首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Aspergillus fumigatus is a fungal pathogen causing severe infections in immunocompromised patients. For clearance of inhaled conidia, an efficient response of the innate immune system is required. Macrophages represent the first line of defence and ingest and kill conidia. C-type lectins represent a family of receptors, which recognize pathogen-specific carbohydrates. One of them is beta1-3 glucan, a major component of the fungal cell wall. Here we provide evidence that beta1-3 glucan plays an important role for the elimination of A. fumigatus conidia. Laminarin, a soluble beta1-3 glucan and antibodies to dectin-1, a well known beta1-3 glucan receptor, significantly inhibited conidial phagocytosis. On resting conidia low amounts of surface accessible beta1-3 glucan were detected, whereas high amounts were found on small spores that appear early during germination and infection as well as on resting conidia of a pksP mutant strain. Swollen conidia also display larger quantities of beta1-3 glucan, although in an irregular spotted pattern. Resting pksP mutant conidia and swollen wild-type conidia are phagocytosed with high efficiency thereby confirming the relevance of beta1-3 glucans for conidial phagocytosis. Additionally we found that TLR2 and the adaptor protein MyD88 are required for efficient conidial phagocytosis, suggesting a link between the TLR2-mediated recognition of A. fumigatus and the phagocytic response.  相似文献   

2.
Acid-soluble and alkali-insoluble glucan fractions were prepared from yeast, hyphal and germ-tube forming cells of Candida albicans. Alkali-insoluble glucan was also extracted from purified yeast cell walls. Paper chromatography of partial acid hydrolysates confirmed that the glucan preparations contained beta(1----3)- and beta(1----6)-chains but no mixed intra-chain beta(1----3)/(1----6) linkages. Methylation and 13C-NMR analyses showed that the acid-soluble glucan consisted of a highly branched polymer composed mainly (67.0% to 76.6%) of beta(1----6)-linked glucose residues. The alkali-insoluble glucan from yeast and hyphal cells contained from 29.6% to 38.9% beta(1----3) and 43.3% to 53.2% beta(1----6) linkages. Alkali-insoluble glucan from germ-tube forming cells consisted of 67.0% beta(1----3) and 14% beta(1----6) linkages. Branch points accounted for 6.7%, 12.3% and 17.4% of the residues in the alkali-insoluble glucan of yeast, germ-tube forming and hyphal cells, respectively.  相似文献   

3.
In yeast, chitin is laid down at three locations: a ring at the mother-bud neck, the primary septum and, after cytokinesis, the cell wall of the daughter cell. Some of the chitin is free and the remainder attached to beta(1-3)glucan or beta(1-6)glucan. We recently reported that the chitin ring contributes to the prevention of growth at the mother-bud neck and hypothesized that this inhibition is achieved by a preferential binding of chitin to beta(1-3)glucan at that site. Here, we devised a novel strategy for the analysis of chitin cross-links in [14C]glucosamine-labeled cell walls, involving solubilization in water of alkali-treated walls by carboxymethylation. Intact cell walls or their digestion products with beta(1-3)glucanase or beta(1-6)glucanase were carboxymethylated and fractionated on size columns, and the percentage of chitin bound to different polysaccharides was calculated. Chitin dispersed in the wall was labeled in maturing unbudded cells and that of the ring in early budding cells. The former was mostly attached to beta(1-6)glucan and the latter to beta(1-3)glucan. This confirmed our hypothesis and indicated that the cell has mechanisms to attach chitin, a water-insoluble substance, synthesized here through chitin synthase III, to different acceptors, depending on location. In contrast, most of the chitin synthase II-dependent chitin of the primary septum was free, with the remainder linked to beta(1-3)glucan.  相似文献   

4.
A linear beta(1-3),beta(1-6) glucan was detected in the periplasm of Azospirillum brasilense cells growing in a medium of low osmotic strength. This glucan was produced in vitro by purified bacterial inner membranes with UDP-glucose as the sugar donor in the presence of Mg2+. Growth in a high-osmotic-strength medium strongly reduced the amount of this glucan accumulated in the periplasmic space, and the inhibition was associated with a reduction in the enzymatic activity of the beta(1-3),beta(1-6) glucosyltransferase(s).  相似文献   

5.
In vivo studies and quantitative measurements of glucans provide evidence for a decreased rate of synthesis and a lower amount of alkali-soluble glucan in cells of the osmotically fragile VY1160 mutant of the yeast Saccharomyces cerevisiae. Combined genetic and biochemical analysis shows that the srb1 mutation is responsible for the reduction of alkali-soluble glucan. Data on beta(1----3) glucan synthase activity did not indicate the participation of the enzyme in the in vivo synthesis of alkali-soluble glucan and suggest the existence of other glucan synthases in Saccharomyces cerevisiae.  相似文献   

6.
The morphology of yeast cells as it is affected by the glycosidic linkages of constituent glucan was studied. Four different strains of Saccharomyces cerevisiae were studied. A cell wall matrix particle representing the intact original morphology and composed entirely of beta-glucan was prepared. Using prepared cell wall glucan particles, the morphology and cell wall matrix structure were examined. Genetic modification of the cell wall structure during growth results in the alteration of the shape and hydrodnamic volume of the intact cell wall particles. The shape and hydrodynamic volume of the cell wall particles can also be modified by in vitro chemical and enzymatic treatment. The shape factor and hydrodynamic volume of the whole glucan cell wall matrix particles were evaluated quantitatively using a rheological analysis. An increased degree of beta(1 --> 6) cross-linking in the cell wall matrix induces a nearly 2-fold increase in the shape factor and a 10-fold increase in the compression modulus of the glucan particles. The disruption of beta(1 --> 6) glycosidic cross-linking causes the particles to swell by up to 18% of their original volume. This was used as a strategy to isolate a yeast mutant with a high beta(1 --> 6) glycosidic content in the cell wall glucan.  相似文献   

7.
In budding yeast, chitin is found in three locations: at the primary septum, largely in free form, at the mother-bud neck, partially linked to beta(1-3)glucan, and in the lateral wall, attached in part to beta(1-6)glucan. By using a recently developed strategy for the study of cell wall cross-links, we have found that chitin linked to beta(1-6)glucan is diminished in mutants of the CRH1 or the CRH2/UTR2 gene and completely absent in a double mutant. This indicates that Crh1p and Crh2p, homologues of glycosyltransferases, ferry chitin chains from chitin synthase III to beta(1-6)glucan. Deletion of CRH1 and/or CRH2 aggravated the defects of fks1Delta and gas1Delta mutants, which are impaired in cell wall synthesis. A temperature shift from 30 degrees C to 38 degrees C increased the proportion of chitin attached to beta(1-6)glucan. The expression of CRH1, but not that of CRH2, was also higher at 38 degrees C in a manner dependent on the cell integrity pathway. Furthermore, the localization of both Crh1p and Crh2p at the cell cortex, the area where the chitin-beta(1-6)glucan complex is found, was greatly enhanced at 38 degrees C. Crh1p and Crh2p are the first proteins directly implicated in the formation of cross-links between cell wall components in fungi.  相似文献   

8.
Glucans are (1-3)-beta-D-linked polymers of glucose that are produced as fungal cell wall constituents and are also released into the extracellular milieu. Glucans modulate immune function via macrophage participation. The first step in macrophage activation by (1-3)-beta-D-glucans is thought to be the binding of the polymer to specific macrophage receptors. We examined the binding/uptake of a variety of water soluble (1-3)-beta-D-glucans and control polymers with different physicochemical properties to investigate the relationship between polymer structure and receptor binding in the CR3- human promonocytic cell line, U937. We observed that the U937 receptors were specific for (1-->3)-beta-D-glucan binding, since mannan, dextran, or barley glucan did not bind. Scleroglucan exhibited the highest binding affinity with an IC(50)of 23 nM, three orders of magnitude greater than the other (1-->3)-beta-D-glucan polymers examined. The rank order competitive binding affinities for the glucan polymers were scleroglucan>schizophyllan > laminarin > glucan phosphate > glucan sulfate. Scleroglucan also exhibited a triple helical solution structure (nu = 1.82, beta = 0.8). There were two different binding/uptake sites on U937 cells. Glucan phosphate and schizophyllan interacted nonselectively with the two sites. Scleroglucan and glucan sulfate interacted preferentially with one site, while laminarin interacted preferentially with the other site. These data indicate that U937 cells have at least two non-CR3 receptor(s) which specifically interact with (1-->3)-beta-D-glucans and that the triple helical solution conformation, molecular weight and charge of the glucan polymer may be important determinants in receptor ligand interaction.  相似文献   

9.
The synthesis of periplasmic beta(1-2)glucan is required for crown gall tumor formation by Agrobacterium tumefaciens and for effective nodulation of alfalfa by Rhizobium meliloti. The exoC (pscA) gene is required for this synthesis by both bacteria as well as for the synthesis of capsular polysaccharide and normal lipopolysaccharide. We tested the possibility that the pleiotropic ExoC phenotype is due to a defect in the synthesis of an intermediate common to several polysaccharide biosynthetic pathways. Cytoplasmic extracts from wild-type A. tumefaciens and from exoC mutants of A. tumefaciens containing a cloned wild-type exoC gene synthesized in vitro UDP-glucose from glucose, glucose 1-phosphate, and glucose 6-phosphate. Extracts from exoC mutants synthesized UDP-glucose from glucose 1-phosphate but not from glucose or glucose 6-phosphate. Membranes from exoC mutant cells synthesized beta(1-2)glucan in vitro when exogenous UDP-glucose was added and contained the 235-kilodalton protein, which has been shown to carry out this synthesis in wild-type cells. We conclude that the inability of exoC mutants to synthesize beta(1-2)glucan is due to a deficiency in the activity of the enzyme phosphoglucomutase (EC 2.7.5.1), which in wild-type bacteria converts glucose 6-phosphate to glucose 1-phosphate, an intermediate in the synthesis of UDP-glucose. This interpretation can account for all of the deficiencies in polysaccharide synthesis which have been observed in these mutants.  相似文献   

10.
In the yeast Saccharomyces cerevisiae, the GTP-binding protein Rho1 is required for beta(1-->3)glucan synthase activity, for activation of protein kinase C and the cell integrity pathway and for progression in G1, cell polarization and exocytosis. A genetic screen for cells that become permeabilized at non-permissive temperature was used to isolate in vitro-generated mutants of Rho1p. After undergoing a battery of tests, several of them appeared to be specifically defective in the beta(1-->3) glucan synthesis function of Rho1p. At the non-permissive temperature (37 degrees C), the mutants developed defects in the cell wall, especially at the tip of new buds. In the yeast cell wall, beta(1-->6)glucan is linked to both beta(1-->3)glucan and mannoprotein, as well as occasionally to chitin. We have used the rho1 mutants to study the order of assembly of the cell wall components. The incorporation of [(14)C]-glucose into beta(1-->3)glucan at 37 degrees C was decreased or abolished in the mutants. Concomitantly, a partial defect in the incorporation of label into cell wall mannoproteins and beta(1-->6)glucan was observed. In contrast, YW3458, an inhibitor of glycosylphosphatidylinositol anchor formation, prevented mannoprotein incorporation, whereas the beta(1-->3)-beta(1-->6)glucan complex was synthesized at almost normal levels. As beta(1-->3)glucan can be synthesized in vitro or in vivo independently, we conclude that the order of addition in vivo is beta(1-->3)glucan, beta(1-->6)glucan, mannoprotein. Previous observations indicate that chitin is the last component to be incorporated into the complex.  相似文献   

11.
The chvA gene product of Agrobacterium tumefaciens is required for virulence and attachment of bacteria to plant cells. Three chvA mutants were studied. In vivo, they were defective in the synthesis, accumulation, and secretion of beta-(1-2)glucan; however, the 235-kilodalton (kDa) protein known to be involved in the synthesis of beta-(1-2)glucan (A. Zorreguieta and R. Ugalde, J. Bacteriol. 167:947-951, 1986) was present and active in vitro. was present and active in vitro. Two molecular forms of cyclic beta-(1-2)glucan, designated types I and II, were resolved by gel chromatography. Type I beta-(1-2)glucan was substituted with nonglycosidic residues, and type II beta-(1-2)glucan was nonsubstituted. Wild-type cells accumulated type I beta-(1-2)glucan, and chvA mutant cells accumulated mainly type II beta-(1-2)glucan and a small amount of type I beta-(1-2)glucan. Inner membranes of wild-type and chvA mutants formed in vitro type II nonsubstituted beta-(1-2)glucan. A 75-kDa inner membrane protein is proposed to be the chvA gene product. chvA mutant inner membranes had increased levels of 235-kDa protein; partial trypsin digestion patterns suggested that the 235-kDa protein (the gene product of the chvB region) and the gene product of the chvA region form a complex in the inner membrane that is involved in the synthesis, secretion, and modification of beta-(1-2)glucan. All of the defects assigned to the chvA mutation were restored after complementation with plasmid pCD522 containing the entire chvA region.  相似文献   

12.
This article describes the synthesis and regulation of beta(1-3)glucanase and protease enzymes from the cell lytic system of Oerskovia xanthineolytica LL-G109 in continuous culture using different concentrations of carbon source (glucose) and inducer (glucan). These two enzyme activities are the main components of a lytic system capable of lysing and disrupting whole yeast cells; it is subject to catabolite repression by glucose and is induced by yeast glucan. Peaks of beta(1-3)glucanase and protease activity are obtained at dilution rates of between 0.05 and 0.15 h(-1). The glucanase-protease ratio is very high compared to other strains. At dilution rates above 0.15 h(-1) all activities are similar to those obtained in batch culture. The lytic enzyme system appears to contain several beta(1-3)glucanase enzymes. In continuous culture both productivity and enzyme concentrations are greatly in creased when compared to batch culture, 11- and 4.4-fold, respectively.  相似文献   

13.
The cross-linking of polysaccharides to assemble new cell wall in fungi requires mechanisms by which a preexisting linkage is broken for each new one made, to allow for the absence of free energy sources outside the plasma membrane. Previous work showed that Crh1p and Crh2p, putative transglycosylases, are required for the linkage of chitin to beta(1-3)glucose branches of beta(1-6)glucan in the cell wall of budding yeast. To explore the linking reaction in vivo and in vitro, we used fluorescent sulforhodamine-linked laminari-oligosaccharides as artificial chitin acceptors. In vivo, fluorescence was detected in bud scars and at a lower level in the cell contour, both being dependent on the CRH genes. The linking reaction was also shown in digitonin-permeabilized cells, with UDP-N-acetylglucosamine as the substrate for nascent chitin production. Both the nucleotide and the Crh proteins were required here. A gas1 mutant that overexpresses Crh1p showed very high fluorescence both in intact and permeabilized cells. In the latter, fluorescence was still incorporated in patches in the absence of UDP-GlcNAc. Isolated cell walls of this strain, when incubated with sulforhodamine-oligosaccharide, also showed Crhp-dependent fluorescence in patches, which were identified as bud scars. In all three systems, binding of the fluorescent material to chitin was verified by chitinase digestion. Moreover, the cell wall reaction was inhibited by chitooligosaccharides. These results demonstrate that the Crh proteins act by transferring chitin chains to beta(1-6)glucan, with a newly observed high activity in the bud scar. The importance of transglycosylation for cell wall assembly is thus firmly established.  相似文献   

14.
Mutants of Saccharomyces cerevisiae characterized by osmotic fragility showed a marked fibrillar structure on the inner wall surface when studied by two electron microscopic techniques, i.e. freeze-etching of whole native cells and metal shadowing of isolated cell walls. The walls of the mutant cells were more permeable to macromolecules than were those of the wild-type parental strain. The synthesis and assembly of (1----3)-beta-D-glucan wall microfibrils studied in protoplasts of mutant cells were not impaired. It is suggested that the osmotic fragility of the mutant cells is related to the deficiency of the wall structure as a consequence of the srb1 mutation affecting biogenesis of the amorphous (glucan) component.  相似文献   

15.
The GGP1/GAS1 gene codes for a glycosylphosphatidylinositol-anchored plasma membrane glycoprotein of Saccharomyces cerevisiae. The ggp1delta mutant shows morphogenetic defects which suggest changes in the cell wall matrix. In this work, we have investigated cell wall glucan levels and the increase of chitin in ggp1delta mutant cells. In these cells, the level of alkali-insoluble 1,6-beta-D-glucan was found to be 50% of that of wild-type cells and was responsible for the observed decrease in the total alkali-insoluble glucan. Moreover, the ratio of alkali-soluble to alkali-insoluble glucan almost doubled, suggesting a change in glucan solubility. The increase of chitin in ggp1delta cells was found to be essential since the chs3delta ggp1delta mutations determined a severe reduction in the growth rate and in cell viability. Electron microscopy analysis showed the loss of the typical structure of yeast cell walls. Furthermore, in the chs3delta ggp1delta cells, the level of alkali-insoluble glucan was 57% of that of wild-type cells and the alkali-soluble/alkali-insoluble glucan ratio was doubled. We tested the effect of inhibition of chitin synthesis also by a different approach. The ggp1delta cells were treated with nikkomycin Z, a well-known inhibitor of chitin synthesis, and showed a hypersensitivity to this drug. In addition, studies of genetic interactions with genes related to the construction of the cell wall indicate a synthetic lethal effect of the ggp1delta kre6delta and the ggp1delta pkc1delta combined mutations. Our data point to an involvement of the GGP1 gene product in the cross-links between cell wall glucans (1,3-beta-D-glucans with 1,6-beta-D-glucans and with chitin). Chitin is essential to compensate for the defects due to the lack of Ggp1p. Moreover, the activities of Ggp1p and Chs3p are essential to the formation of the organized structure of the cell wall in vegetative cells.  相似文献   

16.
Regenerating spheroplasts of Candida albicans formed organized glucan nets in liquid culture. The nets consisted of interwoven microfibrils about 50 nm wide, but of an undetermined length. Partial acid hydrolysis of the polysaccharide showed the presence of chains of beta(1----3)- and beta(1----6)-linked glucose residues, but no intrachain beta(1----3) and beta(1----6) linkages. Periodate oxidation and GLC of the methylated glucan indicated a highly branched polymer (9.5% branch points). Sequential enzymic degradation of the isolated nets confirmed the presence of chains of beta(1----3)- and beta(1----6)-linked glucose residues. Degradation by (1----3)-beta- and (1----6)-beta-glucanase released 23% (w/w) and 30% (w/w) respectively of the carbohydrate as glucose equivalents. The residual material was degraded by chitinase. Equal amounts of N-acetylglucosamine and glucose equivalents were detected in the chitinase hydrolysate, suggesting a possible linkage between glucan and chitin. Our data indicate that the cell wall of C. albicans contains at least two highly branched glucans with predominantly beta(1----3) or beta(1----6) linkages.  相似文献   

17.
M Arellano  A Durn    P Prez 《The EMBO journal》1996,15(17):4584-4591
The Schizosaccharomyces pombe Cdc42 and Rho1 GTPases were tested for their ability to complement the cwg2-1 mutant phenotype of a decrease in (1-3)beta-D-glucan synthase activity when grown at the non-permissive temperature. Only Rho1 is able to partly complement the defect in glucan synthase associated with the cwg2-1 mutation. Moreover, overexpression of the rho1 gene in wild-type S.pombe cells causes aberrant morphology with loss of polarity and cells with several septa. Under this condition (1-3)beta-D-glucan synthase activity is increased four times, but is still dependent on GTP. When S.pombe is transformed with constitutively active rho1 mutant alleles (rho1-G15V or rho1-Q64L), cells stop growing and show a very thick cell wall with hardly any septum. Under this condition the level of (1-3)beta-D-glucan synthase activity is at least 20 times higher than wild-type and is independent of GTP. Neither cdc42+ nor the cdc42-V12G or cdc42-Q61L constitutively active mutant alleles affect (1-3)beta-D-glucan synthase activity when overexpressed in S.pombe. Cells overproducing Rho1 are hypersensitive to inhibitors of cell wall biosynthesis or to cell wall degrading enzymes. We conclude that Rho1 GTPase directly activates (1-3)beta-D-glucan synthase and regulates S.pombe morphogenesis.  相似文献   

18.
Previous work showed that the GTP-binding protein Rho1p is required in the yeast, Saccharomyces cerevisiae, for activation of protein kinase C (Pkc1p) and for activity and regulation of beta(1-->3)glucan synthase. Here we demonstrate a hitherto unknown function of Rho1p required for cell cycle progression and cell polarization. Cells of mutant rho1(E45I) in the G1 stage of the cell cycle did not bud at 37 degrees C. In those cells actin reorganization and recruitment to the presumptive budding site did not take place at the nonpermissive temperature. Two mutants in adjacent amino acids, rho1(V43T) and rho1(F44Y), showed a similar behavior, although some budding and actin polarization occurred at the nonpermissive temperature. This was also the case for rho1(E45I) when placed in a different genetic background. Cdc42p and Spa2p, two proteins that normally also move to the bud site in a process independent from actin organization, failed to localize properly in rho1(E45I). Nuclear division did not occur in the mutant at 37 degrees C, although replication of DNA proceeded slowly. The rho1 mutants were also defective in the formation of mating projections and in congregation of actin at the projections in the presence of mating pheromone. The in vitro activity of beta(1-->3)glucan synthase in rho1 (E45I), although diminished at 37 degrees C, appeared sufficient for normal in vivo function and the budding defect was not suppressed by expression of a constitutively active allele of PKC1. Reciprocally, when Pkc1p function was eliminated by the use of a temperature-sensitive mutation and beta(1-->3)glucan synthesis abolished by an echinocandin-like inhibitor, a strain carrying a wild-type RHO1 allele was able to produce incipient buds. Taken together, these results reveal a novel function of Rho1p that must be executed in order for the yeast cell to polarize.  相似文献   

19.
The glucan synthase complex of the human pathogenic mold Aspergillus fumigatus has been investigated. The genes encoding the putative catalytic subunit Fks1p and four Rho proteins of A. fumigatus were cloned and sequenced. Sequence analysis showed that AfFks1p was a transmembrane protein very similar to other Fksp proteins in yeasts and in Aspergillus nidulans. Heterologous expression of the conserved internal hydrophilic domain of AfFks1p was achieved in Escherichia coli. Anti-Fks1p antibodies labeled the apex of the germ tube, as did aniline blue fluorochrome, which was specific for beta(1-3) glucans, showing that AfFks1p colocalized with the newly synthesized beta(1-3) glucans. AfRHO1, the most homologous gene to RHO1 of Saccharomyces cerevisiae, was studied for the first time in a filamentous fungus. AfRho proteins have GTP binding and hydrolysis consensus sequences identical to those of yeast Rho proteins and have a slightly modified geranylation site in AfRho1p and AfRho3p. Purification of the glucan synthase complex by product entrapment led to the enrichment of four proteins: Fks1p, Rho1p, a 100-kDa protein homologous to a membrane H(+)-ATPase, and a 160-kDa protein which was labeled by an anti-beta(1-3) glucan antibody and was homologous to ABC bacterial beta(1-2) glucan transporters.  相似文献   

20.
Purified endoglucanases have been used to determine the composition of Schizosaccharomyces pombe cell wall. This structure has been traditionally studied after isolating its components (mannoproteins, alpha1,3-glucan, beta1,3-glucan, and a branched beta-glucan) with hot alkali. Instead, we sequentially removed the polysaccharides by digesting with endo-beta1,3-glucanase and with a novel endo-alpha1,3-glucanase (mutanase). After this gentle isolation we observed that a branched beta1,3-beta1,6-glucan is much more abundant than previously described. By scaling-up the new protocol we prepared large amounts of the highly branched glucan and determined its structural features. We have named this highly branched beta-glucan diglucan, reflecting its two types of beta linkages. We have also identified an insoluble endoglucanase-resistant type of 1,3-linked glucan present in S. pombe cell walls. We redefined the wall composition of S. pombe vegetative cells by this new method. Finally, to demonstrate its application, we determined the cell wall composition of known mutant strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号