefold) in mitochondrial H2O2 production but an apparent decrease in mitochondrial O production. Hg(II) also inhibited O-dependent cytochrome c reduction (IC50 ≈?2–3 μM) when O was produced from xanthine oxidase. In contrast, Hg(I) did not react with O in either system, suggesting little involvement of Hg(I) in the apparent dismutation of O by Hg(II). Hg(II) also inhibited the reactions of KO2 (i.e., O) with hemin or horseradish peroxidase dissolved in dimethyl sulfoxide (DMSO). Finally, a combination of Hg(II) and KO2 in DMSO resulted in a stable UV absorbance spectrum [currently assigned Hg(II)-peroxide] distinct from either Hg(II) or KO2. These results suggest that Hg(II), despite possessing little redox activity, enhances the rate of O dismutation, leading to increased production of H2O2 by renal mitochondria. This property of Hg(II) may contribute to the oxidative tissue-damaging properties of mercury compounds.  相似文献   

16.
The influence of proline cis-trans isomerization on the kinetics of lysozyme unfolding was examined carefully according to the theory of Hagerman and Baldwin [(1976) Biochemistry 15, 1462–1473]. As a result, the kinetics of lysozyme unfolding was found to follow the two-state transition model well. The temperature dependencies of kuf and kf over a wide temperature range showed that ΔC = 0 and ΔC = ?6.7 kJ K?1 mol?1 in solutions of different concentrations of GuHCl. The data observed in solutions containing other denaturants also supported the conclusion that ΔC is nearly equal to zero. The activation enthalpies of unfolding (ΔH) were observed at various concentrations of several kinds of denaturants. They were independent of species and concentrations of denaturants ΔH = 200 kJ mol?1). These facts indicate that the aspect of interaction between protein and different kinds of solvent molecules varies only slightly during the unfolding to the transition state, that is, the transition state is at compact as the native one. Therefore, it is also suggested that ΔH of 200 kJ mol?1 is primarily required for the disruption of long-range interactions among different structural domains through a subtle conformational change. We compared the effects of several kinds of denaturants on the unfolding rate. The addition of PrOH more remarkably increases the unfolding rate than do other hydrophilic denaturants. This is probably because PrOH molecules can penetrate into the hydrophobic core of lysozyme, but hydrophilic reagents cannot because of the compactness of the transition state.  相似文献   

17.
The relationship between cytosolic concentrations of Ca2+ (Ca) and Na+ (Na) were studied in preparations of rat submandibular and pancreatic acini loaded with the Ca2+-sensitive dye Fura-2 or the Na+-sensitive dye SBFI. Pancreatic acini showed no changes in Na during either transient or persistent changes in Ca. Increases in Ca produced by exposure of submandibular gland acini to carbachol, a muscarinic cholinergic agonist, were followed by an increase in Na after a delay of 5–10 s. When Ca2+ stores were mobilized without Ca2+ influx Na also increased, but in acini loaded with BAPTA, a nonfluorescent Ca2+ chelator, the transient increase in Ca2+ caused by mobilization of stored Ca2+ was virtually abolished, as was the increase in Na. In the presence of ionomycin, increases in Ca were followed by increases in Na. Ca2+-dependent increases in Na were abolished in Na+-free buffer and by the presence of furosemide, a blocker of Na+-K+-2Cl cotransport. In other studies, extracellular ATP (ATPo) produced an increase in Ca and Na. The steady-state increase in Ca was reduced by increasing extracellular Na+ concentrations (Na) in dose-dependent fashion (IC50 = 16.4 ± 4.7 mM Na+). Likewise, increasing Na reduced ATPo-stimulated 45Ca2+ uptake at steady state (IC50 = 15.8 ± 9.2 mM Na+). Changing Na had no effect on carbachol-stimulated increases in Ca. We conclude that, in rat submandibular gland acini, ATPo promotes an increase in Ca and Na via a common influx pathway and that, under physiologic conditions, Na+ significantly limits the ATPo-stimulated increase in Ca. In the presence of carbachol, however, Na rises in Ca-dependent fashion in submandibular gland acini via stimulation of Na+-K+-2Cl cotransport. © 1996 Wiley-Liss, Inc.  相似文献   

18.
Four fundamental Raman lines were observed at 159, 111, 55 and 27 cm-1 corresponding to the I bound (I) in amyloses with DP from 20 to 100, regardless of the degree of polymerization of I and the excitation wavelength. The spectral resolution was based on the molar extinction coefficient and molar ellipticity spectra of I. Eight bands, named, S1, S2, ?, S8 from long to short wavelength, were isolated. These were found regardless of the DP. By a resonance excitation Raman study, the characteristics of S3 and S4, comprising the shoulder around 480 nm, were found to be different from those of S1 and S2, comprising the blue band. The assignment of the spectra was based on the electronic states of the monomeric I in the exciton-coupled dimeric unit. It was concluded that the blue band (S1,S2) belonged to the long-axis transitions and the shoulder band (S3,S4) to the short-axis ones on the monmeric coordinate system.  相似文献   

19.
The disulphide bridged heptapeptide has been synthesized by classical solution methods. An ion binding study showed the peptide's ability to complex calcium ions with definite stoichiometry. The solution conformation of the peptide in its free and calcium-complexed form has been investigated by CD and nmr. The model structure derived from nmr data has been energy minimized and the resulting structure investigated by molecular dynamics simulation in water. The structure of the equimolar peptide/Ca2? complex in acetonitrile at room temperature shows the presence of two transannular hydrogen bonds, with the formation of two ring structures of the C10 (type VIa) and C14 type. One peptide unit (Pro-Pro) is cis, all others are trans. © 1993 John Wiley & Sons, Inc.  相似文献   

20.
Fumio Oosawa 《Biopolymers》1968,6(11):1633-1647
This paper gives a very simple method based on the characteristic property of the electric free energy to calculate the repulsive force between parallel rodlike macroions in a solution as a function of the charge density on rods. The total extensive force (?f/?X) of an assembly of m rods of length l and charge number n (charge density ? neo /l) at small extension X in the absence of low molecular sals is given by where z is the valency of counterions and Q (= neO2/εkTl) is a dimensionless quantity representing the charge density. The repulsion between two parallel rods is given by putting m = 2. At large charge densities the repulsion is very much smaller than the direct coulomb force between charged rods, even at small distances. The addition of low molecular salts does not depress the repulsion appreciably, as long as the average concentration of salt ions is much smaller than the concentration of counterions accumulated in the space between rods. The effect of fluctuation of the coumerion distribution is also analyzed, and it is found that the attractive force due to the ion fluctuation may predominate over the above repulsive force in the case of polyvalent counterions and rods of high charge densities at small distances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号